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Abstract

In this paper, we propose 0.935-approximation algorithm for MAX
2SAT. The approximation ratio is better than the previously known result
by Zwick, which is equal to 0.93109.

The algorithm solves the SDP relaxation problem proposed by Goe-
mans and Williamson for the first time. We do not use the ‘rotation’
technique proposed by Feige and Goemans. We improve the approxima-
tion ratio by using hyperplane separation technique with skewed distri-
bution function on the sphere. We introduce a class of skewed distri-
bution functions defined on the 2-dimensional sphere satisfying that for
any function in the class, we can design a skewed distribution functions
on any dimensional sphere without decreasing the approximation ratio.
We also searched and found a good distribution function defined on the
2-dimensional sphere numerically. And we propose the derandomized al-
gorithm for the introduced distribution functions.

1 Introduction

In this paper we propose an approximation algorithm for the optimization prob-
lem called MAX 2SAT. There are n boolean variables xi (i ∈ {1, . . . , n}) and m
clauses Cs(s ∈ {1, . . . ,m}). Each clause consists of two literals, where each lit-
eral is either boolean variable xi or its negation ¬xi. We associate a non-negative
weight ws for each clause Cs. The MAX 2SAT is the problem for finding an
assignment of xt’s value which maximizes the total weight of satisfied clauses.
The MAX 2SAT is formulated as follows;

(P) maximize
∑

s:Cs is satisfied
ws subject to xi ∈ {True,False}.

This problem is NP-hard [4] and so there are some algorithms for finding an
approximate solution. As known well, Goemans and Williamson [5] proposed a
randomized polynomial time algorithm for MAX CUT, MAX 2SAT and MAX
DICUT. Their algorithm is based on Semi-Definite Programming (SDP) relax-
ation and random hyperplane separation technique. The approximation ratio of
their algorithm for MAX 2SAT is 0.87856. More precisely, their algorithm finds
an assignment whose total weight is at least 0.87856 times the optimal value.

In the paper [3], Feige and Goemans proposed an approximation algorithm
for MAX 2SAT which achieves 0.93109 of approximation ratio. Their algorithm
based on two ideas. First, they added some constraints introduced by Feige
and Lovász in [2] to SDP relaxation problem. Next, they proposed the ‘rota-
tion’ technique which modifies the solution obtained by SDP relaxation. They
calculated the approximation ratio of their algorithm numerically.
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In this paper, we propose an approximation algorithm without rotation tech-
nique whose approximation ratio is 0.935. Our algorithm solves the SDP relax-
ation problem proposed by Goemans and Williamson with the constraints used
in Feige and Goemans’ algorithm. We improve the approximation ratio by us-
ing hyperplane separation technique with skewed distribution function on the
sphere. And finally, we propose a derandomized algorithm for proposed dis-
tribution functions. The derandomized algorithm is based on the technique
proposed by Mahajan and Ramesh in the paper [7].

2 Semi-Definite Programming Relaxation

Here we describe an SDP relaxation of MAX 2SAT and review the hyperplane
separation technique. First, we formulate the MAX 2SAT problem as an integer
programming problem. Let vi be a {−1, 1}-variable associate with xi and vi+n

be a {−1, 1}-variable associate with ¬xi. Let C be the set of index pairs of
clauses, i.e., C = {(i, j)|∃s ;Cs = (xi ∨ xj)} ∪ {(i, j)|∃s ;Cs = (xi ∨ ¬xj−n)} ∪
{(i, j)|∃s ;Cs = (¬xi−n ∨ xj)} ∪ {(i, j)|∃s ;Cs = (¬xi−n ∨ ¬xj−n)}, and wij be
the weight associate with corresponding clause.

The next problem is equivalent to the original problem (P).

(P’) maximize (1/4)
∑

(i,j)∈C

wij(3 + v0vi + v0vj − vivj),

subject to v0 = 1, vi + vi+n = 0 (∀i ∈ {1, . . . , n}),
vi ∈ {−1, 1} (∀i ∈ {1, . . . , n, n+ 1, . . . , 2n}).

In the paper [5], Goemans and Williamson relaxed the above problem by replac-
ing each variable vi ∈ {−1, 1} with a vector on the n-dimensional unit sphere
vi ∈ Sn where Sn

def.= {v ∈ Rn+1 | ||v|| = 1}. This relaxation is proposed by
Lovász [6] originally. By introducing some valid constraints used in papers [2, 3],
we obtain the following relaxation problem;

(P) maximize (1/4)
∑

(i,j)∈C

wij(3 + v0 · vi + v0 · vj − vi · vj),

subject to v0 = (1, 0, . . . , 0)>, vi + vi+n = 0 (∀i ∈ {1, . . . , n}),
vi ∈ Sn (∀i ∈ {1, . . . , n, n+ 1, . . . , 2n}),

v0 · vi + v0 · vj + vi · vj ≥ −1 (∀(i, j)),
−v0 · vi − v0 · vj + vi · vj ≥ −1 (∀(i, j)),
−v0 · vi + v0 · vj − vi · vj ≥ −1 (∀(i, j)),

v0 · vi − v0 · vj − vi · vj ≥ −1 (∀(i, j)).

It is well-known that we can transform the above problem to a semidefinite
programming problem [5] and so we can solve the problem in polynomial time
by using an interior point method [1, 9].

Next, we describe the hyperplane separation technique proposed by Goe-
mans and Williamson. Let (v1,v2, . . . ,v2n) be an optimal solution of P. We
generate a vector r ∈ Sn uniformly and construct the index-set U = {i ∈
{1, . . . , n} | sign(r · v0) = sign(r · vi)} and the corresponding assignment
A : xi 7→ {True if i ∈ U, False if i 6∈ U}. We denote the expected weight
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of the assignment A by E(U). Then the linearity of the expectation implies
that;

E(U) =
∑

(i,j)∈A

wij
2π − arccos(v0 · vi) − arccos(v0 · vj) + arccos(vi · vj)

2π
.

Then we can estimate the approximation ratio of the algorithm by calculat-
ing α defined by;

α
def.= min

(vi,vj) ∈ Ω

(1/2π)(2π − arccos(v0 · vi) − arccos(v0 · vj) + arccos(vi · vj))
(1/4)(3 + v0 · vi + v0 · vj − vi · vj)

,

where

Ω def.=

(vi,vj) ∈ S2 × S2

∣∣∣∣∣∣∣∣
v0 · vi + v0 · vj + vi · vj ≥ −1,

−v0 · vi − v0 · vj + vi · vj ≥ −1,
−v0 · vi + v0 · vj − vi · vj ≥ −1,

v0 · vi − v0 · vj − vi · vj ≥ −1

 ,

and v0 = (1, 0, 0)>. Clearly, the following inequalities hold;

E(U) ≥ α(optimal value of (P)) ≥ α(optimal value of (P)).

So, the expected weight E(U) is greater than or equal to α times the optimal
value of (P). It is known that α > 0.87856 [5].

3 Hyperplane Separation by Skewed Distribu-
tion on Sphere

Goemans and Williamson’s algorithm generates a separating hyperplane at ran-
dom. Our algorithm generates a separating hyperplane with respect to a dis-
tribution function defined on Sn which is skewed towards v0 but is uniform in
any direction orthogonal to v0. Given the n-dimensional sphere Sn, we define
the class of skewed distribution function Fn by;

Fn
def.=

f : Sn → R+

∣∣∣∣∣∣
∫
Sn

f(v) ds = 1, f(v) = f(−v) (∀v ∈ Sn),

[v0 · v = v0 · v′ → f(v) = f(v′)] (∀v, ∀v′ ∈ Sn)

 .

Let f ∈ Fn be a skewed distribution function defined on Sn. Now consider
the probability that wi,j is counted in a assignment obtained by hyperplane
separation technique based on f . For any pair (v i,vj) ∈ Sn, we define

p(vi,vj | f) def.= Pr
[

sign(r · v0) = sign(r · vi) or
sign(r · v0) = sign(r · vj)

]
.

Then the expectation of the weight of the assignment with respect to a feasible
solution (v1,v2, . . . ,vn) of P based on the distribution function f is∑

(i,j)∈Awij p(vi,vj | f).
When we use a skewed distribution function f ∈ Fn defined on Sn, the

approximation ratio can be estimated by the distribution function f̂ defined by
projection of a vector on Sn to the linear subspace spanned by {v0,vi,vj}. We
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define f̂ more precisely. Let H be the 3-dimensional linear subspace including
{v0,vi,vj}. The distribution function f̂ ∈ F2 is defined as follows;

f̂(v′) def.=
∫

T (v′)
f(v) ds,

where

T (v′) def.= {v ∈ Sn | the projection of v to H is parallel to v′}.
Here we note that the distribution function f̂ is invariant with respect to the
3-dimensional subspace H including v0, since f is uniform in any directions
orthogonal to v0. For any distribution function f ′ ∈ F2 we define

αf ′
def.= min

(vi,vj) ∈ Ω

p(vi,vj | f ′)
(1/4)(3 + v0 · vi + v0 · vj − vi · vj)

,

here we note that p(vi,vj | f ′) is defined on S2 = H ∩ Sn. Then the approx-
imation ratio of the algorithm using skewed distribution function f ∈ Fn is
bounded by α

f̂
from below.

For constructing a good skewed distribution function, we need to find a
function f ′ ∈ F2 such that the value αf ′ is large. In Section 5, we describe a
numerical method for finding a good skewed distribution function in F2.

Even if we have a good distribution function in F2, a non-trivial problem
still remains. For applying hyperplane separation technique, we need a skewed
distribution function on the n-dimensional sphere. However, when n > 2, not
every distribution function f ′ ∈ F2 has a distribution function f ∈ Fn satisfying
f̂ = f ′. For example, it is easy to show that there does not exists any distribution
function f ∈ F3 satisfying the conditions that

f̂(v) =
{

1/(2
√

2π) (−0.5 ≤ v0 · v ≤ 0.5),
0 (otherwise).

In Section 4, we propose a class of functions in F2 such that a corresponding
skewed distribution function exists for any sphere Sn with n ≥ 3.

4 Main Theorem

For any function f ∈ Fn, we can characterize f by the function Pf : [0, π/2] →
R+ defined by

Pf (θ) def.= f(v)|cos θ=|v0·v|.

The following theorem gives a class of permitted skewed distribution function
in Fn.

Theorem 1 Let f ∈ Fn be a skewed distribution function with n ≥ 2 satisfying

Pf (θ) =
1
a

∞∑
k=0

ak cosk θ.
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Then the function P
f̂
(φ) can be described as

P
f̂
(φ) =

1
a

∞∑
k=0

S(k+n)(1)
S(k+2)(1)

ak cosk φ,

where a is the coefficient used for normalizing the total probability to 1 and
S(n)(r) is the area of the n dimensional sphere whose radius is equal to r.

Proof. First, we notate some well-known formulae;

Γ(0) = 1, Γ(
1
2
) =

√
π, Γ(x+ 1) = xΓ(x),∫ π

2

0

sinp x cosq x dx =
Γ(p+1

2 )Γ( q+1
2 )

2Γ( p+q+2
2 )

, Sn(r) =
2π

n+1
2

Γ(n+1
2 )

.

When we fix φ and dφ, we have the following;

2π sinφP
f̂
(φ)dφ

=
∫ 1

0

Pf (arccos(r cosφ))(2πr sinφ)
(
S(n−3)

(√
1 − r2

))
(√

1 − r2 cos2 φ√
1 − r2

r
dφ

cosφ

)(
cosφ√

1 − r2 cos2 φ

)
dr.

Thus we have

P
f̂
(φ) =

∫ 1

0

Pf (arccos(r cosφ))S(n−3)
(√

1 − r2
)
r2

dr√
1 − r2

.

When we replace r by sinα and Pf (θ) by (1/a)
∑∞

k=0 ak cosk θ, we can describe
P

f̂
(φ) as;

P
f̂
(φ) =

∫ π
2

0

(
1
a

∞∑
k=0

ak sink α cosk φ

)
2π

n−2
2

Γ(n−2
2 )

cosn−3 α sin2 α dα

=
1
a

∞∑
k=0

2π
n−2

2

Γ(n−2
2 )

ak cosk φ

∫ π
2

0

sink+2 α cosn−3 α dα

=
1
a

∞∑
k=0

2π
n−2

2

Γ(n−2
2 )

ak cosk φ
Γ(k+3

2 )Γ(n−2
2 )

2Γ(n+k+1
2 )

=
1
a

∞∑
k=0

Γ(k+3
2 )

2π
k+3
2

2π
n+k+1

2

Γ(n+k+1
2 )

ak cosk φ =
1
a

∞∑
k=0

S(k+n)(1)
S(k+2)(1)

ak cosk φ.

And so we have done.
The above theorem directly implies the following.

Corollary 1 Let f ′ ∈ F2 be a distribution function satisfying

Pf ′ =
1
b

∞∑
k=0

bk cosk φ
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with the condition that bk ≥ 0. Then, for any n ≥ 2, there exists a distribution
function f ∈ Fn satisfying f̂ = f ′ and

Pf =
1
b

∞∑
k=0

S(k+2)(1)
S(k+n)(1)

bk cosk θ,

where b is the coefficient used for normalizing the total probability to 1.

The following theorem extends the class of tractable distribution functions.

Theorem 2 Let f ∈ Fn be a distribution function satisfying that

Pf (θ) = (1/a)
∑
t∈T

at cost θ

and T is a finite set of non-negative real numbers. Then the distribution function
f̂ satisfies

P
f̂
(φ) = (1/a)

∑
t∈T

ctat cost φ,

where a is the normalization coefficient and

ct =
2π

n−2
2

Γ(n−2
2 )

∫ π
2

0

sint+2 α cosn−3 α dα

for each t ∈ T .

Corollary 2 Let f ′ ∈ F2 be a distribution function satisfying

Pf ′(φ) = (1/b)
∑
t∈T

bt cost φ and bt ≥ 0 (∀t ∈ T )

where T is a finite set of positive real numbers. Then there exists a distribution
function f ∈ F satisfying

f̂ = f ′ and Pf (θ) = (1/b)
∑
t∈T

dtbt cost θ

where b is the normalization coefficient and

dt =

(
2π

n−2
2

Γ(n−2
2 )

∫ π
2

0

sint+2 α cosn−3 α dα

)−1

for each t ∈ T .

The above corollaries imply that if we have a good distribution function f ′ ∈ F2

satisfying that Pf ′(φ) is a finite sum of non-negative power of cosφ, then we
can construct an approximation algorithm for MAX 2SAT whose approximation
ratio is greater than or equal to αf ′ .

We designed a distribution function f ′ ∈ F2 satisfying Pf ′(φ) = (1/b) cos1/β φ,
where β ∈ {1.0, 1.1, . . . , 2.0}. As a result, we found that the following function

Pf ′(φ) = cos(1/1.3) φ

satisfies that the corresponding approximation ratio is greater than 0.935.
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5 Derandomization

We generate the random vector r = (Z,X0, . . . , Xn)/
√
Z2 +X2

0 + · · · +X2
n as

follows. Let Z,X0, . . . , Xn be independent random variables, and X0, . . . , Xn

have an identical distribution function. We define a density function ofX0, . . . , Xn

by 1√
2π
e−x2/2, and of Z by 1

a

∑
t∈T at|z|te−z2/2.

Then the distribution function f : Sn → R of r satisfies the conditions of
Fn described in Section 3 clearly. From the above definitions,∫

2π sinφP
f̂
(φ)dφ =

1
2πa

∑
t∈T

at

∫ ∫ ∫
|z|te−z2/2e−(x2

i+x2
j)/2dzdxidxj .

By replacing (xi, xj) with (r cosψ, r sinψ), we have

=
1
a

∑
t∈T

at

∫ ∫
|z|te−z2/2re−r2/2dzdr

and by replacing r with z cosφ,

=
1
a

∑
t∈T

at

∫ ∫
|z|tz2 tanφ(1 + tan2 φ)e−z2 tan2 φ/2dzdφ

=
1
a

∫ {∑
t∈T

at
sinφ
cos3 φ

dφ
∫ ∞

−∞
|z|t+2e−z2/(2 cos2 φ)dz

}

=
1
a

∫ {∑
t∈T

at
sinφ
cos3 φ

cost+3
√

2
t+3

dφ

2
∫ ∞

0

(
z√

2 cosφ
)t+2e−(z/

√
2 cos φ)2 dz√

2 cosφ

}
=

1
a

∫
sinφ

∑
t∈T

atbt cost φ dφ,

where

bt = 2(t+5)/2

∫ ∞

0

zt+2e−z2
dz,

is a constant. From these equations,

P
f̂
(φ) =

1
2πa

∑
t∈T

atbt cost φ.

So, by choosing appropriate distribution for Z, we can obtain any distribution
functions for applying Corollary 2.

Then we can derandomize our algorithm in a similar way with the method
by Mahajan and Ramesh [7]. We fix each variables step by step by calculating
expectation with conditional probabilities. The only thing to pay attention is
that we need to fix Z first.

This result leads that we do not need to select or search a good distribution
in derandomized algorithm. A good distribution is needed only for evaluating
the approximation ratio.
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6 Conclusion

In this paper, we proposed an approximation algorithm for MAX 2SAT problem
whose approximation ratio is 0.935. Our algorithm solves the SDP relaxation
problem proposed by Goemans and Williamson with additional valid constraints
introduced in [2, 3]. We generate an assignment by using hyperplane separation
technique based on skewed distribution function f ∈ Fn satisfying that P

f̂
(θ) =

cos(1/1.3) φ. Lastly, we derandomized our algorithm, and showed that the above
distribution function is not needed to solve the problem in the derandomized
algorithm.
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