
最悪性能比が2.7834二次元調和算法の提案と評価
HAN Xin1,2, 藤田 聡 1, 郭 禾 2

1. 広島大学 2. 大連理工大学

アブストラクト：箱詰め問題は 組み合わせ最適化問題における基本的な問題の１つである。60,70年代
から、ずっと 注目され、たくさんの結果が出た本論では、二次元の箱詰め問題について考察する。以下
では 二次元調和算法の改良版である RTDHを 提案し、その性能を理論的に評価する。評価の結果、提
案アルゴリズムの最悪性能比が 2.7834以下であることが示される。

A Two-Dimensional Harmonic Algorithm with

Performance Ratio 2.7834

Xin HAN1,2, Satoshi FUJITA1, He GUO2

1. Hiroshima University, Japan
2. Dalian University of Technology, The Peoples Republic of China

In this paper, we study an on-line version of the two-dimensional bin packing problem that is the
problem of packing a list of rectangular items into a minimum number of unit-square bins in an
on-line manner. An on-line algorithm RTDH (Refined Two Dimensional HARMONIC) is proposed
and analyzed. We show that RTDH can achieve an asymptotic worst case ratio of less than 2.7834,
that beats the best known bound 2.85958.

1 introduction

The bin packing problem is one of the basic problems
in the fields of theoretical computer science and com-
binatorial optimization. It has many important real-
world applications, such as memory allocation and job
scheduling, and is well-known to be NP-hard [3]; that
is a main motivation of the study and development of
approximation algorithms for solving the problem.
The classical (one-dimensional) on-line bin packing

problem is the problem of, given a list L of items
〈x1, x2, . . . , xn〉 where xi ∈ (0, 1], packing all items in
L into a minimum number of unit-capacity bins. Note
that term “on-line” implies that items in L are con-
secutively input, and the packing of an item must be
determined before the arrival of the next item.
In this paper, we consider a two-dimensional version

of the problem, that is the problem of packing all rectan-
gular items in L into a minimum number of unit-square
bins in such a way that 1) each item is entirely con-
tained inside its bin with all sides parallel to the sides
of the bin, 2) no two items in a bin overlap, and 3)
the orientation of any item is the same as the orien-
tation of the bin. In the literature, it is known that

the worst case ratio1 of an optimal on-line bin pack-
ing algorithm OPT , denoted by R∞

OPT , which fulfills
1.907 ≤ R∞

OPT ≤ 2.85958 (= 1.691032) [1, 2].

In this paper, we propose an on-line algorithm that
beats the above upper bound 2.85958; more precisely,
our algorithm achieves the worst case ratio of 2.7834.
The basic idea of the algorithm is to pack several big
items into the same bin as much as possible. Our analy-
sis of the worst case ratio is based on the notion of max-
imum size of the area that should be spent for each item
and an exhaustive case enumerations. The remainder of
this paper is organized as follows. Section 2 introduces
some basic definitions. The classifications of items and
strips used in the proposed algorithm will also be given.
Section 3 describes the proposed algorithm, and Section
4 is devoted to the analysis of the worst case ratio. Fi-
nally, Section 5 concludes the paper with some future
directions of research.

1 A formal definition will be given in Section 2.

1

萩原 恵子
ア　ル　ゴ　リ　ズ　ム　80－７
　　（２００１． ９． ２５）

萩原 恵子
－43－



2 Preliminaries

2.1 Basic Definitions

LetA be an on-line bin packing algorithm, andA(L) the
number of bins used by algorithm A for input sequence
L. The asymptotic worst case ratio (or simply, worst
case ratio) of algorithm A, denoted as R∞

A , is defined
as follows:

R∞
A

def= lim sup
n→∞

Rn
A

where Rn
A

def= max
{

A(L)
OPT (L)

| OPT (L) = n

}
.

where OPT (L) denotes the number of bins used by an
optimal bin packing problem provided that the input is
L.

2.2 Classification

Let M be an integer that is greater than or equal to
6. As will be shown later, we will fix M to 6, as in
[4]. Let T be the set of items that can be packed into a
unit-square bin; i.e., T def= (0, 1]×(0, 1]. In the proposed
algorithm, set T is partitioned into several subsets, as
in Harmonic [4] and ROUND [2].
First, T is partitioned into four subsets A,B,C,D as

A = {(x, y) | 0 < x ≤ 1/M and 0 < y ≤ 1/M}
B = {(x, y) | 1/M < x ≤ 1 and 0 < y ≤ 1/M}
C = {(x, y) | 0 < x ≤ 1/M and 1/M < y ≤ 1} and
D = {(x, y) | 1/M < x ≤ 1 and 1/M < y ≤ 1}.

Next, subsets B,C and D are partitioned into smaller
subsets as follows:

Bi = {(x, y) ∈ B | 1/(i+ 1) < x ≤ 1/i}
Cj = {(x, y) ∈ C | 1/(j + 1) < y ≤ 1/j} and

Di,j = {(x, y) | 1/(i+ 1) < x ≤ 1/i
and 1/(j + 1) < y ≤ 1/j}

for 1 ≤ i, j < M , and in addition, subsets D1,1, D1,2

and D2,1 are further partitioned into smaller subsets as
follows (see Figure 1 for illustration):

D1
1,1 = {(x, y) | 1/2 < x ≤ 3/5, 1/2 < y ≤ 3/5}

D0
1,1 = D1,1 −D1

1,1

D1
1,2 = {(x, y) | 1/2 < x ≤ 3/5, 1/3 < y ≤ 2/5}

D0
1,2 = D1,2 −D1

1,2

D1
2,1 = {(x, y) | 1/3 < x ≤ 2/5, 1/2 < y ≤ 3/5}

D0
2,1 = D2,1 −D1

2,1.

For brevity of the notation, in the following, we denote
subsets D1

1,1, D
1
1,2, D

1
2,1 by α, β, and γ, respectively.

1
1/2 3/52/51/3

β

γ α

2/5

1/2

3/5

1/3

0

1

Figure 1: Subsets α, β, and γ (an item drawn by a thick
line is an α-item).

Let S be the set of all subsets defined above; i.e.,

S def= {A,B1, . . . , BM−1, C1, . . . , CM−1, α, β, γ,

D0
1,1, D

0
1,2, D

0
2,1, D2,2, . . . , DM−1,M−1}.

Note that the number of subsets in S is M2 + 3 (=
1+(M −1)+(M −1)+(M −1)2+3). In what follows,
an item in subset ξ (∈ S) will be referred to as an ξ-
item.
In the proposed algorithm, the set of unit-square bins

is also classified into several categories according to the
classification of items, and each bin is dedicated to a
specific subset of items, except for subsets α, β, and
γ; As will be explained below, those three subsets will
be treated in a mixed manner (note that an α-item, a
β-item, and a γ-item can be packed together into one
bin). In the algorithm, a bin that can accommodate
(merely) ξ-items will be referred to as a ξ-bin. As for
the packing of α-, β-, and γ-items, on the other hand,
we will distinguish nine independent cases shown in Ta-
ble 1, where, e.g., (α, β) denotes the type of bin that
accommodates one α-item and one β-item. Note that
the type of a bin can change dynamically during the
execution of the algorithm; e.g., when an empty bin
accommodates an α-item as its first item, it becomes
an (α)-bin, and when it accommodates a β-item as its
second item, it becomes an (α, β)-item, and so on.

3 Algorithm Description

In the proposed algorithm RTDHM (Refined Two Di-
mensional HARMONICM ) a bin becomes “active” when
it accommodates its first item, and once it is declared to
be “closed” it does not become active again. An outline
of the algorithm is described as follows.

2

萩原 恵子
－44－



Table 1: Nine kinds of type of bins containing items in
α ∪ β ∪ γ.

type of bin α β γ
(α) 1 0 0
(β) 0 1 0
(γ) 0 0 1
(α, β) 1 1 0
(β, β) 0 2 0
(α, γ) 1 0 1
(γ, γ) 0 0 2
(β, γ) 0 1 1
(α, β, γ) 1 1 1

Algorithm RTDHM

Let L = (a1, a2, . . . , an) be the list of items that is given
in an on-line manner. The packing of item ak to an
active bin is determined in the following manner:

Case 1: If ak ∈ A, then pack it into an active A-bin
by using a procedure shown in Subsection 3.1.

Case 2: When it accommodates its first item, each
Bi-bin is split into strips of width 1/i and height 1,
and each Cj -bin is split into strips of width 1 and
height 1/j. If ak ∈ Bi (resp. Cj), then pack the
item into its corresponding strip of a Bi-bin (resp.
Cj -bin) in a Next Fit manner (by regarding each
strip as a bin).

Case 3: If ak ∈ Di,j − (α ∪ β ∪ γ), then pack the
item into an active Di,j-bin; if the bin becomes to
contain i × j items, then after closing it, open a
new bin as a new active Di,j-bin.

Case 4: If ak ∈ α ∪ β ∪ γ, then pack it into an active
bin by using a procedure shown in Subsection 3.2.

In the following two subsections, we will give a de-
tailed description of packing procedures used in Cases
1 and 4.

3.1 Packing of A-items

The packing of A-items is done in a similar way to
ROUND [2]. Let Y1, Y2, Y3, Y4 and Y5 be five sets of
reals in (0, 1] defined as follows:

Y1 = {1/2i | i = 3, 4, . . .}
Y2 = {1/(3× 2i) | i = 1, 2, 3, . . .}
Y3 = {1/(5× 2i) | i = 1, 2, 3, . . .}
Y4 = {1/(7× 2i) | i = 0, 1, 2, 3, . . .} and
Y5 = {1/(9× 2i) | i = 0, 1, 2, 3, . . .}.

For real number a ≤ 1/M , where M ≥ 6, let ā denote
the smallest real in

⋃5
i=1 Yi that is not smaller than a,

and in what follows, we say that value a is “rounded up”
to ā. For example, when M = 6, 9/60 is rounded up to
1/6 (∈ Y2) and 10/101 is rounded up to 1/10 (∈ Y3). In
the following, an A-item (x, y) is said to be of “type-i”
if ȳ ∈ Yi for i = 1, 2, . . . , 5. (Note that Yi ∩ Yj = ∅ for
i �= j.)
In algorithm RTDHM , each A-bin is split into strips

of width 1 and with a height that is drawn from set⋃5
i=1 Yi. Those strips are used in such a way that items

of different types cannot be packed into the same bin.
A strip becomes active when it accommodates its first
item, and once it is declared to be closed, it does not
become active again. In the following, we show a con-
crete procedure for the packing of an A-item ak = (x, y)
of type 1, i.e., ȳ = 2−m for some m > 2. The packing
of items of the other types can be done in a similar
manner.

Packing of A-item of type 1
Step 1: Find an active strip of height ȳ that can

accommodate the input item ak = (x, y). If there is no
such active strips, then after closing all active strips of
height ȳ (if any), execute the following operations:
(1) If there exists an empty strip of height ȳ = 2−m,

then make it as a new active strip of height ȳ.
(2) Otherwise, after finding an empty strip of height

2−m′
such that m′ < m and m′ is largest possible

(it includes the case in which m′ = 0), partition
the strip into m − m′ + 1 empty strips of height
2−(m′+1), 2−(m′+2), . . . , 2−(m−1), 2−m and 2−m, re-
spectively, then make a strip of height 2−m as an
active one.

Step 2: Pack the item into the active strip (of
height ȳ) in a “bottom-left” manner.

The efficiency of the packing of A-items can be eval-
uated as follows. First, let us consider the final packing
of type-1 items. Given a final packing, “repack” items
in such a way that all the empty strips are moved to
former bins, and all active strips are moved to latter
bins. By the description of the algorithm, a single bin
is enough for each purpose. Hence, by regarding those
areas as a waste, we can conclude that the amount of
“type-1 waste” is at most as large as two bins. A sim-
ilar claim holds for waste of the other types. On the
other hand, since each “non-waste” strip (of each type)
is filled with items in such a way that the total width is
at least (M−1)/M (recall that the width of any A-item
is smaller than 1/M), and in addition, since our round-
ing strategy guarantees that every A-item is rounded
up its height by no more than a factor of 6/5, we can
conclude that the occupation ratio of non-waste strips
is at least 5(M − 1)/6M ; or conversely, each A-item of
size s (asymptotically) occupies an area of size at most

6M
5(M−1) × s. Hence we have the following lemma.

3

萩原 恵子
－45－



Lemma 1 Asymptotically, each A-item of size s can
occupy an area of size at most 6M

5(M−1) ×s under RTDH.

3.2 Packing of α-, β-, or γ-items

In the following, we use m(x) to denote the number of
(x)-bins that is currently used by the algorithm;m(x) is
initialized to zero and it may change dynamically. Let
m′(β) (resp. m′(γ)) denote the number of bins contain-
ing β-item (resp. γ-item), except for (β, β)-bins (resp.
(γ, γ)-bins); i.e.,

m′(β) def= m(α, β) +m(β) +m(β, γ) +m(α, β, γ) and

m′(γ) def= m(α, γ) +m(γ) +m(β, γ) +m(α, β, γ).

By using the above notations, the packing of α-, β-, or
γ-items can be described as follows.

Packing of α-, β-, or γ-items

Packing of α-item: If there is a bin of type (β), (γ),
or (β, γ), then pack the α-item into one of such bins and
change its type accordingly; i.e., to (α, β), (α, γ), and
(α, β, γ), respectively; otherwise, open a new bin as an
(α)-bin and pack the item into the bin.

Packing of β-item: If there is a (β, β)-bin that
contains one β-item, then pack the β-item into the bin
and close it; otherwise, execute the following operations:
• If m(β, β) < 4m′(β), then open a new bin as a
(β, β)-bin and pack the item into the bin (note
that the (β, β)-bin contains only one β-item at this
time).

• Else if there is a bin of type (γ) or (α, γ) then pack
the item into one of such bins and change its type
accordingly; i.e., to (β, γ), (α, β, γ), respectively.

• Else if there is a bin of type (α) then pack the item
into this bin and change its type to (α, β).

• Otherwise, open a new bin as a (β)-bin and pack
the item into the bin.

Packing of γ-item: If there is a (γ, γ)-bin that
contains only one γ-item, then pack the item into the
bin and close it; otherwise, execute the following oper-
ations:
• If m(γ, γ) < 4m′(γ), then open a new bin as a
(γ, γ)-bin and pack the item into the bin (note
that the (γ, γ)-bin contains only one γ-item at this
time).

• Else if there is a bin of type (β) or (α, β) then pack
the item into one of such bins and change its type
accordingly; i.e., to (β, γ), (α, β, γ), respectively.

• Else if there is a bin of type (α) then pack the item
into this bin and change its type to (α, γ).

• Otherwise, open a new bin as a (γ)-bin and pack
the item into the bin.

4 Analysis

Let s(b) denote the size of item b, and h(b) denote the
(maximum) size of the area that is spent for packing
item b under algorithm RTDHM , where value h(b) (resp.
s(b)) will also be referred to as the h-value (resp. s-
value) of item b. For example, if b ∈ D2,2, since each
D2,2-bin can contain at most fourD2,2-items (regardless
of the size of those items), the size of area spent for item
b is determined as 1/4. For brevity, in what follows, we
denote

∑
b∈L h(b) by h(L), and

∑
b∈L s(b) by s(L) for

any set L.
In the following, we will prove an upper bound on

the worst case ratio of RTDHM , in terms of function h.
Let T be the set of all possible sets of rectangular items
that can be packed into a unit-square bin, and let

H̄
def= sup

L′∈T
h(L′).

The following theorem relates function h with an upper
bound on the worst case ratio.

Theorem 1

r(RTDHM (L)) ≤ H̄.

Proof. Let L1, L2, . . . , LOPT (L) be sublists of given list
L each of which is packed into a single bin under an
optimal (off-line) algorithm OPT . Since RTDHM (L) ≤
h(L) +M 2 − 1 + 10, and since h(Lk) ≤ H̄ for each 1 ≤
k ≤ OPT (L), we have RTDHM (L) ≤

∑OPT (L)
k=1 h(Lk)+

M2 + 9 ≤ OPT (L)× H̄ +M2 + 9. Hence, we have

r(RTDHM (L)) = lim
OPT (L)→∞

sup
L

(
RTDHM (L)
OPT (L)

)

≤ H̄

which completes the proof. ✷

4.1 h-values for each item

In this subsection, we will derive an upper bound on
the h-value for each class of items. If b is not an item
in α∪ β ∪ γ, we will have the following bounds on h(b).

Lemma 2 For any item b = (x, y),

h(b) ≤




6s(b)M
5(M − 1) if b ∈ A

yM

i(M − 1) if b ∈ Bi

xM

j(M − 1) if b ∈ Cj

1
i× j

if b ∈ Di,j − (α ∪ β ∪ γ)

4

萩原 恵子
－46－



Proof. The case for b ∈ A is clear from Lemma 1. Since
each (closed) Bi-bin is filled with Bi-items with total
size at least i

i+1 × M−1
M , we can say that each Bi-item

of height y occupies an area of size at most yM
M−1 × 1

i .
A similar claim holds for Cj-items. Finally, since each
Di,j-item trivially occupies 1/(i×j) of a bin, the lemma
follows. ✷

If b is an item in α ∪ β ∪ γ, upper bound on the h-
value can be derived in a more complicated manner.
Let nL(ξ) denote the number of ξ-items in list L. First,
we give an upper bound on the number of bins used by
RTDHM .

Lemma 3 When the packing of all items in L com-
pletes, it holds

m(β, β) ≤ (4/9) (nL(β) + 1)
m′(β) ≤ (1/9) (nL(β) + 1)

m(γ, γ) ≤ (4/9) (nL(γ) + 1) and
m′(γ) ≤ (1/9) (nL(γ) + 1)

Proof. Initially, it holds m(β, β) = 4m′(β) = 0. Since
the input of a β-item increases m(β, β) by one if
m(β, β) < 4m′(β), and increases m′(β) by one other-
wise, we have 4m′(β)−m(β, β) = δ1, where 0 ≤ δ1 ≤ 4.
On the other hand, by the description of the algo-
rithm, we have nL(β) = 2m(β, β) +m′(β) + δ2, where
−1 ≤ δ2 ≤ 0. By solving the above equations, we have

m′(β) =
nL(β)
9

− 2δ1 − δ2

9
and

m(β, β) =
4nL(β)
9

− δ1 + 4δ2

9
.

Since 0 ≤ δ1 ≤ 4 and −1 ≤ δ2 ≤ 0, the first two in-
equalities hold. The proof for γ can be done in a similar
manner. ✷

By using the above lemma, we have the following
bound on the h-values of α-, β-, and γ-items.

Lemma 4 If list L contains an α-item b1, a β-item b2,
and a γ-item b3, then one of the following three condi-
tions holds:

(h(b1) = 0, h(b2) ≤ 4/9, and h(b3) ≤ 5/9)
(h(b1) = 0, h(b2) ≤ 5/9, and h(b3) ≤ 4/9) or
(h(b1) ≤ 1, h(b2) ≤ 4/9, and h(b3) ≤ 4/9).

Proof. First, we show that for any list L, one of the
following three cases holds:

Case 1: m(α) = m(β) = m(α, β) = 0,

Case 2: m(β) = m(γ) = m(β, γ) = 0, or
Case 3: m(α) = m(γ) = m(α, γ) = 0.

By the description of algorithm RTDHM , (α)- and
(β)-bins can never coexist. Similarly, (α)- and (γ)-bins
never coexist, and (α)- and (β, γ)-bins never coexist.
Hence we have

m(α)(m(β) +m(γ) +m(β, γ)) = 0. (1)

By a similar reason, we have the following equalities:

m(β)(m(γ) +m(α, γ)) = 0, and (2)
m(γ)(m(β) +m(α, β)) = 0. (3)

Next, let us prove the following equality:

m(α, β)m(α, γ) = 0. (4)

Assume Equality (4) does not hold. Then, an (α, β)-bin
ξ1 and an (α, γ)-bin ξ2 must coexist. Without loss of
generality, let us assume ξ2 is created before ξ1. There
are two possible cases to create an (α, β)-bin; i.e., an
α-item is put into a (β)-bin, or a β-item is put into an
(α)-bin. If ξ1 is created by the former case, m(β) ≥ 1
and m(α, γ) ≥ 1 must hold simultaneously, which con-
tradicts to Equation (2). On the other hand, if ξ1 is cre-
ated by the latter case, by the description of RTDHM ,
the existence of (α, γ)-bin must be checked before check-
ing the existence of (α)-bin, a contradiction. Hence the
claim follows.
By Equation (1), if m(α) �= 0, then m(β) +m(γ) +

m(β, γ) = 0 must hold (it corresponds to Case 2). As-
sume m(α) = 0. Then, if m(β) �= 0, by Equation (2),
m(γ) +m(α, γ) = 0 must hold (since m(α) = 0 is as-
sumed, it corresponds to Case 3). Otherwise, that is, if
m(α) = 0 and m(β) = 0 simultaneously hold, by Equa-
tion (3), m(γ) = 0 or m(α, β) = 0 must hold. Since the
latter case corresponds to Case 1, the remaining case to
be examined is that of m(α) = m(β) = m(γ) = 0. Now,
consider Equation (4). The equation implies that either
m(α, β) = 0 or m(α, γ) = 0 holds; where the former im-
plies Case 1, and the latter implies Case 3. Hence the
claim holds.
Let m̃ denote the total number of bins used for items

except for α-, β-, or γ-items in RTDHM . Then, the total
number of bins used by RTDHM for packing all items
in list L is given by

RTDHM (L) ≤ m̃+m(α) +m(β) +m(γ) +m(α, β)
+m(β, γ) +m(α, γ) +m(β, β)
+m(γ, γ) +m(α, β, γ). (5)

Hence, for Case 1, we have

RTDHM (L) ≤ m̃+m(β, β) +m′(γ) +m(γ, γ)

≤ m̃+
(
4
9

)
nL(β) +

(
5
9

)
nL(γ) + 1,

5

萩原 恵子
－47－



where the last inequality is due to Lemma 3. Similarly,
for Case 2, we have

RTDHM (L)
≤ m̃+ nL(α) +m(β, β) +m(γ, γ)

≤ m̃+ nL(α) +
(
4
9

)
nL(β) +

(
4
9

)
nL(γ) +

8
9
,

and for Case 3, we have

RTDHM (L) ≤ m̃+m(β, β) +m′(β) +m(γ, γ)

≤ m̃+
(
5
9

)
nL(β) +

(
4
9

)
nL(γ) + 1.

Hence the lemma follows. ✷

4.2 List L′ with a big h-value

By Theorem 1, in the following, we will try to estimate
an upper bound on H̄ as precisely as possible. Let L′

be any list in T that can be packed into a unit-square
bin under an optimal algorithm OPT .
In the following proofs, for brevity, we use symbols

X1, Y1, X2 and Y2, that is defined as follows:

• X1 is the total width of C1-items contained in L′,
• Y1 is the total height of B1-items contained in L′.
• X2 is the total width of C2-items contained in L′,
and

• Y2 is the total height of B2-items contained in L′.

Note that if L′ contains B1 ∪ C1-items, then the total
h-values of them is at most 6(X1 + Y1)/5 and the total
s-values of them is at least (X1+Y1)/2. Similarly, if L′

contains B2 ∪C2-items, then the total h-values of them
is at most 3(X2 + Y2)/5 and the total s-values of them
is at least (X2 + Y2)/3.
Note that any D1,5 ∪ D5,1-item can be replaced by

B1 ∪ C1 items without changing h/s value; thus in the
following, we will omit the selection ofD1,5∪D5,1-items.

Lemma 5 If L′ contains no D1,1-items, h(L′) ≤
2.7778.

Proof. By Lemma 4, without loss of generality, we may
assume h(b) = 5/9 for b ∈ β and h(b) = 4/9 for b ∈ γ.
Hence, in the following, we may consider the following

six cases separately:

β γ D1,3 D3,1 h(L′) <
Case 1 0 ∗ ∗ ∗ 2.67
Case 2 1 ∗ ∗ ∗ 2.7778
Case 3 2 1 1 0 2.7514
Case 4 2 1 0 0 2.7656
Case 5 2 0 1 1 2.7653
Case 6 2 0 1 0 2.7645
Case 7 2 0 0 1 2.7645
Case 8 2 0 0 0 2.7778

For an instance , we olny give the concrete computa-
tion of the case 5 , the other cases are simular to this
.

Case 5: SinceX1+Y1 < 1/3, L′ can contain at most
one D4,1-itemand any other item b fulfills h(b)/s(b) <
9/4,

h(L′) < h′ +
1
3
+
1
3
+
1
4
+
6(X1 + Y1)

5

+
(
9
4

) (
s′ − 1

8
− 1
8
− 1
10

− X1 + Y1

2

)

< 2.7653.

Hence the lemma follows. ✷

Lemma 6 If L′ contains one D0
1,1-item, h(L′) ≤ 2.78.

Proof. Let p (resp. q or r or o) be the number of β ∪
γ-items (resp. D0

1,2 ∪ D0
2,1-items or D1,3 ∪ D3,1-items

or D2,2-itmes) in L′. In the following we consider the
following cases separately:

(p, q, r, o) h(L′) <
Case 1 (2, 0, 0, 1) 2.76
Case 2 (2, 0, 0, 0) 2.78
Case 3 (1, 1, 0, 1) 2.7756
Case 4 (1, 1, 0, 0) 2.7689
Case 5 (1, 0, 1, 1) 2.7789
Case 6 (1, 0, 1, 0) 2.7789
Case 7 (1, 0, 0,≤ 2) 2.7734
Case 8 (0, 0, 2, ∗) 2.7567
Case 9 (0, ∗,≤ 1, ∗) 2.7709

We also take one case (case 7) as an example .

Case 7: Let h′ def= 1 + 5/9 (= 14/9) and s′
def= 1−

3/10− 1/6 (= 8/15). We may consider three subcases;
i.e., (1) L′ contains two D1,4∪D4,1-items and one D2,2-
item; (2) L′ contains at most one D1,4 ∪D4,1-item and
one D2,2-item; and (3) L′ contains no D1,4 ∪D4,1-items
and at most two D2,2-items. In the first case, since
X1 + Y1 < 1/6,

h(L′) < h′ + 2× 1
4
+
1
4
+
6(X1 + Y1)

5

+
(
9
5

) (
s′ − 2× 1

10
− 1
9
− X1 + Y1

2

)

< 2.7556

in the second case, sinceX+Y < 11/30, h(L′) < 2.7734.
and in the third case, since X1 + Y1 < 7/30, h(L′) <
2.7245.
Hence the lemma follows. ✷

Lemma 7 If L′ contains an α-item, then h(L′) ≤
2.7834

6

萩原 恵子
－48－



Proof. If an α-item costs zero bin, h(L′) < 3
4×

10
3 = 2.5.

Hence, in the following, without loss of generality, we
assume an α-item costs one bin, which implies that a
β-item costs 4/9-bin, and a γ-item costs 4/9-bin (see
Lemma 4).
Let p (resp. q or r) be the number of β ∪ γ-items

(resp. D0
1,2 ∪D0

2,1-items or D1,3 ∪D3,1-items) in L′. In
the following we consider the following cases separately:

(p, q, r) h(L′) <
Case 1 (2, 0, 0) 2.7834
Case 2 (0, 2, 0) 2.78
Case 3 (1, 1, 0) 2.7812
Case 4 (1, 0, 1) 2.7823
Case 5 (1, 0, 0) 2.7823
Case 6 (0, 1, 1) 2.7813
Case 7 (0, 1, 0) 2.7812
Case 8 (0, 0, 2) 2.7812
Case 9 (0, 0, 1) 2.7812
Case 10 (0, 0, 0) 2.7678

Case 1: Let h′ def= 1+4/9+4/9 (= 17/9) and s ′ def=
1− 1/4− 1/6− 1/6 (= 5/12). Note that X1+Y1 < 1/3
and X2 + Y2 < 2/3 − (X1 + Y1). If it contains one
D2,2-item,

h(L′) < h′ +
1
4
+
6(X1 + Y1)

5
+
3(X2 + Y2)

5

+
(
8
5

) (
s′ − 1

9
− X1 + Y1

2
− X2 + Y2

3

)

< 2.7834

and if not, since it can contain at most one D2,3 ∪D3,2-
item, h(L′) < 2.7681.

Case 4: Let h′ def= 1 + 4/9 + 1/3 (= 16/9) and
s′

def= 1− 1/4− 1/6− 1/8 (= 11/24). First, consider the
case in which L′ contains one D1,4 ∪ D4,1-item. Note
that X1 + Y1 < 13/60. If it contains one D2,2-item,
since X2 + Y2 < 11/20− (X1 + Y1),

h(L′) < h′ +
1
4
+
1
4
+
6(X1 + Y1)

5
+
3(X2 + Y2)

5

+
(
8
5

) (
s′ − 1

9
− 1
10

− X1 + Y1

2
− X2 + Y2

3

)

< 2.7823,

and if not, since it can contain at most one D2,3 ∪D3,2-
item,

h(L′) < h′ +
1
4
+
1
6
+
6(X1 + Y1)

5

+
(
15
8

) (
s′ − 1

10
− 1
12

− X1 + Y1

2

)

< 2.7670.

Next, consider the case in which L′ contains no D1,4 ∪
D4,1-items. Since X1 + Y1 < 5/12, if L′ contains one
D2,2-item,

h(L′) < h′ +
1
4
+
6(X1 + Y1)

5

+
(
9
5

) (
s′ − 1

9
− X1 + Y1

2

)

< 2.7622,
and if not,

h(L′) < h′ +
6(X1 + Y1)

5
+ 2

(
s′ − X1 + Y1

2

)

< 2.7778.

Case 5: Let h′ def= 1 + 4/9 (= 13/9) and s′
def=

1−1/4−1/6 (= 7/12). First, consider the case in which
L′ contains twoD1,4∪D4,1-items. SinceX1+Y1 < 4/15,
if L′ contains one D2,2-item

h(L′) < h′ + 2× 1
4
+
1
4
+
6(X1 + Y1)

5

+
(
9
5

) (
s′ − 2× 1

10
− 1
9
− X1 + Y1

2

)

< 2.7645,
and if not,

h(L′) < h′ + 2× 1
4
+
6(X1 + Y1)

5

+2
(
s′ − 2× 1

10
− X1 + Y1

2

)

< 2.7645,

Next, consider the case in which L′ contains one D1,4 ∪
D4,1-item. Since X1+ Y1 < 7/15 and L′ can contain at
most one D2,2-item,

h(L′) < h′ +
1
4
+
1
4
+
6(X1 + Y1)

5

+2
(
s′ − 1

10
− 1
9
− X1 + Y1

2

)

< 2.7823.

Finally, consider the case in which L′ contains no D1,4∪
D4,1-items and two D2,2-items. Since X1 + Y1 < 1/3,

h(L′) < h′ + 2× 1
4
+
6(X1 + Y1)

5

+2
(
s′ − 2× 1

9
− X1 + Y1

2

)

< 2.7334.

Case 6: Let h′ def= 1 + 1/2 + 1/3 (= 11/6) and
s′

def= 1− 1/4− 1/5− 1/8 (= 17/40). First, consider the
case in which L′ contains one D1,4 ∪ D4,1-item. Note

7

萩原 恵子
－49－



that X1 + Y1 < 13/60. If L′ contains one D2,2-item,
since X2 + Y2 < 29/60− (X1 + Y1),

h(L′)

< h′ +
1
4
+
1
4
+
6(X1 + Y1)

5
+
3(X2 + Y2)

5

+
(
8
5

) (
s′ − 1

9
− 1
10

− X1 + Y1

2
− X2 + Y2

3

)

< 2.78,

and if not,

h(L′) < h′ +
1
4
+
6(X1 + Y1)

5

+2
(
s′ − 1

10
− X1 + Y1

2

)

< 2.7767.

Next, consider the case in which L′ contains no D1,4 ∪
D4,1-items. Since X1 + Y1 < 5/12, if L′ contains one
D2,2-item,

h(L′) < h′ +
1
4
+
6(X1 + Y1)

5

+
(
15
8

) (
s′ − 1

9
− X1 + Y1

2

)

< 2.7813,
and if not,

h(L′) < h′ +
6(X1 + Y1)

5
+ 2

(
s′ − X1 + Y1

2

)

< 2.7667.

Case 8: Let h′ def= 1 + 1/3 + 1/3 (= 5/3) and
s′

def= 1 − 1/4− 1/8− 1/8 (= 1/2). First, consider the
case in which L′ contains two D1,4 ∪ D4,1-items. Note
that X1+Y1 < 1/10. If L′ contains one D2,2-item, since
X2 + Y2 < 13/30− (X1 + Y1),

h(L′)

< h′ + 2× 1
4
+
1
4
+
6(X1 + Y1)

5
+
3(X2 + Y2)

5

+
(
8
5

) (
s′ − 2× 1

10
− 1
9
− X1 + Y1

2
− X2 + Y2

3

)

< 2.7812,

and if not, since it can contain at most one D2,3 ∪D3,2-
item,

h(L′) < h′ + 2× 1
4
+
1
6
+
6(X1 + Y1)

5

+
(
15
8

) (
s′ − 2× 1

10
− 1
12

− X1 + Y1

2

)

< 2.7659.

Next, consider the case in which L′ contains one D1,4 ∪
D4,1-item. Since X1+ Y1 < 3/10 and L′ can contain at
most one D2,2-item,

h(L′) < h′ +
1
4
+
1
4
+
6(X1 + Y1)

5

+
(
9
5

) (
s′ − 1

10
− 1
9
− X1 + Y1

2

)

< 2.7767.

The computation of the case 2,3,7,9 and 10 are also
likely, so here ,we omit it .
Hence the lemma follows. ✷

From the above lemmas, we have the following theo-
rem.

Theorem 2

r(RTDHM ) < 2.7834.

5 Concluding Remarks

In this paper, we proposed an on-line algorithm for two-
dimensional bin packing problem. This algorithm is
an extension of algorithm ROUND and HARMONIC,
and for M = 6, it has a worst case ratio strictly
less than 2.7834, which is better than any on-line two-
dimensional bin-packing algorithm for known to date.
Obviously, when M > 6, it is plausible to improve the
asymptotic worst case ratio. A natural question is left
open, that is, “can we apply this algorithm RTDH to
solve on-line three dimensional packing problem.”

References

[1] D. Blitz, A. Van Valiet, and G. J. Woeginger. Lower
bounds on the asymptotic worst-case ratio of on-line
bin packing algorithms. unpublished manuscript,
1996.

[2] J. Csirik and A. Van Vliet. An on-line algorithm
for multidimensional bin packing. Oper. Res. Lett.,
13:149–158, 1993.

[3] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide for the Theory of NP-
Completeness. Freeman, San Francisco, CA, 1979.

[4] C. C. Lee and D. T. Lee. A simple on-line bin pack-
ing algorithm. J. Assoc. Comput. Mach., 32:562–
572, 1985.

8

萩原 恵子
－50－




