M凸関数最小化問題に対する領域スケーリング法

田村明久 京都大学数理解析研究所 tamura@kurims.kyoto-u.ac.jp

要旨 近年,室田により提案された離散凸解析においてM凸関数は中心的役割を果たす. M凸関数最小化問題に対する多項式時間スケーリング法を提案する.

A Domain Scaling Algorithm for M-convex Function Minimization

Akihisa Tamura

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan tamura@kurims.kyoto-u.ac.jp

Abstract The concept of M-convex functions plays a central role in "discrete convex analysis," a unified framework of discrete optimization introduced by Murota. We develop a polynomial time scaling algorithm for M-convex function minimization problem.

1 Introduction

The concept of M-convexity was introduced by Murota [14, 15] in the context of "discrete convex analysis" which is a unified framework of discrete optimization with reference to existing studies on submodular functions [4, 8, 11], generalized polymatroids [5, 6, 8], valuated matroids [2, 3, 16] and convex analysis [20]. M-convex functions have applications in the areas of mathematical economics, engineering and so on [1, 17, 19]. This paper addresses a fundamental problem, namely, M-convex function minimization problem, which is an extension of separable discrete convex function minimization over an integral base polyhedron [7, 9, 10].

Let V be a nonempty finite set of cardinality n, and \mathbf{R} , \mathbf{Z} and \mathbf{Z}_{++} be the sets of reals, integers and positive integers, respectively. Given a vector $z = (z(v) : v \in V) \in \mathbf{Z}^V$, its positive support and negative support are defined by

$$\operatorname{supp}^+(z) = \{ v \in V \mid z(v) > 0 \}$$
 and $\operatorname{supp}^-(z) = \{ v \in V \mid z(v) < 0 \}.$

The characteristic vector (unit vector) of $v \in V$ is denoted by χ_v . For a function $f: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$, the *effective domain* of f is defined by

$$\operatorname{dom} f = \{x \in \mathbf{Z}^V \mid f(x) < +\infty\}.$$

A function $f: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ with $\operatorname{dom} f \neq \emptyset$ is called *M-convex* [14, 15] if it satisfies (M-EXC) $\forall x, y \in \operatorname{dom} f, \forall u \in \operatorname{supp}^+(x-y), \exists v \in \operatorname{supp}^-(x-y)$:

$$f(x) + f(y) \ge f(x - \chi_u + \chi_v) + f(y + \chi_u - \chi_v).$$

Several algorithms for minimizing an M-convex function f are known. Since a locally minimal solution of f is globally minimal, a descent algorithm finds an optimal solution, but it does not terminate in polynomial time. Shioura [21] showed a key property which guarantees that any nonoptimal solution in the effective domain can be efficiently separated from a minimizer, and exploited this property to develop the domain reduction algorithm, the first polynomial time algorithm for M-convex function minimization. Time complexity of the domain reduction

algorithm is $O(Fn^4(\log L)^2)$, where F is an upper bound of the time to evaluate f and $L = \max\{|x(u) - y(u)| \mid u \in V, x, y \in \text{dom } f\}$. Moriguchi, Murota and Shioura [12, 13] showed the proximity property and proposed a scaling technique. They showed that the technique gives an $O(Fn^3\log(L/n))$ -time algorithm for a subclass of M-convex functions f such that "scaled" function

$$f_{\alpha}(x) = f(x^0 + \alpha x) \qquad (x \in \mathbf{Z}^V)$$

is also M-convex for any $x^0 \in \text{dom } f$ and $\alpha \in \mathbf{Z}_{++}$. Although their algorithm, being a descent algorithm, works for any M-convex function, it does not terminate in polynomial time in general. This is because M-convexity is not inherited in the scaling operation, that is, f_{α} is not necessarily M-convex.

We develop an $O(Fn^3 \log(L/n))$ -time scaling algorithm applicable to any M-convex function. The novel idea of the algorithm is to use an individual scaling factor $\alpha_v \in \mathbf{Z}_{++}$ for each $v \in V$.

2 Properties of an M-convex Function

Here we review known results which are utilized in the next section.

Let $f: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ be an M-convex function and $\arg \min f$ denote the set of all minimizers of f, that is,

$$\arg\min f = \{x \in \mathbf{Z}^V \mid f(x) \le f(y) \ (\forall y \in \mathbf{Z}^V)\}.$$

By (M-EXC), dom f lies on a hyperplane whose normal vector is the vector of all ones, that is, for any $x, y \in \text{dom } f$, x(V) = y(V) holds, where $x(V) = \sum_{v \in V} x(v)$. It is also known that arg min f and dom f for an M-convex function f are an M-convex set, where a nonempty set $B \subseteq \mathbf{Z}^V$ is said to be an M-convex set if it satisfies

(B-EXC) $\forall x, y \in B, \forall u \in \text{supp}^+(x-y), \exists v \in \text{supp}^-(x-y) :$

$$x - \chi_u + \chi_v \in B$$
, $y + \chi_u - \chi_v \in B$.

An M-convex set is a synonym of the set of integer points of the base polyhedron of an integral submodular system (see [8] for submodular systems).

Lemma 2.1 ([14, 15]) For an M-convex function f, dom f and arg min f are M-convex sets.

The following property is a direct consequence of Lemma 2.1.

Proposition 2.2 Let $f: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ be an M-convex function. For $u, v \in V$ and $\gamma_1, \gamma_2 \in \mathbf{Z}$, suppose that there exist $x_1, x_2 \in \arg\min f$ with $x_1(u) \leq \gamma_1$ and $x_2(v) \geq \gamma_2$, where $\gamma_2 \leq \gamma_1$ if u = v. Then, there exists $x_* \in \arg\min f$ with $x_*(u) \leq \gamma_1$ and $x_*(v) \geq \gamma_2$.

M-convex functions have various features of convex functions. For example, a locally minimal solution of an M-convex function is globally minimal.

Theorem 2.3 ([14, 15]) For an M-convex function f and $x \in \text{dom } f$, $f(x) \leq f(y)$ for any $y \in \mathbf{Z}^V$ if and only if $f(x) \leq f(x - \chi_u + \chi_v)$ for all $u, v \in V$.

The following properties, Theorems 2.4 and 2.5, play important roles in our algorithm. The former is due to Shioura [21] and the latter is implicit in [12, 13].

Theorem 2.4 ([21]) Let $f: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ be an M-convex function with $\arg \min f \neq \emptyset$. For $x \in \operatorname{dom} f$ and $v \in V$, the following statements hold.

- (a) If $f(x \chi_v + \chi_u) = \min_{s \in V} f(x \chi_v + \chi_s)$, then there exists $x_* \in \arg \min f$ such that $x(u) \chi_v(u) + 1 \le x_*(u)$.
- (b) If $f(x + \chi_v \chi_u) = \min_{s \in V} f(x + \chi_v \chi_s)$, then there exists $x_* \in \arg \min f$ such that $x_*(u) \leq x(u) + \chi_v(u) 1$.

Theorem 2.5 Let f be an M-convex function with $\arg \min f \neq \emptyset$. For $x \in \operatorname{dom} f$, $v \in V$ and $\alpha \in \mathbf{Z}_{++}$, the following statements hold.

- (a) If $f(x) = \min_{s \in V} f(x \alpha(\chi_v \chi_s))$, then there exists $x_* \in \arg \min f$ such that $x(v) (n 1)(\alpha 1) \leq x_*(v)$.
- (b) If $f(x) = \min_{s \in V} f(x + \alpha(\chi_v \chi_s))$, then there exists $x_* \in \arg \min f$ such that $x_*(v) \leq x(v) + (n-1)(\alpha-1)$.

Here we show a new property, Theorem 2.6 below, as a common generalization of Theorems 2.4 and 2.5. A special case of Theorem 2.6 with $\alpha = 1$ is equivalent to Theorem 2.4. Another special case of Theorem 2.6 with u = v is identical with Theorem 2.5.

Theorem 2.6 Let f be an M-convex function with $\arg \min f \neq \emptyset$. For $x \in \operatorname{dom} f$, $v \in V$ and $\alpha \in \mathbf{Z}_{++}$, the following statements hold.

- (a) If $f(x \alpha(\chi_v \chi_u)) = \min_{s \in V} f(x \alpha(\chi_v \chi_s))$, then there exists $x_* \in \arg \min f$ such that $x(u) \alpha(\chi_v(u) 1) (n 1)(\alpha 1) \leq x_*(u)$.
- (b) If $f(x + \alpha(\chi_v \chi_u)) = \min_{s \in V} f(x + \alpha(\chi_v \chi_s))$, then there exists $x_* \in \arg \min f$ such that $x_*(u) \leq x(u) + \alpha(\chi_v(u) 1) + (n 1)(\alpha 1)$.

Proof. Here we prove the assertion (a) because we can similarly prove (b). It is sufficient to consider the case where there exists $x_* \in \arg\min f$ such that $x_*(u)$ is maximum. Let $\widehat{x} = x - \alpha(\chi_v - \chi_u)$. Assume that $\widehat{x}(u) > x_*(u)$ and $k = \widehat{x}(u) - x_*(u)$.

CLAIM A: There exist $w_1, w_2, \ldots, w_k \in V \setminus \{u\}$ and $y_0(=\widehat{x}), y_1, \ldots, y_k \in \text{dom } f$ such that $y_i = y_{i-1} - \chi_u + \chi_{w_i}$ and $f(y_i) < f(y_{i-1})$ for $i = 1, 2, \ldots, k$.

[Proof of Claim A] Let $y_{i-1} \in \text{dom } f$. By (M-EXC), for y_{i-1}, x_* and $u \in \text{supp}^+(y_{i-1} - x_*)$, there exists $w_i \in \text{supp}^-(y_{i-1} - x_*) \subseteq V \setminus \{u\}$ such that

$$f(x_*) + f(y_{i-1}) \ge f(x_* + \chi_u - \chi_{w_i}) + f(y_{i-1} - \chi_u + \chi_{w_i}).$$

Since $f(x_*) < f(x_* + \chi_u - \chi_{w_i})$, we have $f(y_{i-1}) > f(y_{i-1} - \chi_u + \chi_{w_i}) = f(y_i)$.

CLAIM B: For any $w \in V \setminus \{u\}$ with $y_k(w) > \widehat{x}(w)$ and $\beta \in \mathbf{Z}$ with $0 \le \beta \le y_k(w) - \widehat{x}(w) - 1$, $f(\widehat{x} - (\beta + 1)(\chi_u - \chi_w)) < f(\widehat{x} - \beta(\chi_u - \chi_w))$ holds.

[Proof of Claim B] We prove the claim by induction on β . For β with $0 \le \beta \le y_k(w) - \widehat{x}(w) - 1$, put $x' = \widehat{x} - \beta(\chi_u - \chi_w)$ and assume $x' \in \text{dom } f$. Let j_* $(1 \le j_* \le k)$ be the maximum index with $w_{j_*} = w$. Since $y_{j_*}(w) = y_k(w) > x'(w)$ and $\sup_{j_*} (y_{j_*} - x') = \{u\}$, we have $f(x') + f(y_{j_*}) \ge f(x' - \chi_u + \chi_w) + f(y_{j_*} + \chi_u - \chi_w)$ by (M-EXC). Claim A guarantees that $f(y_{j_*-1}) = f(y_{j_*} + \chi_u - \chi_w) > f(y_{j_*})$, and hence, $f(x') > f(x' - \chi_u + \chi_w)$.

The hypothesis of (a) and Claim B imply $\mu_w = y_k(w) - \hat{x}(w) \le \alpha - 1$ for any $w \in V \setminus \{u\}$, because

$$f(\widehat{x} - \mu_w(\chi_u - \chi_w)) < \dots < f(\widehat{x} - (\chi_u - \chi_w)) < f(\widehat{x}) \le f(\widehat{x} - \alpha(\chi_u - \chi_w))$$

holds for any w with $\mu_w > 0$. Thus, we have

$$\widehat{x}(u) - x_*(u) = \widehat{x}(u) - y_k(u) = \sum_{w \in V \setminus \{u\}} \{y_k(w) - \widehat{x}(w)\} \le (n-1)(\alpha-1),$$

where the second equality follows from $\hat{x}(V) = y_k(V)$.

3 Proposed Algorithm

In this section, we describe a scaling algorithm of time complexity $O(Fn^3 \log(L/n))$ for the M-convex function minimization. It is assumed that the effective domain of a given M-convex function f is bounded and that a vector $x^0 \in \text{dom } f$ is given.

We preliminarily show that $L = \max\{|x(u) - y(u)| \mid u \in V, x, y \in \text{dom } f\}$ can be computed in $O(Fn^2 \log L)$ time. For $x \in \text{dom } f$ and $u, v \in V$, the exchange capacity associated with x, u and v is defined as

$$\tilde{c}_f(x, v, u) = \max\{\alpha \mid x + \alpha(\chi_v - \chi_u) \in \text{dom } f\},\$$

which can be computed in $O(F \log L)$ time by the binary search because $0 \le \tilde{c}_f(x, v, u) \le L$. For each $w \in V$, define

$$l_f(w) = \min\{x(w) \mid x \in \text{dom } f\}, \quad u_f(w) = \max\{x(w) \mid x \in \text{dom } f\}.$$

The values $l_f(w)$ and $u_f(w)$ can be calculated by the following algorithm in $O(Fn \log L)$ time.

function CALCULATE_BOUND(f, x, w)

input: f : M-convex function, $x \in \text{dom } f$, $w \in V$; **output:** $(l_f(w), u_f(w))$;

 $\ell 1$: number $V \setminus \{w\}$ from v_2 to v_n ;

 $\ell 2 \colon \ y := z := x \ ;$

 $\ell 3 \colon \ \, \mathbf{for} \,\, i := 2 \ \, \mathbf{to} \,\, n \ \, \mathbf{do} \,\, \{ \,\, y := y + \tilde{c}(y,v_i,w), \quad z := z + \tilde{c}(z,w,v_i) \,\, \} \,\, ;$

 $\ell 4$: return (y(w), z(w)).

The correctness of the above algorithm can be verified easily from the fact that dom f satisfies (B-EXC) (see also [8, 21]).

Lemma 3.1 Values $l_f(w)$ and $u_f(w)$ for a fixed $w \in V$ can be computed in $O(Fn \log L)$ time, and L in $O(Fn^2 \log L)$ time.

For any two vectors $a, b \in \mathbf{Z}^V$, let [a, b] denote the set $\{x \in \mathbf{Z}^V \mid a \leq x \leq b\}$ and f_a^b be defined by

$$f_a^b(x) = \begin{cases} f(x) & \text{if } x \in [a, b] \\ +\infty & \text{otherwise.} \end{cases}$$

Condition (M-EXC) directly yields the next property.

Proposition 3.2 For an M-convex function f and $a, b \in \mathbf{Z}^V$, if dom $f_a^b \neq \emptyset$ then f_a^b is also M-convex.

We go on to the main topic of describing our algorithm for minimizing f. The novel idea of the algorithm is to use an individual scaling factor $\alpha_v \in \mathbf{Z}_{++}$ for each $v \in V$. Besides the factors α_v ($v \in V$), the algorithm maintains a current vector $x \in \text{dom } f$, two vectors $a, b \in \mathbf{Z}^V$ and a subset $V' \subseteq V$, and it preserves the following four conditions:

```
(c1) x \in \text{dom } f \cap [a, b] = \text{dom } f_a^b,
```

- (c2) $b(v) a(v) \le 2n\alpha_v$ for $v \in V$,
- (c3) $\arg \min f \cap [a, b] \neq \emptyset$, (i.e., $\arg \min f_a^b \subseteq \arg \min f$),
- (c4) there exists $x_* \in \arg \min f$ such that $x_*(v) = x(v)$ for all $v \in V \setminus V'$.

These parameters are initially put as $x := x^0$, V' := V, $a(v) := l_f(v)$, $b(v) := u_f(v)$ and $\alpha_v := 2^{\lceil \log_2\{(u_f(v)-l_f(v))/n\} \rceil}/2$ for $v \in V$. Thus, conditions (c1) to (c4) are initially satisfied. At each iteration of the algorithm, interval [a,b] is strictly reduced and V' is not increased. By (c4) and the fact that y(V) is a constant for any $y \in \text{dom } f$, the algorithm stops if $|V'| \leq 1$; then the current x is a minimizer of f. The algorithm terminates in $O(n^2 \log(L/n))$ iterations and requires O(Fn) time at each iteration. Hence, the total time complexity of the algorithm is $O(Fn^3 \log(L/n))$.

Before entering into a precise description of the algorithm, we briefly explain its typical behaviour. First, take $v \in V'$ arbitrarily, and find $u \in V'$ minimizing $f_a^b(x-\chi_u+\chi_v)$. Here we explain what the algorithm does in the case where $u \neq v$. Then, there exists $x_1 \in \arg\min f_a^b$ with $x_1(u) \leq x(u) - 1$ by (b) of Theorem 2.4. This inequality suggests that an optimal solution can be found by decreasing x(u). Next find $w \in V'$ minimizing $f_a^b(x-\alpha_u(\chi_u-\chi_w))$. When u can be chosen as w attaining the minimum value, (a) of Theorem 2.5 guarantees that there exists $x_2 \in \arg\min f_a^b$ with $x(u) - (n-1)(\alpha_u-1) \leq x_2(u)$. By Proposition 2.2, there exists $x_* \in \arg\min f_a^b$ with $x(u) - (n-1)(\alpha_u-1) \leq x_*(u) \leq x(u) - 1 < x(u)$. Thus, we can put $a(u) := \max[a(u), x(u) - (n-1)(\alpha_u-1)]$ and b(u) := x(u). Since $b(u) - a(u) \leq n\alpha_u$, the scaling factor α_u can be divided by 2 without violating (c2). In the other case with $w \neq u$, we update a, b and a as b(u) := x(u) - 1, $a = x - \alpha_u(x_u - x_w)$ and $a(w) := \max[a(w), x(w) - (n-1)(\alpha_u-1)]$, where the update of a is justified by (a) of Theorem 2.6. This is a part of our algorithm described below (see CASE2).

A complete description of our algorithm is now given.

```
algorithm Coordinatewise_Scaling(f, V, x^0)
                             f: M-convex function with bounded dom f \subset \mathbf{Z}^V, x^0 \in \text{dom } f;
     output: a minimizer of f;
\ell 01: n := |V|, V' := V, x := x^0;
\ell02: \ \mathbf{for} \ \mathbf{each} \ v \in V \ \ \mathbf{do} \ (a(v),b(v)) := \mathbf{CAlculate\_Bound}(f,x,v) \ ;
\ell 03 \colon \text{ for each } v \in V \ \text{ do } \alpha_v := 2^{\lceil \log_2 \{(b(v) - a(v))/n\} \rceil}/2 \ ;
\ell 04: while |V'| \ge 2 do {
                       take v \in V';
\ell05:
                       find u_1 \in V': f_a^b(x + \chi_v - \chi_{u_1}) = \min_{s \in V' \setminus \{v\}} f_a^b(x + \chi_v - \chi_s);

find u_2 \in V': f_a^b(x - \chi_v + \chi_{u_2}) = \min_{s \in V' \setminus \{v\}} f_a^b(x - \chi_v + \chi_s);
\ell 06:
\ell07:
                      \begin{array}{l} \text{if } f_a^b(x) \leq f_a^b(x + \chi_v - \chi_{u_1}) \text{ and } f_a^b(x) \leq f_a^b(x - \chi_v + \chi_{u_2}) \text{ then} \\ \{ \ a(v) := b(v) := x(v), \quad V' := V' \setminus \{v\} \ \} \ ; \\ \text{else if } f_a^b(x) > f_a^b(x + \chi_v - \chi_{u_1}) \text{ then } \operatorname{CASE2}(u_1) \ ; \\ \text{else } (f_a^b(x) > f_a^b(x - \chi_v + \chi_{u_2})) \text{ then } \operatorname{CASE3}(u_2) \ ; \end{array}
\ell 08:
\ell 09:
\ell 10:
\ell 11:
```

```
\ell 12: \} ;
\ell 13: return (x);
function Case2(u)
                                      (\exists x_1 \in \operatorname{arg\,min} f \text{ with } x_1(u) \leq x(u) - 1)
\ell 1: W_u := \arg\min_{s \in V'} f_a^b(x - \alpha_u(\chi_u - \chi_s)) ;
\ell 2: if u \in W_u then
            \{ a(u) := \max[a(u), x(u) - (n-1)(\alpha_u - 1)], b(u) := x(u) \} ;
\ell 3:
\ell 4:
     else (u \not\in W_u) {
            take w \in W_u, b(u) := x(u) - 1, x := x - \alpha_u(\chi_u - \chi_w);
\ell 5:
\ell 6:
            a(w) := \max[a(w), x(w) - (n-1)(\alpha_u - 1)];
\ell 7:
            UPDATE_FACTOR(w) };
\ell 8:
     Update_Factor(u);
\ell 9:
     return;
                                      (\exists x_2 \in \operatorname{arg\,min} f \text{ with } x_2(u) \geq x(u) + 1)
function CASE3(u)
\ell 1: W_u := \arg\min_{s \in V'} f_a^b(x + \alpha_u(\chi_u - \chi_s)) ;
\ell 2: if u \in W_u then
            \{ a(u) := x(u), b(u) := \min[b(u), x(u) + (n-1)(\alpha_u - 1)] \} ;
\ell 3:
\ell 4:
      else (u \not\in W_u) {
\ell 5:
            take w \in W_u, a(u) := x(u) + 1, x := x + \alpha_u(\chi_u - \chi_w);
\ell 6:
            b(w) := \min[b(w), x(w) + (n-1)(\alpha_u - 1)];
\ell 7:
            UPDATE_FACTOR(w) };
\ell 8: Update_Factor(u);
\ell 9: return;
function UPDATE_FACTOR(s)
\ell 1 \text{: } \mathbf{while} \ \alpha_s > 1 \ \mathbf{and} \ b(s) - a(s) \leq n \alpha_s \ \mathbf{do} \ \alpha_s := \alpha_s/2 \ ;
\ell 2: if a(s) = b(s) then V' := V' \setminus \{s\};
\ell 3: return.
```

The correctness and the time complexity of the algorithm follow from the next lemmas.

Lemma 3.3 COORDINATEWISE_SCALING preserves conditions (c1) to (c4).

Proof. As we mentioned above, conditions (c1) to (c4) are satisfied just after the execution of line $\ell 03$. We note that Proposition 3.2 guarantees that f_a^b is M-convex. The while loop, which is lines $\ell 04$ to $\ell 12$, consists of three cases.

The first case at line $\ell 08$ implies that there exists $x_* \in \arg \min f$ with $x_*(v) = x(v)$ by condition (c3), Proposition 2.2 and Theorem 2.4 for f_a^b . Trivially, conditions (c1) to (c4) are satisfied after the execution of line $\ell 09$.

We next consider the second case at line $\ell 10$. By (c3) and (b) of Theorem 2.4 for f_a^b , there exists $x_1 \in \arg\min f_a^b \subseteq \arg\min f$ with $x_1(u_1) \le x(u_1) - 1$. Let us consider function CASE2, in which we have either $u \in W_u$ or $u \notin W_u$. Assume first that $u \in W_u$. By (c3) and (a) of Theorem 2.5 for f_a^b , there exists $x_2 \in \arg\min f$ with $a(u) \le x_2(u)$, for the updated a. The updated a and b have $a(u) \le b(u)$. By Proposition 2.2, there exists $x_* \in \arg\min f$ with $a(u) \le x_*(u) \le b(u)$. Thus, (c1) to (c4) are satisfied. Assume next that $u \notin W_u$. By (c3) and (a) of Theorem 2.6 for f_a^b , there exists $x_2 \in \arg\min f$ with $a(w) \le x_2(w)$, for the updated a. By Proposition 2.2, there exists $x_* \in \arg\min f$ with $a(w) \le x_*(w)$ and $x_*(u) \le b(u)$ for the updated a and b, and hence, (c3) holds. Obviously, the updated a, b and x violate no other conditions

at the end of line $\ell 6$. At lines $\ell 7$ and $\ell 8$, UPDATE_FACTOR reduces α_w and α_u respectively, preserving (c1) to (c4).

Similarly, the third case at $\ell 11$ also preserves (c1) to (c4).

Lemma 3.4 The while loop in lines $\ell 04$ to $\ell 12$ of Coordinatewise_Scaling terminates in $O(n^2 \log(L/n))$ iterations.

Outline of Proof. We divide the iterations of the while loop into three cases.

CLAIM A: The case at line $\ell 08$ occurs at most n-1 times.

[Proof of Claim A] Every time this case occurs, the set V' is reduced by one element.

CLAIM B: The case of $u \in W_u$ in CASE2 or CASE3 occurs $O(n \log(L/n))$ times.

[Proof of Claim B] In this case, α_u must be updated at line $\ell 8$ of CASE2 or CASE3 at least once because $b(u) - a(u) < n\alpha_u$. Thus, this case occurs at most $\lceil \log(L/n) \rceil$ times for a fixed $u \in V$.

CLAIM C: The case of $u \notin W_u$ in CASE2 or CASE3 occurs $O(n^2 \log(L/n))$ times.

By Claims A, B and C, the while loop terminates in $O(n^2 \log(L/n))$ iterations. In the following, we prove Claim C.

[Outline of Proof of Claim C] To prove Claim C, we adopt two auxiliary vectors $a', b' \in \mathbf{Z}^V$ such that

$$b'(s) - x(s)$$
 and $x(s) - a'(s)$ are divisible by α_s , (1)

$$b'(s) - a'(s) + 2\alpha_s \ge \alpha_s |(b(s) - a(s))/\alpha_s|, \tag{2}$$

$$a'(s) - 2\alpha_s < a(s) \le a'(s) \le x(s) \le b'(s) \le b(s) < b'(s) + 2\alpha_s \tag{3}$$

for any $s \in V$. We evaluate the number of the occurrences of the case in Claim C by using an integral number ψ defined by

$$\psi = \sum_{s \in V} \frac{b'(s) - a'(s)}{\alpha_s}.$$
 (4)

By (c2) and (3), $(b'(s)-a'(s))/\alpha_s \leq 2n$ holds. We can show that ψ does not increase if no scaling factors are updated, and that either ψ or a certain scaling factor is strictly reduced except in one case, which does not occur consecutively in a sense.

By Lemmas 3.1, 3.3 and 3.4, our main result is obtained.

Theorem 3.5 Suppose that $f: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ is an M-convex function with a bounded effective domain and that $x^0 \in \text{dom } f$ is given. Algorithm Coordinatewise_Scaling finds a minimizer of f in $O(Fn^3\log(L/n))$ time, where F is an upper bound of time to evaluate f and $L = \max\{|x(u) - y(u)| \mid u \in V, \ x, y \in \text{dom } f\}$.

References

- [1] V. Danilov, G. Koshevoy, and K. Murota, Discrete convexity and equilibria in economies with indivisible goods and money, *Math. Social Sci.* 41 (2001), 251–273.
- [2] A. W. M. Dress and W. Wenzel, Valuated matroid: A new look at the greedy algorithm, *Appl. Math. Lett.* **3** (1990), 33–35.
- [3] A. W. M. Dress and W. Wenzel, Valuated matroids, Adv. Math. 93 (1992), 214–250.

- [4] J. Edmonds, Submodular functions, matroids and certain polyhedra, in "Combinatorial Structures and Their Applications" (R. Guy, H. Hanani, N. Sauer and J. Schönheim, Eds.), pp. 69–87, Gordon and Breach, New York, 1970.
- [5] A. Frank, Generalized polymatroids, in "Finite and Infinite Sets, I" (A. Hajnal, L. Lovász and V. T. Sós, Eds.), pp. 285–294, North-Holland, Amsterdam, 1984.
- [6] A. Frank and É. Tardos, Generalized polymatroids and submodular flows, *Math. Programming* 42 (1988), 489–563.
- [7] S. Fujishige, Lexicographically optimal base of a polymatroid with respect to a weight vector, *Math. Oper. Res.* **5** (1980), 186–196.
- [8] S. Fujishige, "Submodular Functions and Optimization," Annals of Discrete Mathematics 47, North-Holland, Amsterdam, 1991.
- [9] H. Groenevelt, Two algorithms for maximizing a separable concave function over a polymatroid feasible region, European J. Oper. Res. 54 (1991), 227–236.
- [10] D. S. Hochbaum, Lower and upper bounds for the allocation problem and other nonlinear optimization problems, *Math. Oper. Res.* **19** (1994), 390–409.
- [11] L. Lovász, Submodular functions and convexity, in "Mathematical Programming The State of the Art" (A. Bachem, M. Grötschel and B. Korte, Eds.), pp. 235–257, Springer-Verlag, Berlin, 1983.
- [12] S. Moriguchi, K. Murota and A. Shioura, Minimization of an M-convex function with a scaling technique (in Japanese), *IPSJ SIG Notes* 2001–AL-76 (2001), 27-34.
- [13] S. Moriguchi, K. Murota and A. Shioura, Scaling algorithms for M-convex function minimization, Department of Mathematical and Computing Sciences, Technical Report B-371, Tokyo Institute of Technology, 2001.
- [14] K. Murota, Convexity and Steinitz's exchange property, Adv. Math. 124 (1996), 272-311.
- [15] K. Murota, Discrete convex analysis, Math. Programming 83 (1998), 313-371.
- [16] K. Murota, "Matrices and Matroids for Systems Analysis," Springer-Verlag, Berlin, 2000.
- [17] K. Murota, "Discrete Convex Analysis (in Japanese)," Kyoritsu-Shuppan, Tokyo, 2001, to appear.
- [18] K. Murota and A. Shioura, Quasi M-convex and L-convex functions: Quasi-convexity in discrete optimization, RIMS Preprint 1306, Kyoto University, 2000.
- [19] K. Murota and A. Tamura, New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities, *Discrete Appl. Math.* to appear.
- [20] R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1970.
- [21] A. Shioura, Minimization of an M-convex function, Discrete Appl. Math. 84 (1998), 215–220.