
非同期共有メモリシステムにおける適応型繰り返し改名アルゴリズム

梅谷 真也 y 井上 美智子 y 増澤 利光 z 藤原 秀雄 y

y 奈良先端科学技術大学院大学 情報科学研究科

z 大阪大学大学院 基礎工学研究科

あらまし 本論文では，非同期共有メモリシステム上で，効率良く名前の獲得と解放を繰り返し行
う分散アルゴリズム (改名アルゴリズム)を提案する．N 個のプロセスは 1; 2; � � � ; N の範囲の一
意な名前を最初に持っているが，M-改名アルゴリズムを実行することで，新しく 1; 2; � � � ;M の
範囲の一意な名前を獲得する．
従来の最良のO(k2)-改名アルゴリズムとして，Afekらがステップ計算量 O(k3)，空間計算量

O(n3N) のアルゴリズムを提案した [1]．ここで，k はポイント競合度と呼ばれ，名前を獲得する
際に，同時にステップを実行したり名前を保持しているプロセスの数の最大値を示す．また，nは
k の上界である．さらに，変数の値が非有界となるが，ステップ計算量 O(k2 log k)，空間計算量
O(n3N) のアルゴリズムも提案されている [1]．本論文ではこれら従来の改名アルゴリズムより効
率の良い，ステップ計算量 O(k2)，空間計算量 O(n2N) の O(k2)-改名アルゴリズムを提案する．

Adaptive Long-lived Renaming Algorithm

in the asynchronous shared memory

Shinya Umetaniy Michiko Inouey Toshimitsu Masuzawaz Hideo Fujiwaray

y Graduate School of Information Science, Nara Institute of Science and Technology

z Graduate School of Engineering Science, Osaka University

Abstract. This paper presents an adaptive long-lived renaming algorithm in the asynchronous
shared memory system. The system consists of N asynchronous process, and each process
initially has a distinct name in the range f1; 2; � � � ; Ng. A M -renaming algorithm assigns new

unique name in the range f1; 2; � � � ;Mg to any process.
The previous best O(k2)-renaming algorithm is the algorithm with O(k3) step complexity

and O(n3N) space complexity presented by Afek et. al [1], where k is the point contention and
n is upper bound of k. The point contention is the maximum number of processes that actually

take steps or hold a name while the new name is being acquired. They also presented the
algorithm with O(k2 log k) step complexity and O(n3N) space complexity under the condition
where unbounded values are allowed. The step complexity of our algorithm is O(k2), and space

complexity is O(n2N). That is, our O(k2)-renaming algorithm is more e�cient than two previous
algorithms.

ア　ル　ゴ　リ　ズ　ム　80－９　　（２００１． ９． ２５）

萩原 恵子
－59－

1 Introduction

An asynchronous read/write shared memory
model consists of asynchronous processes and

shared registers. Each process has a dis-
tinct identi�er, and communicates via read
and write operatins on shared registers. We

consider a long-lived M -renaming problem in
this model. In the problem, every process re-
peatedly acquires a new name in the range
f1; 2; � � � ;Mg, and releases it after the use.

The problem requires that no two process keep
the same name concurrently, and renaming al-
gorithm is required to have small name space
and low complexity.

Recently, the algorithms where the step
complexities depend on only the contention,
the number of the active processes which ac-

tually participate in the algorithm, were pro-
posed. Such algorithms are called to be adap-
tive. In adaptive algorithms, the number of ac-
tually active processes is unknown in advance.

The adaptive renaming algorithm is very useful
if the number of active process is much smaller
than the number of total process which have a
potential for participation. Since the complex-

ities of most distributed algorithms depend on
the name space of processes, we can reduce the
complexities by using the renaming algorithm

to reduce the name space.
Table 1 shows the results on adaptive long-

lived renaming algorithms. Afek et al. [2] pro-
posed adaptive long-lived renaming algorithm,

which is adaptive to the point contention and
use unbounded memory, where the point con-
tention, denoted k, is the maximum number
of processes being concurrently active at some

point in the execution. Afek et al. next pro-
posed following three long-lived renaming algo-
rithms [1] which adapt to the point contention.

Their algorithms are a (2k2 � k)-renaming
with O(k2 log k) step complexity and O(n3N)
space complexity using unbounded values, a
(2k2�k)-renaming with O(k3) step complexity

and O(n3N) space complexity using bounded
values, and (2k�1)-renaming with Exp(k) step
complexity and O(n3N) space complexity us-
ing unbounded values. Attiya et al. [3] pro-

posed a long-lived (2k�1)-renaming algorithm
which adapts to point contention with O(k4)

step complexity.
In this paper, we present a long-lived

(2k2 � k)-renaming algorithm that adapts to

the point contention with O(k2) step com-
plexity and O(n2N) space complexity using
bounded values. That is, our algorithm is more

e�cient than above (2k2 � k)-renaming algo-
rithms.

2 Preliminaries

Our computation model is an asynchronous
read/write shared memory model [4]. A

shared memory model consists of N processes,
p0; � � � ; pN�1 and a set of registers shared by
the processes. The processes communicate
each other by reading from and writing to

shared registers. We assume multi-writer-
multi-reader registers, that is, each process can
read from and write to any register.

In the long-lived M-renaming problem, pro-
cesses repeatedly acquire and release distinct
names in the range f1; 2; � � � ;Mg. A renaming
algorithm provides two procedures getNamei

and releaseNamei for each process pi. A pro-
cess pi uses getNamei to get a new name, and
uses releaseNamei to release it. Each pro-
cess alternates between invoking getNamei and

releaseNamei, starting with getNamei.
An execution of an algorithm is a (possi-

bly in�nite) sequence of register operations and

invocations and returns of procedures where
each process follows the algorithm. Let � be
some execution of a long-lived renaming algo-
rithm, and let �0 be some �nite pre�x of �.

Process pi is active at the end of �0, if �0 in-
cludes an invocation of getNamei without a re-
turn from the matching releaseNamei. Process
pi which is active at the end of �0 can either

be trying to get a new name, that is, pi has
not yet returned from getNamei, or holding a
name y, that is, pi has already returned from
getNamei. In the latter case, we say that pi
holds a name y at the end of �0 if the last in-
vocation of getNamei returned y. A long-lived
renaming algorithm should guarantee the fol-

lowing uniqueness : If active processes pi and
pj (j 6= i) hold names yi and yj, respectively,
at the end of �0, then yi 6= yj .

The contention at the end of �0, denoted

萩原 恵子
－60－

Step
complexity

Name space
Space

complexity
Value size Reference

O(k2 log k) 2k2 � k unbounded bounded [2]

O(k2 log k) 2k2 � k O(n3N) unbounded [1]

O(k3) 2k2 � k O(n3N) bounded [1]

Exp(k) 2k � 1 O(n3N) unbounded [1]

O(k4) 2k � 1 unbounded unbounded [3]

O(k2) 2k2 � k O(n2N) bounded this paper

Table 1: Adaptive renaming algorithms.

Cont(�0), is the number of active processes at

the end of �0. Let � be a �nite interval of �,
that is, � = �1��2 for some �1 and �2. The
point contention of �, denoted PntCont(�), is
the maximum contention over all pre�xes �1�

0

of �1�.
The name space which is obtained by us-

ing renaming algorithm is adaptive to the point

contention if there is a function F , such that
the name obtained in an interval � of getNamei,
is in the range f1; 2; � � � ; F (PntCont(�))g.
The step complexity of a renaming algorithm

is adaptive to point contention if there is a
bounded function S, such that the number
of steps performed by pi in any interval � of
getNamei and in the matching releaseNamei is

at most S(PntCont(�)).

3 Renaming Algorithm

Our renaming algorithm is based on the (2k2�
k)-renaming algorithm presented in [1], which
is a long-lived renaming algorithm and adapts

to point contention k with O(k3) step com-
plexity using bounded memory and bounded
values. The major di�erence between this al-

gorithm and our algorithm is detail of proce-
dures interleaved sc sieve, leave and clear called
in the top level procedures, getName and re-

leaseName, which is shown in Algorithm 1.

Our renaming algorithm uses a sequence of
sieves, numbered 1; 2; � � � ; 2n, and each sieve
has 2N copies, numbered 0; 1; � � � ; 2N � 1,
where one copy is work space for processes

which visit the sieve concurrently. The �rst
component of the variable sieve[s]:count is
changed to 0; 1; � � � ; 2N � 1; 0; 1; � � �, cyclically,
and a shared variable sieve[s]:count designates
the current copy of the sieve s. We can asso-

ciate a round with the value of sieve[s]:count

which means how many times the variables is
updated to the current value. If a process sees
sieve[s]:count with a round r, we say the pro-
cess uses the designated copy in the round r.

In the procedure getNamei, a process pi vis-
its a sequence of sieves one after the other until
it wins in some sieve. If a process pi visiting

a sieve s satis�es some conditions (Line 9), it
enters one copy and obtains a setW of process
identi�ers. If W is a non-empty set including
its identi�er, pi wins in the sieve s, and pi gets

a new name hs; the rank of pi inW i (Line 13).
In the procedure releaseNamei, a process pi

leaves the copy which pi got a name to show
that pi released the name.

If pi notices that all candidates leave this

copy, pi initializes the copy to reuse it in
the next round by invoking the procedure

clear (Line 15 and 20). A Boolean variable
sieve[s]:allDone[c] is used as a signal that a
round in the copy c of the sieve s has been �n-
ished. The value nextDB di�ers with the par-

ity of the round (Line 7 and 8). However, some
slow processes excluding W may still work in
the copy after the initialization started. There-
fore, after every operation to shared registers,

each process checks whether the copy has been
�nished or not. If the process notices that the
copy has been �nished, it initializes the last

modi�ed register and leaves the sieve. This
mechanism is implemented by interleave.

In the procedure sc sieve, a process enters
a copy c of a sieve s, if all names assigned from

the previous copy c � 1 mod 2N are released
by checking a variable sieve[s]:allDone[c � 1
mod 2N], and the current copy c is free
by checking a variable sieve[s]:inside[c] (Line

30). The Boolean variable sieve[s]:allDone[c]
is changed after all names assigned from c

萩原 恵子
－61－

Algorithm 1: Procedure of renaming algorithm : part I.
Shared variables :

sieve[1; :::; 2n � 1] f
count : hinteger,Booleani, initially h0; 0i;
status[0; :::;N � 1] : Boolean, initially false;
inside[0; :::; 2N � 1] : Boolean, initially false;
allDone[0; :::; 2N � 1] : Boolean, initially false;
list[0; :::; 2N � 1] f
mark[0; :::; n � 1] : Boolean, initially false;
view[0; :::; n� 1] : set of hid,integeri, initially ?;
id[0; :::; n� 1] : id, initially ?;
X[0; :::; n � 1] : integer, initially ?;
Y [0; :::; n� 1] : Boolean, initially false;
done[0; :::; n� 1] : Boolean, initially false;

gg

Non-shared Global variables :
nextC,c : integer, initially 0;
nextDB,dirtyB : Boolean, initially false;
W : set of hid,integeri, initially ;;
s : integer, initially 0;
sp : integer, initially ?;

procedure getName()
1 s = 0;
2 while (true) do
3 s++;
4 sieve[s]:status[i] = active;
5 hc; dirtyBi = sieve[s]:count;
6 nextC = c+ 1 mod 2N ;
7 if (nextC = 0) then nextDB = not dirtyB;
8 else nextDB = dirtyB;
9 if ((nextC mod N = i) or

(sieve[s]:status[nextC mod N] = idle)) then
10 W = interleaved sc sieve(sieve[s]; nextC; nextDB);
11 if (hpi; spi 2W for some sp) then
12 sieve[s]:count = hnextC; nextDBi;
13 return hs;rank of pi in W i;
14 else-if (sieve[s]:allDone[nextC] = nextDB) then
15 clear(sieve[s]; nextC);
16 sieve[s]:status[i] = idle;
17 od;

procedure releaseName()
18 leave(sieve[s]; nextC; nextDB);
19 if (sieve[s]:allDone[nextC] = nextDB) then
20 clear(sieve[s]; nextC);
21 sieve[s]:status[i] = idle;

of s are released. The Boolean variable
sieve[s]:inside[c] is changed after some pro-
cesses enter c of s.

If the process can enter the copy c, it tries
to register in c by invoking the procedure reg-

ister (Line 32). If it can register, it scans c
to obtain a snapshot of processes which has

registered in c by invoking the procedure par-

tial scan (Line 34). This can be achieved by
invoking the procedure collect twice which re-

turns a set of process identi�ers. We call such
a set view. If two views are identical, it returns
the view as a snapshot, otherwise it returns an
empty set.

Then, the process �nd the minimum snap-
shotW of processes by invoking the procedure
candidates (Line 35). If a process obtains a
non-empty snapshot W , W is a set of candi-

dates of winners in s.

To implement the procedures register and
collect, we use the collect list. The collect list
consists of 2n splitters, and each splitter has

a distinct level in the range f0; 1; � � � ; 2n � 1g
[5]. The splitter returns either stop, next or
abort. Algorithm 4 shows procedures register,
collect and splitter.

The procedures register and collect are
adaptive to total contention, where the total
contention is the number of active processes in

an execution of these procedures. These proce-
dures are executed by only the processes which
entered the same copy concurrently. This
means they are concurrently active in some

point, and in a round, the processes which exe-
cutes the procedures register and collect in the
copy c of the sieve s are only them. That is, we
can use these procedures as procedures which

are adaptive to point contention.

萩原 恵子
－62－

Algorithm 2: Procedures renaming algorithm: part II.
Non-shared Global variables :

last modified : points to last shared variable modi�ed by pi;
// last modified is assumed to be updated immediately before the write.

mysplitter : integer, initially ?;

procedure interleaved sc sieve(sieve; nextC; nextDB)
// interleave is a two part construct. Part I of the interleave is executed after every read or write
// to a shared variable in Part II, the sc sieve() and any procedure recursively called from sc sieve().

22 last modified = ?;
23 interleave f // Part I
24 if (sieve:allDone[nextC] = nextDB) then
25 if (last modified 6= ?) then write initial value to last modified;
26 return ;; // abort current sc sieve(), s, and continue to next sieve.
27 gf // Part II
28 return sc sieve(sieve; nextC; nextDB);
29 g

procedure sc sieve(sieve; nextC; nextDB)
30 if (previousFinish(sieve; nextC; nextDB) and sieve:inside[nextC] = false) then
31 sieve:inside[nextC] = true;
32 mysplitter = register(sieve:list[nextC]);
33 if (mysplitter 6= ?) then
34 sieve:list[nextC]:view[mysplitter] = partial scan(sieve:list[nextC]);
35 W = candidates(sieve; nextC);
36 if (hpi; mysplitteri 2W) then return W ;
37 sieve:list[nextC]:done[mysplitter] = true;
38 W = candidates(sieve; nextC);
39 leave(sieve; nextC; nextDB);
40 return ;;

procedure previousFinish(sieve; nextC; nextDB)
41 if (nextC 6= 0 and sieve:allDone[nextC � 1 mod 2N] = nextDB) then return true;
42 if (nextC = 0 and sieve:allDone[2N � 1] 6= nextDB) then return true;
43 return false;

4 Correctness

4.1 Correctness of Collect List

A implementation of a splitter uses two shared
variables, X and Y . Initially, X = ? and
Y = false. A process executing the proce-
dure splitter �rst writes its identi�er into X

and then reads Y . If Y = true, the process
returns abort. Otherwise, the process writes
true into Y and checks X. If X still contains

its identi�er, the process returns stop. Oth-
erwise, the process returns next. By the al-
gorithm, we have the following property of the
splitter.

Lemma 1 If s processes take access to the

same splitter concurrently, the following con-

ditions hold: (1) at most one process obtains
stop, (2) at most s�1 processes obtain abort,
and (3) at most s� 1 processes obtain next.

To prove the correctness and complexity of
the collect list, let k0 be the total contention,
where the number of processes which enter a

copy of a sieve in a round and invoke register

and collect.

Lemma 2 If the level of a splitter v in the

collect list is l, 0 � l � k0, then at most k0 � l

processes take access to v.

Proof : We prove this lemma by induction
on l, the level of v. In the base case, l = 0,
the lemma trivially holds since at most k0 pro-

cesses are active in the collect list. For the
induction step, suppose that the lemma holds
for a splitter u with level l, 0 � l < k0, and
consider some splitter v with level l + 1. The

level of u is l, and by the inductive hypothesis,
at most k0� l processes take access to u. Then,
the property (3) of the splitter (lemma 1) im-
plies that at most k0 � l � 1 of the processes

萩原 恵子
－63－

Algorithm 3: Procedures renaming algorithm: part III.
procedure partial scan(list)
44 V1 = collect(list);
45 V2 = collect(list);
46 if (V1 = V2) then return V1;
47 else return ;;

procedure candidates(sieve; copy)
48 sp = 0; V = ;;
49 while (sieve:list[copy]:mark[sp] = true) do
50 if (sieve:list[copy]:view[sp] 6= ?) then V = V [fsieve:list[copy]:view[sp]g;
51 sp++;
52 od;
53 if V = ; then return ;;
54 U = minfviewjview 2 V and view 6= ;g;
55 if U 6= ; and for every hpj ; spi 2 U , sieve:list[copy]:view[sp] � U

or sieve:list[copy]:view[sp] = ; then return U ;
56 else return ;;

procedure clear(sieve; nextC)
57 sieve:inside[nextC] = false; sp = 0;
58 while (sieve:list[nextC]:mark[sp] = true) do
59 write initial value to a splitter sp in sieve:list[nextC];
60 sp++;
61 od;

procedure leave(sieve; nextC; nextDB)
62 sieve:list[nextC]:done[mysplitter] = true;
63 if W 6= ; and for every hpj; spi 2W , sieve:list[nextC]:done[sp] = true then
64 sieve:allDone[nextC] = nextDB;

obtain next at u and take access to v.

By Lemma 2 and the algorithm, when a

process executes register, it stops or aborts in

a splitter with level less than or equal to k0 �
1. By the property (1) of the splitter (lemma
1), at most one process stops in each splitter.
Therefore, we have the following lemma.

Lemma 3 Each process which obtains stop

by invoking splitter writes its identi�er in the

splitter with level � k0�1, and no other process
writes its identi�er in the same splitter.

By Lemma 3, procedure register and collect

visits at most k0 splitters, each splitter requires
a constant number of operations.

Theorem 4 The step complexities of the pro-
cedure register and collect are O(k0).

By the algorithm, a process pi once regis-
ter in a splitter spi by invoking the procedure
register, processes never update the variable

id[spi]. And the procedure collect scans a col-

lect list sequentially. By the above properties
of collect list, we have the following lemma.

Lemma 5 Assume a collect operation cop1
executed by pi returns V1, and a collect oper-
ation cop2 executed by pj returns V2. If cop2
starts after cop1 �nishes, then V1 � V2.

The collect returns a view consisting of
all process identi�ers which registered before

invoking collect and some process identi�ers
which register concurrently with the execution
of collect. Let V be a set obtained by an execu-
tion of partial scan, and let V1 and V2 be non-

empty views obtained by consecutive two invo-
cations of collect in the partial scan. If a process

obtains the identical views, that is V1 = V2 the

set V is a snapshot of processes which have
registered at some point between two collects.

Lemma 6 For every non-empty sets V1 and

V2 which is obtained by invoking the procedure
partial scan, either V1 � V2 or V2 � V1.

萩原 恵子
－64－

Algorithm 4: Procedures of collect list.
procedure register(list)
65 sp = 0;
66 while (true)
67 list:mark[sp] = true;
68 move = splitter(list; sp);
69 if (move = next) then
70 sp++;
71 if (move = abort) then
72 return ?;
73 if (move = stop) then
74 list:id[sp] = pi;
75 return sp;
76 od;

procedure collect(list)
77 sp = 0; V = ;;
78 while (list:mark[sp] = true)
79 if (list:id[sp] 6= ?) then V = V [fhlist:id[sp]; spig
80 sp++;
81 od;
82 return V ;

procedure splitter(list; currentsp)
83 list:X[currentsp] = pi;
84 if (list:Y [currentsp] = true) then return abort;
85 list:Y [currentsp] = true;
86 if (list:X[currentsp] = pi) then return stop;
87 else return next;

4.2 Correctness of Renaming Algo-

rithm

We briey show the correctness of our renam-
ing algorithm.

By the same access control as the renam-
ing algorithm presented in [1], our algorithm
guarantees that all processes entering a copy
in some round leave and the copy is initialized

before the copy is used in the next round. The
behavior of some copy in some round is inde-
pendent of the behavior of the previous rounds
in the copy. Therefore, the following lemmas

concern a copy in one round and it is enough
to show the procedure partial scan and candi-

dates work well on behalf of latticeAgreement

and candidates in [1].

Lemma 7 If W1 and W2 are non-empty views

returned by invocations of candidates(s; c) for
the same copy c of the same sieve s in the same
round then W1 =W2 .

Proof : We prove this lemma by contra-

diction. Assume W1 6= W2. By lemma 6,
W1 � W2 or W2 � W1. We assume W1 � W2

without less of generality. A snapshot returned
by candidates is a snapshot obtained by us-

ing partial scan in the same copy in the same
round. Let pi be a process which obtainsW1 by
partial scan, and pj be a process which obtains
W2 by candidates. Since pi is the only process

which updates the variable s:list[c]:view[sp]
in this round, the value of s:list[c]:view[sp]
must be the initial value ? or W1. How-

ever, pj sees that s:list[c]:view[sp] � W2 or
s:list[c]:view[sp] = ;. A contradiction.

If an invocation of candidates(s; c) by pro-
cess pi returns a non-empty view containing it-

self, pi is a winner in copy c of sieve s. Lemma
7 implies following lemma.

Lemma 8 If process pw is a winner in copy c
of sieve s in some round, then pw appears in
every non-empty view returned by an invoca-
tion of candidates(s; c) in this round.

Process pi is inside copy c of sieve s after
it executes line 31 with c. A process inside

copy c of sieve s is done after it assigns true
to sieve:list[c]:done[sp] (in line 37, if it is a
winner, or in line 62, otherwise).

Lemma 9 If process pi is inside copy c of
sieve s in some round, all winners of the pre-
vious copy c � 1 mod 2N of sieve s are done

in this round.

By Lemma 8 and 9, we can show the fol-

lowing uniqueness.

Lemma 10 If active processes pi and pj(j 6=
i) hold names yi and yj , respectively, at the end
of some �nite pre�x of some execution, then
yi 6= yj.

The following two lemmas are used to give
an upper bound of the number of sieves to
which each process visits.

Lemma 11 If one or more processes enter a
copy c of a sieve s in some round, at least

one process obtains a snapshot by invoking par-

tial scan in c in this round.

萩原 恵子
－65－

Proof : We prove the lemma by contradic-
tion. Assume that no process obtains a snap-
shot. In this case, no process writes non-empty

set to a variable s:list[c]:view[sp], obtains non-
empty set by candidates, and writes nextDB to
the variable s:allDone[nextC]. Since a copy

is initialized after s:allDone[nextC] is set to
nextDB, no process initializes the copy. Let
pi be the last process which writes its identi-
�er to a variable s:list[c]:id[sp] of some splitter

sp in the copy c in the procedure register. The
process pi then executes collect twice in par-

tial scan. Since a set of processes which have
registered does not changes after pi registered,

pi can obtains a snapshot. A contradiction.

Lemma 12 If one or more processes enter a
copy c of a sieve s in some round, at least one
process wins in c in this round.

Proof : Lemma 11 shows that at least one pro-
cess obtains a snapshot by invoking the proce-
dure partial scan in the copy c in this round.
Let W be the minimum snapshot obtained in

c in this round, and pi be the last process in
W which writes a value to s:list[c]:view[sp] in
some splitter sp. Since W is the minimum

snapshot, every process pj in W obtains a
snapshot W 0 not smaller than W or fails to
obtain a snapshot. Therefore pj writes a view
W 0 in its splitter such thatW �W 0 orW = ;.
The process pi can see these values in candi-

dates and return W including pi. That is, pi
wins in c in this round.

We use Lemma 12 to show the following
lemma by the similar way to Lemma 3.5 in [1].

Lemma 13 Every process p wins in sieve at
most 2k�1, where k is the point contention of
p's interval of getName.

The step complexity of our algorithm is as
follows. In getName, each process pi visits to

at most 2k � 1 sieves, and takes access to and
enters at most one copy in each sieve. For each
copy, pi invokes one register, two collect, and at
most one clear. Each procedure has O(k) step

complexity, and therefore, total step complex-
ity is O(k2). The algorithm uses 2n� 1 sieves,
2N copies of each sieve, and O(n) registers for

each copy. Therefore, the space complexity is
O(n2N).

Theorem 14 Our algorithm solves the point
contention adaptive long-lived (2k2 � k)-
renaming problem with O(k2) step complexity

and O(n2N) space complexity using bounded
values.

5 Conclusion

We have presented a long-lived (2k2 � k)-
renaming algorithm that adapts to point con-

tention k and uses bounded values. The step
complexity is O(k2) and the space complexity
is O(n2N) where n and N are upper bound of

k and ther number of processes, respectively.
Our future work is to improve our algo-

rithm. We would like to develop an e�cient
long-lived (2k�1)-renaming algorithm which is

adaptive to point contention with polynomial
step complexity and uses bounded memory.

References

[1] Y.Afek, H.Attiya, A.Fouren, G.Stupp, and
D.Touitou. Adaptive long-lived renaming

using bounded memory. 1999. Available at
www.cs.technion.ac.il/�hagit/pubs/AAFS
T99disc.ps.gz.

[2] Y.Afek, H.Attiya, A.Fouren, G.Stupp, and

D.Touitou. Long-lived renaming made
adaptive. In Proc. 18th ACM Symp. Prin-
ciples of Dist. Comp., pages 91{103, 1999.

[3] H.Attiya and A.Fouren. Polynomial and

adaptive long-lived (2k-1)-renaming. In
Proc. 14th Int. Symp. on Dist. Comp.,
2000.

[4] M. Herlihy. Wait-free synchronization.
ACM Trans. on Programming Languages

and Systems, 13(1):124{149, January 1991.

[5] H.Attiya and A.Fouren. An adaptive col-
lect algorithm with applications. 1999.
Available at www.cs.tehnion.ac.il/�hagit/
pubs/AF99ful.ps.gz.

萩原 恵子
－66－

