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Abstract The concept of M-convex functions plays a central role in “discrete convex analysis,”
a unified framework of discrete optimization introduced by Murota. We develop a polynomial
time scaling algorithm for M-convex function minimization problem.

1 Introduction

The concept of M-convexity was introduced by Murota [14, 15] in the context of “discrete convex
analysis” which is a unified framework of discrete optimization with reference to existing studies
on submodular functions [4, 8, 11], generalized polymatroids [5, 6, 8], valuated matroids [2, 3, 16]
and convex analysis [20]. M-convex functions have applications in the areas of mathematical
economics, engineering and so on [1, 17, 19]. This paper addresses a fundamental problem,
namely, M-convex function minimization problem, which is an extension of separable discrete
convex function minimization over an integral base polyhedron [7, 9, 10].

Let V be a nonempty finite set of cardinality n, and R, Z and Z, be the sets of reals,
integers and positive integers, respectively. Given a vector z = (z(v) : v € V) € ZY, its positive
support and negative support are defined by

suppt(2) = {v €V | z(v) >0} and supp (2) ={veEV|z(v) <0}

The characteristic vector (unit vector) of v € V is denoted by x,. For a function f : Z¥ —
R U {+o0}, the effective domain of f is defined by

dom f = {z € ZV | f(z) < +o0}.
A function f: Z¥ — R U {+oo} with dom f # () is called M-convez [14, 15] if it satisfies
(M-EXC) Vz,y € dom f, Vu € supp™(z — y), Jv € supp (z —y) :

fl@)+ fly) > fl@ = xu+Xo) + F(¥ + Xu — Xo)-

Several algorithms for minimizing an M-convex function f are known. Since a locally minimal
solution of f is globally minimal, a descent algorithm finds an optimal solution, but it does
not terminate in polynomial time. Shioura [21] showed a key property which guarantees that
any nonoptimal solution in the effective domain can be efficiently separated from a minimizer,
and exploited this property to develop the domain reduction algorithm, the first polynomial
time algorithm for M-convex function minimization. Time complexity of the domain reduction
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algorithm is O(Fn*(log L)?), where F is an upper bound of the time to evaluate f and L =
max{|z(u) — y(u)| | w € V, z,y € dom f}. Moriguchi, Murota and Shioura [12, 13] showed the
proximity property and proposed a scaling technique. They showed that the technique gives
an O(Fn?log(L/n))-time algorithm for a subclass of M-convex functions f such that “scaled”
function

fa(z) = f(a’ +az)  (zeZ")

is also M-convex for any 2° € dom f and « € Z, . Although their algorithm, being a descent
algorithm, works for any M-convex function, it does not terminate in polynomial time in general.
This is because M-convexity is not inherited in the scaling operation, that is, f, is not necessarily
M-convex.

We develop an O(Fn?log(L/n))-time scaling algorithm applicable to any M-convex function.
The novel idea of the algorithm is to use an individual scaling factor o, € Z, 4 for each v € V.

2 Properties of an M-convex Function

Here we review known results which are utilized in the next section.
Let f : ZV — R U {+oc} be an M-convex function and argmin f denote the set of all
minimizers of f, that is,

argmin f = {z € 2" | f(2) < f(y) (Vg € Z")}.

By (M-EXC), dom f lies on a hyperplane whose normal vector is the vector of all ones, that
is, for any z,y € dom f, (V) = y(V) holds, where (V) = >, oy z(v). It is also known that
argmin f and dom f for an M-convex function f are an M-convex set, where a nonempty set
B C ZV is said to be an M-convez set if it satisfies

(B-EXC) Vz,y € B, Yu € suppt(z — y), Jv € supp (z —y) :

T—XutXo€B, y+xu—Xv€B.

An M-convex set is a synonym of the set of integer points of the base polyhedron of an integral
submodular system (see [8] for submodular systems).

Lemma 2.1 ([14, 15]) For an M-convez function f, dom f and arg min f are M-convez sets.
The following property is a direct consequence of Lemma 2.1.

Proposition 2.2 Let f : ZV — R U {+oo} be an M-convex function. For w,v € V and
Y1,7Y2 € Z, suppose that there exist x1,zs € argmin f with z1(u) < v1 and x2(v) > v2, where
Yo <71 if u=v. Then, there exists . € argmin f with z.(u) <y and x.(v) > ¥2.

M-convex functions have various features of convex functions. For example, a locally minimal
solution of an M-convex function is globally minimal.

Theorem 2.3 ([14, 15]) For an M-convex function f and z € dom f, f(z) < f(y) for any
y € ZV if and only if f(x) < f(x — Xu + Xo) for all u,v € V.

The following properties, Theorems 2.4 and 2.5, play important roles in our algorithm. The
former is due to Shioura [21] and the latter is implicit in [12, 13].
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Theorem 2.4 ([21]) Let f : ZV — R U {+oc} be an M-conver function with argmin f # §.
For x € dom f and v € V, the following statements hold.

(a) If f(x — xo + Xu) = mingey f(x — xo + Xs), then there exists x, € argmin f such that
z(u) = Xo(u) + 1 < i (u).

(b) If f(x + xv — Xu) = mingey f(z + Xv — Xs), then there exists x, € argmin f such that
zx(u) < z(u) + xp(u) — 1.

Theorem 2.5 Let f be an M-convex function with argmin f # (). For x € dom f, v € V and
o €7y, the following statements hold.

(a) If f(z) = mingey f(x — a(xy — Xs)), then there exists x, € argmin f such that z(v) — (n —
D(a—1) < z.(v).

(b) If f(x) = mingey f(z + a(xy — Xs)), then there exists x, € argmin f such that z.(v) <
z(v)+ (n—1)(a—1).

Here we show a new property, Theorem 2.6 below, as a common generalization of Theo-
rems 2.4 and 2.5. A special case of Theorem 2.6 with o = 1 is equivalent to Theorem 2.4.
Another special case of Theorem 2.6 with u = v is identical with Theorem 2.5.

Theorem 2.6 Let f be an M-convex function with argmin f # (). For x € dom f, v € V and
o €7y, the following statements hold.

(a) If f(x — a(xy — xu)) = mingey f(x — alxy — Xs)), then there exists x, € argmin f such
that (u) — a(xy(u) —1) = (n — 1)(a — 1) < z4(u).

(b) If f(z 4+ a(xv — xu)) = mingey f(x + a(xv — Xs)), then there exists x. € argmin f such
that z.(u) < z(u) + a(xy(u) — 1)+ (n — 1)(a — 1).

Proof. Here we prove the assertion (a) because we can similarly prove (b). It is sufficient
to consider the case where there exists x, € arg min f such that x.(u) is maximum. Let Z =
z — a(xy — Xu)- Assume that Z(u) > z.(u) and k = Z(u) — z«(u).

CrLAamM A: There exist wy, ws,...,wx € V \ {u} and yo(= Z),y1,...,yx € dom f such that
Yi = Y%i-1 — Xu +X’LU1 and f(yl) < f(y’t—l) for ¢ = 1727 .. '7k'

[Proof of Claim A] Let y; 1 € dom f. By (M-EXC), for y; 1,24 and u € supp™ (y;_1 — ),
there exists w; € supp™ (y;—1 — =) € V' \ {u} such that

f(xs) + f(yic1) > f(@e + Xu = Xwi) + FWim1 — Xu + Xowy)-

Since f(zx) < f(zx + Xu — Xw;), we have f(yi—1) > f(yi-1 — Xu + Xwi) = F(9:)-

CrLAM B: For any w € V' \ {u} with yx(w) > Z(w) and § € Z with 0 < § < yg(w) — Z(w) — 1,
f@ =B+ 1) (xu— xw)) < f(Z— B(xu — Xw)) holds.

[Proof of Claim B] We prove the claim by induction on 5. For f with 0 < 8 < yx(w) —Z(w)—1,
put ' = Z — B(xu — Xw) and assume =’ € dom f. Let j, (1 < j. < k) be the maximum
index with w;, = w. Since y;, (w) = yp(w) > 2'(w) and supp (y;, — ') = {u}, we have
f@) + f(y.) = f(@' = xu+ xw) + f(Yj. + Xu — Xw) by (M-EXC). Claim A guarantees that
f@j—1) = f(¥j. + Xu — Xw) > f(y;.), and hence, f(z') > f(a' = Xu + Xuw)-
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The hypothesis of (a) and Claim B imply p, = yx(w) — Z(w) < a — 1 for any w € V'\ {u},
because

F(@ — prw(Xu — Xw)) <+ < f(@ — (Xu — Xw)) < f(Z) < f(Z — a(Xu — Xw))

holds for any w with py > 0. Thus, we have

B(u) = u(w) = 2(w) —yp(u) = Y {yp(w) - F(w)} < (n—1)(a - 1),

weV\{u}

where the second equality follows from Z(V') = yi (V). [

3 Proposed Algorithm

In this section, we describe a scaling algorithm of time complexity O(Fn3log(L/n)) for the
M-convex function minimization. It is assumed that the effective domain of a given M-convex
function f is bounded and that a vector z° € dom f is given.
We preliminarily show that L = max{|z(u) —y(u)| | v € V, z,y € dom f} can be computed
in O(Fn?log L) time. For x € dom f and u,v € V, the exchange capacity associated with x, u
and v is defined as
éf(xvvvu) = max{a | 7 + a(xy — Xu) € dom f},

which can be computed in O(F log L) time by the binary search because 0 < ¢s(z,v,u) < L.
For each w € V, define
lf(w) = min{z(w) | x € dom f}, wup(w)= max{z(w) |z € dom f}.

The values [y(w) and us(w) can be calculated by the following algorithm in O(Fnlog L) time.

function CALCULATE _BOUND(f, z, w)
input: f: M-convex function, x € domf, w€eV ;
output: (If(w),us(w)) ;
£1: number V' \ {w} from vs to vy, ;
02: y:=z:=x;
£3: fori:=2 ton do{y:=y+c(y,vi,w), z:=z+¢e(z,w,v) };
{4: return (y(w), z(w)).

The correctness of the above algorithm can be verified easily from the fact that dom f satisfies
(B-EXC) (see also [8, 21]).

Lemma 3.1 Values lf(w) and us(w) for a fized w € V' can be computed in O(Fnlog L) time,
and L in O(Fn%logL) time.

For any two vectors a,b € ZY, let [a,b] denote the set {x € ZV | a < x < b} and f© be
defined by

+o0o  otherwise.

f};(x):{ fz) ifz € [a,b]

Condition (M-EXC) directly yields the next property.

Proposition 3.2 For an M-convex function f and a,b € ZV, if dom f° # @ then f° is also
M-convez.
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We go on to the main topic of describing our algorithm for minimizing f. The novel idea
of the algorithm is to use an individual scaling factor a, € Z, for each v € V. Besides the
factors o, (v € V), the algorithm maintains a current vector x € dom f, two vectors a,b € ZV
and a subset V/ C V, and it preserves the following four conditions:

(c1) x € dom f N [a,b] = dom f2,

(c2) b(v) —a(v) < 2na, forv eV,

(¢3) argmin f N [a,b] # 0, (i.e., arg min f¢ C argmin f),

(c4) there exists x, € arg min f such that z,(v) = z(v) for allv € V' \ V"

These parameters are initially put as = := 2% V' := V, a(v) := l;(v), b(v) := us(v) and
o, = 2[1082{(us (@)=L ()/n}1 /92 for v € V. Thus, conditions (c1) to (c4) are initially satisfied. At
each iteration of the algorithm, interval [a,d] is strictly reduced and V' is not increased. By
(c4) and the fact that y(V') is a constant for any y € dom f, the algorithm stops if |[V'| < 1;
then the current z is a minimizer of f. The algorithm terminates in O(n?log(L/n)) iterations
and requires O(F'n) time at each iteration. Hence, the total time complexity of the algorithm
is O(Fn3log(L/n)).

Before entering into a precise description of the algorithm, we briefly explain its typical
behaviour. First, take v € V' arbitrarily, and find v € V' minimizing fé(z — xu + Xv). Here we
explain what the algorithm does in the case where u # v. Then, there exists z1 € argmin f
with z1(u) < z(u) — 1 by (b) of Theorem 2.4. This inequality suggests that an optimal solution
can be found by decreasing x(u). Next find w € V'’ minimizing fo(z — au(Xu — Xw)). When
u can be chosen as w attaining the minimum value, (a) of Theorem 2.5 guarantees that there
exists zo € argmin f0 with z(u) — (n — 1)(c — 1) < 29(u). By Proposition 2.2, there exists
r, € argmin f° with 2(u) — (n — 1)(ay — 1) < z4(u) < 2(u) — 1 < z(u). Thus, we can put
a(u) := max[a(u),z(u) — (n — 1)(ay — 1)] and b(u) := z(u). Since b(u) — a(u) < nay, the scaling
factor ay, can be divided by 2 without violating (¢2). In the other case with w # u, we update a,
band z as b(u) := z(u) — 1,  :=  — oy (Xu — Xw) and a(w) := maxfa(w), z(w) — (n—1)(a, —1)],
where the update of a is justified by (a) of Theorem 2.6. This is a part of our algorithm described
below (see CASE2).

A complete description of our algorithm is now given.

algorithm COORDINATEWISE_SCALING(f, V, z0)
input: f : M-convex function with bounded dom f C ZV, 2° € dom f ;
output: a minimizer of f ;

01: n:=|V|, V:=V, z:=2°;

£02: for each v € V' do (a(v),b(v)) := CALCULATE_BOUND(f, z,v) ;
€03: for each v € V do q := 2/108:{(6()=a(®))/n}] /9 .

¢04: while [V'| > 2 do {

£05: take v € V' ;

£06: find ug € V' : f2(2 4 xo — Xuy) = 631,1\1% }f T+ X0 — Xs)

£07: find ug € V' : f2(z — xo + Xup) = egl\% }fb(a:—xv—i-xs),

08: i f2(2) < @+ xo — Xur) and f2(z) < f2z — X0 + Xuy) then
£09: { a(v) :=b(v) :=z(v), V':=V'\{v}};

£10: else if fo(z) > f2(z + Xxo — Xu,) then CASE2(u;) ;

11: else (fo(z) > f%(z — xv + Xup)) then CASE3(us) ;

gs570


研究会Temp 
－57－


012: }
£13: return (z) ;

function CASE2(u) (3x; € argmin f with z1(u) < z(u) — 1)
01: Wy := arg mingeyr f2(x — au(xu — Xs)) ;
£2: ifu e W, then

£3: { a(u) := max[a(u),z(u) — (n — 1)(a, — 1)], b(u):=z(u) };
4 else (u g Wy,) {

05: take w € Wy, b(u) :=z(u) -1, z:=2— au(Xu — Xw) ;

£6: a(w) := max[a(w),z(w) — (n — 1)(ay — 1)] ;

07: UPDATE _FACTOR(w) } ;

£8: UPDATE_FACTOR(u) ;
£9: return ;

function CASE3(u) (3x2 € argmin f with zo(u) > z(u) + 1)

£1: W, := arg mingey f}l’(a: + ay(Xu — Xs)) ;
£2: ifu e W, then

£3: { a(u) :=z(u), b(u):=min[b(u),z(u) + (n —1)(ay —1)] } ;
t4: else (u g W) {

05: take w € Wy, a(u) :=z(u)+1, z:=z+ ay(Xu — Xw) ;

£6: b(w) := min[b(w), z(w) + (n — 1)(ay — 1)] ;

07: UPDATE_FACTOR(w) } ;

{8: UPDATE_FACTOR(u) ;
£9: return ;

function UPDATE _FACTOR(s)

f1: while a; > 1 and b(s) — a(s) < nas do as = a,/2 ;
£2: if a(s) = b(s) then V' :=V'\ {s};

£3: return .

The correctness and the time complexity of the algorithm follow from the next lemmas.

Lemma 3.3 COORDINATEWISE_SCALING preserves conditions (c1) to (c4).

Proof. As we mentioned above, conditions (c1) to (c4) are satisfied just after the execution of
line £03. We note that Proposition 3.2 guarantees that f}l’ is M-convex. The while loop, which
is lines £04 to £12, consists of three cases.

The first case at line 08 implies that there exists z, € argmin f with z,(v) = z(v) by
condition (c3), Proposition 2.2 and Theorem 2.4 for f°. Trivially, conditions (c1) to (c4) are
satisfied after the execution of line /09.

We next consider the second case at line £10. By (c3) and (b) of Theorem 2.4 for f2,
there exists x; € argmin f° C argmin f with z;(u;) < 2(u1) — 1. Let us consider function
CASE2, in which we have either v € W, or u ¢ W,. Assume first that u € W,,. By (c3) and
(a) of Theorem 2.5 for f°, there exists 2 € argmin f with a(u) < xa(u), for the updated a.
The updated a and b have a(u) < b(u). By Proposition 2.2, there exists z, € argmin f with
a(u) < z4(u) < b(u). Thus, (cl) to (c4) are satisfied. Assume next that u ¢ W,. By (c3) and
(a) of Theorem 2.6 for f2, there exists zo € arg min f with a(w) < xa(w), for the updated a. By
Proposition 2.2, there exists xz, € arg min f with a(w) < z.(w) and z.(u) < b(u) for the updated
a and b, and hence, (c3) holds. Obviously, the updated a, b and z violate no other conditions
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at the end of line £6. At lines £7 and /8, UPDATE_FACTOR reduces o, and «, respectively,
preserving (cl) to (c4).
Similarly, the third case at £11 also preserves (c1) to (c4). [

Lemma 3.4 The while loop in lines £04 to (12 of COORDINATEWISE SCALING terminates in
O(n?log(L/n)) iterations.

Outline of Proof. We divide the iterations of the while loop into three cases.
CrAaM A: The case at line £08 occurs at most n — 1 times.
[Proof of Claim A] Every time this case occurs, the set V' is reduced by one element.

CrAM B: The case of u € W, in CASE2 or CASE3 occurs O(nlog(L/n)) times.

[Proof of Claim B| In this case, o, must be updated at line ¢8 of CASE2 or CASE3 at least
once because b(u) — a(u) < nay. Thus, this case occurs at most [log(L/n)] times for a fixed
ueV.

CrAam C: The case of u ¢ W, in CASE2 or CASE3 occurs O(n?log(L/n)) times.

By Claims A, B and C, the while loop terminates in O(n?log(L/n)) iterations. In the
following, we prove Claim C.

[Outline of Proof of Claim C] To prove Claim C, we adopt two auxiliary vectors a’,b' € ZV
such that

b'(s) — z(s) and z(s) — a’(s) are divisible by as, (1)
b(s) = a'(s) + 2as > as|(b(s) — a(s))/as], (2)
a'(s) — 2as < a(s) < d'(s) < x(s) < b'(s) < b(s) < b(s)+ 2as (3)

for any s € V. We evaluate the number of the occurrences of the case in Claim C by using an
integral number ¢ defined by

y=y 1) @)
seV s

By (¢2) and (3), (0'(s)—d/(s))/as < 2n holds. We can show that 1) does not increase if no scaling
factors are updated, and that either ¢ or a certain scaling factor is strictly reduced except in
one case, which does not occur consecutively in a sense. [ |

By Lemmas 3.1, 3.3 and 3.4, our main result is obtained.

Theorem 3.5 Suppose that f : ZV — R U {+oc} is an M-conver function with a bounded
effective domain and that z° € dom f is given. Algorithm COORDINATEWISE_SCALING finds a
minimizer of f in O(Fn3log(L/n)) time, where F is an upper bound of time to evaluate f and
L = max{|z(u) —y(u)| |u €V, z,y € dom f}.
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