7o dU X AL 81-7
(2001. 11. 27)

K- bRV ERF AN v 7 B/ AROBEFIZEIZ DUV T
MR A (RUEA%) ML B (RALKE)

EE

TEEDERT VIV ALV MO K- LVE, ZOMEAGEBMEENRBRTH Y, MAERMETHE Sh
TWAHHAMBTHD, Fh, NTA M)y 7BEL LTREFE, BRUEE KEZBI/INEWITOHE)
DNRGARNY) 7L EBELZDBIENTES, K-L_AZBITH—2DKRERE®IL. BxKEOEK
ALDELRNENI ATHY, ThRELeDHERDELRZ->TWS, AHFETIE, ZhbOBASAE
TRTFIETEEET NVTY) XAERRTH, 7TAI) XLOHBEMIL O(nlogn) + O((kn)?/3) B
ThY., Tz, KEWEI ML r BOBARRZET R 51F O(nlog? n) + O((tn)?/3) BRI THIEEITS. &5
I, k— VLIRS A MY v~ hod FEBEORRLRBELIBIDZZENTEZN, RFA M)y
I BAABBETI, k— L0y BEIXIET 2 L0, BOERABPRBIZEITSH 75 7 TORINKRD
BRERD (R Mk y27i0) 0%, TOREIZEWLTE, RMMRXy 7 0EBR/B/INTT 3,85 2
SZEERDIBETN DY ALERET S, TATY XATHR, BEFEEEFRICHV 5N 5 Matousek
RESNBERAT 3.

Notes on computing peaks in k-levels and parametric spanning trees
Naoki Katoh!, Takeshi Tokuyama®

t Department of Architecture, Kyoto University, naoki@archi.kyoto-u.ac.jp,
! Graduate School of Information Sciences, Tohoku University, tokuyama@dais.is.tohoku.ac.jp

Abstract

The k-level of an arrangement of lines is one of popular geometric objects in computational geometry {7].
Moreover, the k-level is a special case of the locus of the largest element of the minimum base of a
parametric matroid [11, 8] with one parameter. We give an algorithm to compute all the local peaks
in the k-level of an arrangement of n lines in O(nlogn) + O((kn)?/3) time. We can also find 7 largest
peaks in O(nlog?n) +O((rn)?/3) time. Moreover, we consider the longest edge in a parametric minimum
spanning tree (in other words, a bottleneck edge for connectivity), and give an algdrithm to compute the
parameter value (within a given interval) maximizing/minimizing the length of the longest edge in MST.
The time complexity is O(n¥ kY7 + nkl/3), '

1 Introduction

The k-level is the union of k-th lowest (closed)
line-segments of the arrangement, and it can be
considered as the trajectory of the k-th smallest
element in a set of n data each of which depends
on a parameter z linearly. From the viewpoing of
combinatorial optimization, the k-level is the locus
of the maximum element in the minimum base of a
parametric uniform matroid of rank k. It is known
that the complexity gi(n) of the k-level of an ar-
rangement of 7 lines is O(k'/3n) [6] and 22(v/log k),
(16]. The upper bound holds for any parametric
matroid (with a linear parameter) of rank & in n
elements [8]. Moreover, it is known that the k-level
can be computed in O(gx(n) log? n) [4].

However, we often need a compact “outline” of a
trajectory of a parametric problem by using a small
number of characteristic points on it. Such an out-
line, generally speaking, will be useful as a compact
data to control parametric problems, and possibly
utilized in designing kinetic data structures [3]. Lo-
cal peaks in the trajectory are considered to be nat-
ural characteristic points. A key observation to in-
vestigate the k-level is that it has at most 2k — 1
local peaks (at most k£ maximal peaks and at most
k—1 minimal peaks) [2, 8]. One interesting problem
is to compute all the local peaks efficiently. This
enables us to give a decomposition of k-level into
monotone chains, and hence create an outline with
a size O(k) of the k-level.

We give an algorithm to compute all the local
peaks in the k-level of an arrangement of n lines in
O(nlogn)+O((kn)?/?), where O is the big-O nota-
tion ignoring polylogarithmic factors. The current

estimate for the polylogarithmic factor of the sec- -

ond term is less than log®n; however we do not
give it explicitly in this paper, since it is proba-
bly loose and will confuse readers. The time com-
plexity is better than O{gy(n)log?n) for some re-
stricted range of k even if the current lower bound

of gi(n) by Téth [16] is tight. If we substitute
the current O(k'/3n) upper bound to gi(n), the
time complexity is better than O(gr(n)log®n) if
k = O(n/log®n), where c is a suitable constant.

Another interesting question is how fast we can
compute 7 largest maximal peaks for 7 < k. If
7 = 1, Roos and Widmayer [14] gave a neat method
to compute the maximum point in the k-level in
O(nlogn + (n — k) log?(n — k)) time by using an
efficient slope selection algorithm. We can compute
7 largest peaks in O(nlog?n) + O((rn)%/3) time
by combining Roos and Widmayer’s technique and
the above mentioned method for computing all the
peaks.

Finally, we investigate whether we can analo-
gously treat some parametric matroids: Compute
peaks in the trajectory of the largest element in
the minimum weight base of a parametric matroid.
In particular, the graphic matroid is of wide inter-
est: Given a weighted undirected connected graph
G(z) with k nodes and n edges, such that each
edge has a parametric weight that is linear in a pa-
rameter . Here, k and n becomes the rank and
size of the graphic matroid, respectively. Let T'(x)
be the minimum weight spanning tree of G(z) and
consider the longest edge e(z) in T'(x). Note that
the minimum weight spanning tree becomes a span-
ning tree that minimizes the length of the longest
edge. We call the edge e(z) the spanning bottle-
neck edge(SBE), and write SBE(z) and wgpg(z)
for e(z) and its weight, respectively. The naming
comes from the fact that wgpp(z) is the minimum
value of w such that the subgraph of G(z) consist-
ing of edges with weights less than or equal to w is
connected.

The following problems are important in sensitiv-
ity analysis: (1). Compute the maximum value and
the minimum value of wgpg(z) for z € I, where I
is a given interval. (2). Compute all peaks of the
trajectory y = wspr(z).

For example, imagine a system represented by
the graph G where a link represented by an edge
with a weight larger than a (controllable) threshold
value becomes unreliable, and the edge weight de-
pends on a parameter z linearly within an interval
I. For a given subinterval J C I, we want to know
the threshold value of the edge weights so that the
graph remains connected for every z € J. This
can be reduced to the problem (1).
we have computed all peaks in I as a preprocess-
ing (problem (2)), we can efficiently query for the
threshold value, provided that we have an efficient
method (shown in Section 4) to compute wgpg(z)
at endpoints of J.

Both of problems (1) and (2) can be solved by
computing the whole picture of the transitions of
the minimum spanning trees, and the time com-
plexity of the current best algorithm is O(knlogn)
[10]. Roos and Widmayer’s method can be directly
applied to the first problem. By using dynamic
maintenance algorithms [9] of a minimum spanning
tree, the time complexity becomes O(vknlogn).
Combined with range searching techniques, we im-
prove the time complexity to O(n® kL7 4 nkl/3).
We give some discussion on the second problem, al-
though theoretical improvement on the O(kn logn)
time method remains open.

2 Preliminaries

2.1 Roos and Widamyer’s algorithm

Given a set H of n lines in the z-y plane, let £
be the k-level of the arrangement of H. Let p be a
point on Ly that has the maximum y-value Ymqz-
Without loss of generality, we assume that such a
point is unique. For any given value o, one can
decide whether ymee = @ or not in O(nlogn) time:

We sweep on the line & : y = o from the leftmost
intersection point to the right to compute the lev-

Moreover, if .

els of all intersection points on A with lines in the
arrangement. If all intersection points are above
the k-level, & > Ymqz; otherwise, o < Ymaz. By us-
ing this decision method, a binary search algorithm
works to compute p, and a weakly polynomial time
algorithm with a time complexity O(nlognlogI’)
can be obtained, if each coeflicient of the lines is a
quotient number of integers with logI' bits. Roos
and Widmayer[14] applied an efficient slope selec-
tion method to transform the algorithm into strongly
polynomial, and gave an O(n log® n) time algorithm.
They further improved the time complexity to
O(nlogn + klog?k) for computing the minimum
and O(nlogn + (n — k) log?(n — k)) for computing
the maximum. ‘

2.2 Range query and Matousek’s point
set decomposition

We use well-known (although sophisticated) sim-
plex range query data structures [1); We construct
a data structure for a set S of n points in a plane
such that given a query halfplane H, we can com-
pute the number of points in S located in H effi-
ciently. If we spend O(m) time for constructing the
data space for nlogn < m < n?, the query time is:
O(n/m1?). The query can be done in polylogarith-
mic time by using O(n/m!/?) processors. The data
structure uses O(m) space, although we do not dis-
cuss space complexity in this paper. Moreover, we
can query the number of points in the intersection
of two (or three) halfplanes in the same query time
if we ignore a polylogarithmic factor. We can also
do reporting query if we spend additional O(N)
time if the region contains N points.

Given a set H of n lines in a plane, we consider
the set D(H) of their dual points: The dual point
of a line y = az — b is (a,b). We construct a range
searching data structure for D(H). Given a point
p = (z0,Y0), the set of dual points of lines below p is

the set of points in D(H) located below the line Y =
29X —yp, where X and Y correspond to coordinates
of the dual plane. Thus, we can compute the level
of the point p in the arrangement of 7 lines by using
half-plane range searching. Moreover, we have the
highest line below p in the same query time. Also,
we can query the number of lines which lie below
both of a pair of query points.

A main building block for the range query is
the point set decomposition structure of Matousek,
which we also need to utilize directly (we only de-
scribe its two-dimensional version):

Theorem 1 (Matousek) Given a setS of n points
in the plane, for any given r < n, we can subdi-
vide S into r disjoint subsets S; (i = 1,2,...,7)
such that |S;| < 2n/r satisfying the following con-
dition: Each S; is enclosed in a triangle o;, and any
line in the plane cuts at most cr'/? triangles among
01,02,...,0r where ¢ is a constant independent of
n and r. Such a decomposition can be constructed

in O(nlogn) time.

3 Computing all peaks in k-level

We assume k& < n/2 for simplicity from now on; if
k > n/2, replace k by n — k and exchange maximal
and minimal in the statements. A key observation
for the k-level is that it is a subset of a union of
k concave chains such that all concave vertices of
the k-level are vertices of these concave chains [2];
thus, a k-level has at most £ maximal peaks and
k — 1 minimal peaks. We want to compute all the
local peaks in a given interval I of the z-coordinate
value. Without loss of generality, we assume that
no line in the arrangement is horizontal nor vertical.

We prepare two key-subroutines: one-shot query
and peak counting: Let p(zo) be the point on the k-
level at the z-coordinate value xy. Let £ (xq) (resp.
£} (zg)) be the line in the k-level at the z-coordinate
value zg — € (resp. zg + ¢€) for infinitesimally small

€> 0. If ¢ is not an z-coordinate value of a vertex
on the k-level, € (xg) = ¢ (x9). The above op-
eration to compute the point (together with lines
containing the point) on Ly, at a given z-coordinate
value is called one-shot query. One-shot query is an
analogue of ray shooting [1], and thus the follow-
ing lemma is basically well-known. The complexity
g(n, m) given in the lemma is called one-shot query-
time for the k-level:

Lemma 2 If we preprocess the lines in H with O(m)
time for nlogn < m < n?, given an z-coordinate
values xo, we can compute p(zo), £ (o) and &} (zo)
in g(n,m) = O(n/m1/?) time, and also in polylog-
arithmic time by using O(n/mY/2) processors.

Proof By using the method given in the pre-
liminary section, we can compute the level of any
given point (zg,yo) in polylogarithmic time by us-
ing O(n/m!/?) processors. We now apply paramet-
ric searching [15] to have the sequential time bound
to compute the point p(z¢). O

The peak-counting is a routine to compute the
number of peaks of the k-level in a given interval
J = [zg, 1] of z-coordinate values efficiently. The
following elementary lemma is essential:

Lemma 3 Let f(zg) and f(z1) are numbers of pos-
itive slope lines below or on the k-level at g and z1,
respectively. Then, the number of mazimal peaks of

- Ly in the interval J is f(zo) — f(z1).

Proof At-most-k-level (the part of the arrange-
ment below k + 1-level) is a union of k concave
chains such that all concave peaks in the chains
appear in the k-level [2]. If a concave chain among
them has a peak in J, the slope of the chain must
be changed from positive to negative. Thus, the
number of maximal peaks within J is the differ-
ence between the numbers of positive slope lines at

two endpoints. 0O

Lemma 4 For a given interval J of z-coordinate
value, the number x(J) of peaks of Ly in J can be
computed in O(g(n,m)) time if we preprocess the
lines with O(m) time. Also, the number of mazimal
peaks can be computed in O{q(n,m)) time.

Proof If we construct the dual of range search
data structure for the set of lines with positive
slopes, the number of positive slope lines below a
given point (zg,yo) can be computed in O(g(n, m))
time. Hence, f(zo) and f(z1) can be computed in
O(gq(n,m)) time, and the number of maximal peaks
can be computed by using Lemma 3. The number
of minimal peaks is easily computed from the num-
ber of maximal peaks and slopes of the k-level at
endpoints. O

Now, we can apply a binary search paradigm to
design a weakly-polynomial time algorithm. First,
for the input interval I, we compute the number of
peaks « = k(I) within the interval. The time com-
plexity for this initialization is negligible, and obvi-
ously k¥ < 2k — 1. Next, we construct a data struc-
ture for the one-shot query in O(m) time, where
the choice of m will be explained later: Suppose
that coefficients of the equations of lines are quo-
tient numbers of logI' bit integers. We apply -
branching binary search to find all peaks; At each
stage of the binary search, we have at most x subin-
tervals which has at least one local peak of £y (such
a subinterval is called an active interval), and we re-
cursively search in active subintervals. Thus, after
examining «logI' candidates of z-coordinate val-
ues, we can find all of the peaks. To make the com-
plexity into strongly polynomial, we apply para-
metric search [15] by using the parallel algorithm
for the one-shot query given in Lemma 3 as its guide
algorithm (we omit details in this version).

Theorem 5 All the peaks on Ly within an interval
I can be computed in O(nlogn) + O((kn)?/3) time
if I has & local peaks.

Since k < 2k, we have the following:

Corollary 6 All the peaks on Ly, can be computed
in O(nlogn) + O((kn)?/3) time.

When & is large, it may be too expensive to com-
pute all the local peaks. Suppose that we want to
compute 7 largest maximal peaks in the input in-
terval I for 7 <« x more efficiently than computing
all the peaks. This can be done by combining Roos
and Widmayer’s algorithm and the algorithm given
above.

Theorem 7 We can compute T largest/smallest maz-

tmal/minimal peaks of Ly in an interval I in
O(nlog®n) + O((tn)*/?) time. We can also com-
pute 7 largest local peaks (including both mazimal
and minimal peaks) in the same time complezity.

4 Bottleneck edge length in a para-
metric spanning tree

Next, we consider the parametric spanning tree
problem. Consider a connected graph G = (V, E)
with & nodes and n edges. Because of the connec-
tivity, K —1 < n < k(k + 1)/2. For each edge
e € I, we associate a weight function we(x), which
is linear on a parameter z. We assume that the ar-
rangement generated by lines y = we(z) : e € E is
simple, i.e., no three lines intersect at a point. We
can remove this assumption by giving a symbolic
perturbation. G is denoted by G(z) if it is consid-
ered as a weighted graph with parametric weights.
For a given value z, we consider the minimum span-
ning tree T'(z) of G(z).

It is known that the number of transitions of the
structure of the minimum spanning tree T'(z) is
O(k'/?n), and all the transitions can be computed
in O(knlogn) time [10].
edge weight in the minimum spanning tree is a con-
cave function in z, and the value of z maximizing

Moreover, the average

_.49__

the average edge weight of 7'(z) can be computed
in O(nlogn) time [10].

As parametric matroid problems, the average edge
weight is a counterpart of the average of y-values of
k lines below (or on) the k-level. A natural coun-
terpart of the k-level itself in the minimum span-
ning tree is the longest (i.e. maximum weight) edge
in the minimum spanning tree. The edge is also
called the spanning bottleneck edge at z (SBE(x)
in short), and its weight is denoted by wspr(z).
1t is easily observed that Wspg(z) is the minimum
value of w such that the subgraph of G(z) con-
structed from the set of edges whose weights are
less than or equal to w is connected.

It is natural and important problem in sensitivity
analysis [11] to trace the trajectory y = wspe(z) of
the weight of SBE(z). Analogously to the k-level,
there are at most k& maximal peaks in the trajectory
y = wgpg(z). We want to compute peaks in the
trajectory. '

4.1 One-shot query for the longest edge
in MST

We first consider efficient query for SBE(zo) at
any given value of zg of the parameter. This query
is called one-shot query for the SBE. A naive
method is the following: First construct T'(zo) in
O(n) time, and select its longest edge. Instead,
we use the Matousek’s set partition. In the dual
space, the dual points of n weight functions of the
edges are partitioned into r subsets of size O(n/r).
Each subset is contained in a triangle, and O(n'/?)
triangles are cut by any query line.

Accordingly, we partition the set of n edges into
 subsets each has O(n/r) edges. For each subset,
we compute a spanning forest (irrelevant to edge
weights) and store the connected components ex-
cept singletons. Thus, each component has a forest
with O(min{k,n/r}) edges. This computation can

be done in O(n) additional time.

If we are given a parameter value zg, we sort
O(r) vertices of the triangles with respect to the
inner product of them with the vector (zg,1). We
do binary search on this sorting list. We guess a
vertex v, and consider a line £: Y = zyX + ¢ which
goes through v. We recognize the triangles which
is below #; thus, the edges in the subsets associated
with the triangles has weights which is less than
c. We construct a spanning forest F of the union
of forests in these subsets: since they have O(rk)
edges, this can be done in O(rk) time. If the forest
F is a spanning tree, we decide that v is too large
in the sorting list, and continue the binary search.

Otherwise, we consider the subsets associated with
the triangles cut by £. They contain O(n/rl/?)
points in total. We sort them with respect to the
weights, and greedily insert them into F' until we
have a spanning tree. If we do not have a spanning
tree, we decide v is too small, and continue the bi-
nary search. If we have a spanning tree, we decide
v is a candidate, but it may be too large, and con-
tinue to search for the lowest vertex v satisfying the
above condition, and return the longest edge in the
tree for that v. Note that the spanning tree is not
a minimum spanning tree in general; however, we
correctly recognize the longest edge in a minimum
spanning tree.

This process needs O(rk + n/r1/2) time, and we
do this process O(logr) times during the binary
search. Thus, if we set = (n/k)%3, the time com-
plexity is O(n?/3kY/3log(n/k)), which is slightly
better than O(n) if ¥ = o(n). By applying a hi-
erarchical subdivision, we can further improve it:
We fist start » = r1, and decompose the subset of

. . 1/2
size O(ryn) into ry smaller subsets, where 1o = 7'1/ ,

and we further continue the refinement for r; = 7'1-1 / 21
until 7; becomes below a constant. The query time
becomes

k(r1+ri/2r2+. st (rire ... ri_l)l/zri)+n/(r1r2 L)Y

Setting r; = (n/k)/2, this enables O((nk)Y/?) time
computation for SBE(zp). Similarly to the case
of halfspace range searching, we can combine hi-
erarchical cutting of the arrangement to have a
preprocess-query trade-off (we omit details in this
version). Indeed, we have the following proposition:

Proposition 8 If we spend é(m) preprocessing time
for n < m, we can do the one-shot query for SBE
in O(n/(m/k)Y? + k) time.

Moreover, we will later use the following two-shot
reporting query for a spanning forest, which reports
a spanning forest consisting of edges whose weight
functions are below both of given two query points
(z9,%0) and (z1,y1). This can be done similarly to
one-shot query (this is a counterpart of the simplex
range searching if the one-shot query is a counter-
part of the halfplane range searching).

Proposition 9 If we spend O(m) preprocessing time
for n < m, we can do the two-shot reporting query
in O(n/(m/k)Y? + k) time.

4.2 Computing the maximum peak

Let us consider the problem of computing the
maximum peak in I. First, we straightforwardly
apply Roos-Widmayer’s algorithm. For a given y-
value g, we want to decide whether
Mazzerwspe(z) < yo or not. We dynamically

update the spanning forest associated with edges

with weight below yo from z = 2o to z = =z if
I = [zg,z;]. If we find a value z € I such that
the spanning forest becomes a spanning tree, we
know Mazzerwsse(z) < yo. It costs O(kY/?) time
to update a minimum spanning forest for insertion
and deletion of edges. Suppose that we sweep on
the line ¥y = yg updating the minimum spanning
forest. The line y = y¢ has at most n intersec-

tions with lines associated with weight functions,

and hence the method needs O(nk'/?) time for the
decision. Thus, the maximum peak can be found
in O(nk!/?logn) time.

We try to improve the above time complexity.
We subdivide the line y = yo into [n/s] intervals
such that each interval contains at most s inter-
section points. For each interval [; = (z;, Zit+1],
we perform the two-shot reporting query at (z;, yo)
and (z4+1,%0). The reported forest F is constructed
from edges whose weight is less than yy both at
z = x; and z = x;41. If the forest has more than
s+ 1 connected components, it is impossible that
wspg(t) < yo for a t € I;. Otherwise, we dynami-
cally maintain the spanning tree, where we contract
nodes into at most s+ 1 super nodes each of which
associate with a connected component of the for-
est F. Our graph has only s edges, and hence the
update can be done O(4/s) time per intersection.

Hence, total time complexity becomes O(n/s +
(n/s)[n/(m/k)/? + k] +m). If we optimize this, we
have O(n®7kY7 4+ nk'/3). This is an improvement
over O(nk!/?), since n < k(k + 1)/2.

The minimum of wspg(z) can be analogously
computed. Hence, we have the following theorem:

Theorem 10 For a given interval I of the parame-
ter value z, we can compute both the mazimum and
the minimum of wspg(x) forx € I in O(n® kY7 +
nkl/3) time.

We can generalize the above theorem for the trun-
cated matroid of the graphic matroid to obtain the
following proposition (we omit the proof):

Proposition 11 For a constant ¢, let wspg—c()
be the minimum value of w such that the set of
edges in G(z) with weights less than or equal to
w has at most ¢ connected components. We can
compute both the mazimum and the minimum of

wsBE-o(x) in O EYT + nkl/3) time.

Corollé.ry 12 We can compute the mazimum min-
imal peak of wspg(x) in OB TEYT 4 nkl/3) time.

Proof A minimal peak of wgpg(z) corresponds
to a maximal peak in wspr_2(z) in an one-to-one
fashion; hence we have the corollary.]

5 Concluding remarks

The number of maximal peaks in a k-level is
known to be at most ,Cy if we have d dimensions
(5]. Hence, this is much smaller than the complex-
ity of whole arrangement, especially if k is much
smaller than n. However, to the author’s knowl-
edge, the problem of computing peaks in the k-
level for the three dimensional arrangement is open,
since the structure is much more complicated than
the planar case [12]. One necessary constituent is
to develop a counterpart of Lemma 3: Given an ar-
rangement of n hyperplanes in the three-dimensional
space, preprocess it, and for any given three points
A, B, and C in the plane 2 = 0, decide whether
the triangle ABC contains (a projection) of a peak
in the k-level or not efficiently. For the purpose,
we probably need a counterpart of Lemma 3: Give
a criterion of the existence of a peak from the in-
formation of the set of hyperplanes below k-level
at each of 4, B, and C. In two-dimensional space,
the lines are classified into positive slope lines and
negative slope lines, while this kind of natural dis-
crete classification of planes in the space does not
exist.

SEXH

(1] P. Agarwal, “Range Searching,” Section 31 of
Handbook of Discrete and Computational Geome-
try, (1997), 575-598, CRC Press.

[2] P. Agarwal, B. Aronov, T. Chan, and M. Sharir,
“On Levels in Arrangement of Lines, Segments,
Planes, and Triangles,” Discrete & Comput.
Geom., 19 (1998), pp. 315-331.

{3] J. Bash, L. Guibas, and H. Hershberger, “Data
Structures for Mobile Data,” Proc. 8th ACM-SIAM
Symp. on Disc. Alg., (1997), pp. 747-756.

[4] R. Cole, M. Sharir, and C. Yap, “On k-hulls and
related problems,” SIAM J. Comput., 16 (1987),
pp. 61-77.

[5] K. Clarkson, “A Bound on Local Minima of Ar-
rangement That Implies the Upper Bound Theo-
rem,” Discrete & Comput. Geom., 10 (1993), pp.
427-433.

[6] T. Dey, “Improved Bound on Planar K-Sets and
Related Problems,” Discrete & Comput. Geom., 19
(1998), pp. 373-383. ,

[7] H. Edelsbrunner, Algorithms in Combinatorial Ge-
- ometry, ETACS Monographs on TCS 10, Springer-
Verlag, 1987.

[8] D. Eppstein, “Geometric Lower Bounds for Para-
metric Matroid Optimization,” Discrete & Com-

put. Geom., (1998), pp. 463-476.

9] D. Eppstein, Z. Galil, G.F.Italiano, and A. Nis-
senzweig, “Sparcification—A Technique for Speed-
ing Up Dynamic Graph Algorithms,” J. ACM, 44-
5 (1997), pp. 669-696.

D. Fernandez-Baca, G. Slutki, and D. Eppstein,
“ Using Sparcification for Parametric Minimum
Spanning Tree Problems,” Nordic J. Computing,
3-4 (1996), pp. 352-366.

D. Gusfield, Sensitivity Analysis for Combinatorial
Optimization, Ph. D. Thesis, Memorandum No.
UCB/ERL M80/22, U.C. Berkeley, 1980.

N. Katoh and T. Tokuyama, “Lovész’s Theorem for
the K-level of an Arrangement of Concave Surfaces
and Its Applications,” Proceedings of 40th IEEE
FOCS, (1999), pp. 389-398.

J. Matousek, “Efficient Partition Trees,”. Discrete
& Comput. Geom., 10 (1992), pp. 315-334.

T. Roos and P. Widmayer, “K-Violation Linear
Programming,” Information Processing Letters, 52
(1994), pp. 109-114.

(10]

(11]

(12]

[13]

(14]

[15] J. Salowe, Parametric Search, Section 37 of Hand-
book of Discrete and Computational Geometry,

(1997), 683-695, CRC Press.

[16] G. Téth, “Point Sets with Many k-sets,” Proc. 16th
SOCG, (2000), pp. 37-42.

