7 b d U X b 81-5
(2001, 11. 27)

AREEOERIR Y b T — 2712 BT % sk & A

M4l BT 5% A BEE

KRKZREBLERRE TEHER S X T AR ES B
560-8531 KIRAF &P T FFALl 1-3
E-mail: mamada@sflab.sys.es.osaka-u.ac.jp
{makino, fujishig}@sys.es.osaka-u.ac.jp

BE : AR TR, ABERY T —2ICBT 58097 0—MEE A EREE R EL 2 HE
EERTD. AL, KEERy P77 ERAICHBENEASNTNDLE, TORTOMH
MBEABRRICHMEZETSE OO v EZRDSMETH 2. ZOMBEIAEERY b T—2I28B0
31-L A —-MEOEBNTO—IRERRTIENTES. BLE, ZORKEEHNBIINT S
OM?) 7 NIV ZXLEERS. L, n3FRy V-V DHAKTHS.

F-U—R . BWTO—, BERECEME AHEExyT—

Optimal Sink Location Problem for Dynamic Flows
in a Tree Network

SAToKo MAMADA KazuHisa MAKINO Saroru FUJISHIGE

Division of Systems Science, Graduate School of Engineering Science,
Osaka University, Toyonaka, Osaka, 560-8531 Japan
E-mail: mamada@sflab.sys.es.osaka-u.ac.jp,
{makino, fujishig}@sys.es.osaka-u.ac.jp

Abstract : In this papéer we consider a compound problem of dynamic flows and sink location
in a tree network. Given a dynamic flow network of tree structure with initial supplies at
vertices, the problem is to find a vertex v as a sink in the network such that we can send all
the initial suplies to v as quick as possible. This problem can be regarded as a dynamic flow
version of the 1-centerin problem in a tree network. We present an O(n?) time algorithm for
the sink location problem, where n is the number of vertices in the network.

Keywords : dynamic flow, location problem, tree network.

1. Introduction

Dynamic network flow problems have been
considered in the literature (see, e.g., [4, 2])
and the multiple-source and multiple-sink dy-
namic network flow problem has recently
been solved in strongly polynomial time [5].

In this paper we consider a compound prob-
lem of dynamic flows and sink location in a
tree network. The problem is described as fol-
lows (see Section 2 for details). Suppose that
we are given a dynamic flow network T of tree
structure with initial supplies at vertices. For
a vertex v in T to be treated as a sink, de-
note by C(v) the minimum time in which all
the initial suplies at vertices can be sent to
sink v. We call C(v) the completion time for
sink v. Then the problem is to find a ver-
tex v such that the completion time C(v) is
minimum among all vertices in T'. This prob-
lem can be regarded as the 1-center problem
. of dynamic flow version in a tree network [7]
and as one of the location problems based on
flows [1, 6, 8, 9].

The rest of the present paper is organized
as follows. Some definitions and preliminary
results are given in Section 2. We describe
an algorithm for the sink location problem in
Section 3 and show the validity of the algo-
rithm. Section 4 discusses the time complex-
ity of our algorithm. Finally, we give some
concluding remarks in Section 5.

2. Definitions and Prelimi-
naries

Let T = (V,E) be a tree with a vertex set
V and an edge set E. Let N = (T,c,7,b)
be a dynamic flow network with the underly-
ing undirected graph being the tree T', where
c: FE — R, is a capacity function, 7 : £ —
Z. a transit time function, and b: V — R4
- a supply function. Here, R; denotes the
set of nonnegative reals and Z, the set of
nonnegative integers. Suppose that we are
given a sink ¢ in T. Then, T is regarded as

an in-tree with root t, i.e., each edge of T
is oriented toward the root ¢. Such an ori-
ented tree with root ¢ is denoted by T'(t) =
(V, E, t). Each oriented edge in E is denoted
by the ordered pair of its end vertices and is
called an arc. For each edge {u,v} € E we
write ¢(u,v) and 7(u,v) instead of c({u,v})
and 7({u,v}). For any arc (u,v) € E, any
0 € {0,1,--,7(u,v)}, and any k € Z,, we
denote by fi((u,v),6) the value of a flow
along the #-th portion of arc (u,v) at time
k, where we define fy((u,v),0) = 0 for 1 <
0 < 7(u,v). We call fi((u,v),8) (u,v) € E,
6 € {0,1,---,7(u,v)}, k € Z}) a dynamic
flow in T(t) with a sink ¢ if it satisfies the
following (a)~(c). ‘
(a) (Capacity constraints): For any arc
(u,v) € E, any 6 € {0,1,---,7(u,v)},
and any k € Z,

0 < fiel(u,0),0) < clu,v). (2.1)

(b) (Flow transition): For any arc (u,v) €
E, any 8 € {0,1,---,7(u,v) — 1}, and
any k € Z.}.7

fil(w,0),0) = fr1((w,v), 0 +1). (2.2)

(c¢) (Flow conservation): For any vertex v €
V\{t} and any k € Z,

D Ful(w,v), 7(u,0)) + hgo1 (v)

u:(u,v)EE
= fk((’U, UI)’ 0) + hk(v)a (23)

h_y(v) = b(v), hg(v) 20 (k=0,1,---)

(2.4)
where (v,v’) is the unique arc leaving v
toward root ¢ in T'(t) (i.e., v’ is the par-
ent of v in T(t)) and hg(v) is the value
of holdover at vertex v at time k, i.e.,
we allow intermediate storage or holding
inventory at each vertex.

This paper addresses the problem of find-
ing a sink ¢t € V such that we can send given
initial supplies b(v) (v € V \ {t}) to sink ¢

as quick as possible. This problem can be re-
garded as a dynamic version of the l-center
location problem (for a tree) [7]. In particu-
lar, if ¢(v, w) = +oo (sufficiently large) for all
edges {v,w} € E, our problem represents the
1-center location problem [7].

To describe our algorithm we need further
definitions. For each vertex v € V we keep
two tables, Arriving Table A, and Sending
Table S,. Arriving Table A, represents the
total value of the flows reaching the vertex v
as a function of time k, i.e.,

Z fk((u7v)77(u"v)) +77k(v)7 (25)

u:(u,v)EE

where 79(v) = b(v) and n(v) = 0 (k =
1,2,---). Also, Sending Table S, represents
the value of the flow leaving the vertex v to
its parent v' (toward the sink t) as a function
of time k, i.e.,

fk((v7vl)a0)' (26)

Let us consider a function ¢ : Z; — R4
in time k € Z,, which will be some Arriv-
ing (Sending) Table in the sequel. If g(k) #
g(k — 1), we call k a jump time of g. Here,
we assume g(k) = 0 for £ < 0. We de-
note by Pattern I at time k a time interval
from k — 2 to k + 1 for some k satisfying
gk —2) < gk —1) > g(k) = g(k + 1), and
by Pattern II at time k a time interval from
k—ato k+1 for some a > 3 and k satisfying
glk—a) #gk-—a+1) = =gk-1) >
g(k) = g(k + 1). See Figure 1, where (a) and
(b) in Figure 1 show Patterns I and II at time
k, respectively. A double circle denotes g(I) at
a jump time [. In order to represent the func-

\

© ©-00

O | 0
©® O ® 0
k-2 k-1 k' k+l k-0t k-0l - k-1 k k+l
Time Steps Time Steps
(@ L)

Figure 1: (a) Pattern I and (b) Pattern II

_tion g, we only keep all jump times ki, ko, -

of g and their values g(k;),g(k2), . Arriv-
ing Table A, (v € V) and Sending Table S,
(v € V'\ {t}) are given in such a way.

For each time &, we denote by A, (k) (resp.,
Sy(k)) the value, at time k, of the function
represented by Arriving (resp., Sending) Ta-
ble A, (resp., S,) at vertex v.

3. Algor’ithm

In this section, we give an algorithm to solve
the sink location problem described in the
previous section. '

Our algorithm consists of two phases,
Phases I and II. Given a network A and an
arbitrary vertex ¢ € V as a candidate sink,
Phase I computes the completion time C(¢)
for a sink ¢ (i.e., the quickest time C(¢) in
which all the initial supplies b(v) (v € V') can
be sent to sink ¢). In Phase II, we repeatedly
pick up a new sink ¢ that is adjacent to the
previous sink ¢ and compute the completion
time C(f) for the new sink £. An efficient way
of choosing a new sink and a stopping rule
are given below.

Algorithm Phase I

Input: A tree network N = (T = (V, E),¢,
7,b) and a sink t € V.

Output: The completion time C(t).

Step 0: Put T' « T'(t).

Step 1: If T’ cousists of ¢ alone, then go to
Step 3.
For each leaf v(# t) of T', construct Send-
ing Table S, from Arriving Table A,.

Step 2: For each non-leaf vertex w whose
children are all leaves, construct Arriv-
ing Table A, based on Sending Tables
of its children.
Remove all the leaves v(# t) from 7" and
denote the resultant tree by T again.
Go to Step 1.

Step 3: Compute the completion time C(¢)
from A;.
Return C(t) and halt. O

Here, it should be noted that Arriving Ta-
ble A, for a leaf v of the original T(t) rep-
resents the initial supply given at v, ie.,
Ay(0) = b(v) and Ay(k) = 0 for k& # 0.
It should also be noted that if the value of
the left-hand side of (2.3) for a vertex v(# ¢)
is at least the capacity c(v,v'), then we put
fr((v,v"),0) = c(v,') to attain the (quick-
est) completion time C(t). Also, note that
fr((v,v"),0) < ¢(v,v') only if hg(v) = 0. This
gives a procedure for constructing Sending
Table S, by using Arriving Table 4,. We
can easily see that algorithm Phase I correctly
computes the completion time C(t) as well as
A, (veV)and S, (ve V\{t}).

Algorithm Phase II

Input: A tree network N = (T" = (V, E), ¢,
7,b) and a sink ¢ € V with Arriving

Tables A, (v € V), Sending Tables S,
(v € V\ {t}), and the completion time
C(t).

Output: An optimal sink ¢* that has the
minimum completion time C(¢*) among
all vertices of T'.

Step 0: Find a child v of root ¢ from which
the last flow reaches ¢ at time C(t). Put
t « v and consider ¢ as a new sink.

Step 1: Compute the completion time C(f)
and the corresponding tables as follows.

(1 I) Compute new Arriving Table A,
by subtracting the flow, sent from £
according to Sending Table S5;, from

" that expressed by old Arriving Ta-
ble for ¢.

(1-ITI) Compute Sending Table S; from
t to ¢ based on new A,.

" (1-IIT) From this new table S; and S,
for the other children v of , com-
pute new Arriving Table A; and the
completion time C/(£).

Step 2:

(2-I) If C(t) < C(t), then return t* =t
and halt. -

(2-1I) If C(t) > C(f) and the last flow
reaches sink ¢ from ¢, then return
t* =t and halt.

(2-III) Otherwise, put ¢ < # and go to

Step 0.
0

We shall show the validity of algorithm
Phase II below.

For adjacent vertices v and v in T', deleting
edge {u,v} from T yields two connected com-
ponents. Denote by T'(u,v) the component
containing u and by T'(v,u) the one contain-
ing v.

Lemma 3.1: Suppose that for a sink t the
last flow reaches sink t from t. Then, we have
C(v) > C(t) for any vertez v in T(t,t).

Proof. For any new sink v in T'(¢,), it re-
quires at least C(t) time for sending all sup-
plies b(w)’s with w in T(£,t) to v, due to the
assumption. O

Lemma 3.2: If C(t) < C(f) holds in Step 2
of Phase 11, then t is an optimal sink.

Proof. From Lemma 3.1, we have C(v) >
C(t) for any v in T(t,£). Moreover, by the
definition of £, the last flow reaching sink 7
comes from ¢. Hence, again from Lemma 3.1,
we have C'(v) > C({) for any v in T'(,t). This
completes the proof. O

Lemma 3.3: If C(t) > C() and the last
flow reaches sink € from t in Step 2 of Phase
I1, then t is an optimal sink.

Proof. Similar to the proof of Lemma 3.2.
0

It follows from Lemmas 3.2 and 3.3 that the
algorithm correctly outputs an optimal sink
t* if it halts. Note that, while Step (2-III) is
repeated, the sequence of new sinks forms a
path in T. Hence Step (2-III) is repeated at
most n — 1 times, where n is the cardinality
of V. This completes the correctness of the
algorithm. ‘

4. The Time Complexity

In this section, we show the time complexity
of our algorithm.

First, we show the following lemmas to get
an upper bound for the number of jump times
in Arriving and Sending Tables computed by
Phase I. .

For a vertex v; in V (resp., V' \ {t}), we
denote by d; (resp., d.) the number of jump
times and by p; (resp., p}) the total number of
Pattern I's and Pattern II's in Arriving Table
Ay, (resp., Sy;). We simply call Pattern I or
Pattern II Pattern in the following.

Lemma 4.1: For any vertez v; € V\ {t}, we
have

d;+p; < di+pi (4.1)

i.e., when constructing Sending Table S,
from Arriving Table A,,, the total number of
jump times and Patterns does not increase.

Proof. First note that for each Pattern I at
time k in S,,, either it comes from Pattern 1
at time k in A,, or k+1 is a jump time in A4,,.
In the latter case, £ +1 is a jump time in A,
within the time interval I = [k+1,k+1] that
does not appear in S,,. Similarly, for each
Pattern II at time k£ in S,,, either it comes
from Pattern II at time k in A,; or at least
one jump time in A,, within the time interval
I =[k—a+2,k+ 1] does not appear in S,,.

Let us then consider a new jump time in
Su;- Suppose that & is a jump time in S,, but
not in A,,. Then we have

Ay (k= 1) = Ay, (k), Sy, (k—1) # Su (k).
(4-2)
Since we send out as much amount of flow as
possible from v; to its parent w, if A,, (k—1) =
Ay, (k) > c(vi,w), we must have Sy, (k —1) =
Sy, (k) = c(v;, w). Hence,

c(vg, w) > Ay, (k — 1) = Ay, (k). (4.3)
It follows from (4.2) and (4.3) that

(05) = Soy(k —2) > S, (k = 1) > S, (K),
~ - (4.4)

since we must have hx_o(v;) > 0. We sepa-
rately consider the following two cases.

Case 1: Sy (k—2) > Sy, (k—1). If k-2 is
a jump time in S,;, then we have Sy, (k—3) <
Su; (k= 2) > Sy, (k—1) > 5, (k). It follows
that A, (k —3) < c(v;,w) < Ay (k—2) >
Ay, (k—1) = Ay, (k). This is Pattern I at time
k —1, that does not appear in S,,. Therefore,
within the time interval Iy = [k — 1,k], Sy,
contains 2 jump times and no Pattern, while
Ay, contains one jump time and one Pattern,
where we say that a Pattern at time k* is
within the time interval I if £* belongs to I.
This implies that the total number of jump
times and Patterns in S,, within the time in-
terval Ij is equal to that in A4,,.

On the other hand, if £ — 2 is not a jump
time in .S,,, then for some [> 4 we have

Sp(k=1)< Sy (k—l+1)=--- =5, (k—3)
=8, (k=2)> Sy, (k~1)> S5,,(k). (45)

Since hy_2(v;) > 0, within the time interval
I, = [k — 1 + 2,k] A,, contains either (i) at
least two jump times or (ii) one jump time
and one Pattern that is given as

Ay (k=1) <clvj,w) < Ay (k—1+1) =+
= Ay, (k=1 > clv,w) > Ay, (k=" +1)
= :Avi(k“ 1) :Avg(k)

for some I with 2 <1’ <1 —1, while S,, con-
tains two jump times and no Pattern. There-
fore, the total number of jump times and Pat-
terns in S, within the time interval I is at
most that in A,,.

Case 2: Sy, (k —2) = Sy, (k—1). Then for
some [> 3, we have
Sp (k=1 <Sy(k—14+1)=---=8,(k-2)
= Sy, (k—1) > Sy, (k). (4.6)

Within the time interval I3 = [k — [+ 2, k]
there exists at least one jump time in A,, that
does not appear in S,,,. Therefore, if Sy, (k) #
Sy, (k + 1), the total number of jump times
and Patterns in S,, within the time interval
I3 is at most that in A,,. Finally, if S,,(k) =

Sy; (k + 1), then S,, contains Pattern II at
time k. In this case, within the time interval
Iy = [k -1+ 2,k] A, contains either (i) at
least two jump times or (ii) one jump time
and one Pattern. Thus, the total number of
jump times and Patterns in S,, within the
time interval Iy is at most that in A,,.

Since we have only to consider pairwise dis- -

joint intervals I’s, this completes the proof. O

Let us consider a subtree T; rooted at v;
which is depicted in Figure 2. Let n; be the

Figure 2: subtree T;

number of the vertices in the subtree T;. For
each child v;; (G =1,2,---,6) of v; let d;j
(resp., d;j) denote the number of the jump
times in Ay,; (resp., Sy,;), pij (resp., pj;) the
total number of Pattern I’s and Pattern IT’s
in A,,; (resp., Sy;), and n;; the number of
the vertices in the subtree T,,; rooted at v;;.
Here, note that n; =n; + -+ +nys, + 1.

Lemma 4.2: For any non-leaf v; € V, we
have

J=6i
di+pi < Y (di;+py)+3. (47
j=1

Proof. Note that A,, is constructed from
the initial supply b(v;) and Sending Table
Su; (7 = 1,2,--+,8;). We assume that the
initial supply b(v;) can be sent from a new
vertex vy to v; through a new arc (vip,v;)
with e(vig, v;) > b(v;) and T(vy,v;) = 0. In
other words, we assume that b(v;) = 0 and

A,, is constructed from Sending Table Svlj
(j = 0,1,---,4;). Note that S,,, has two
jump times and one Pattern I.

If k is a jump time in A,,, then k—7(v;;, v;)
must be a jump time in Sending Table Svi]‘/
for some 'j* € {0,1,---,4;}, since A,, is
constructed from Sending Tables S, (j =
0,1,---,6;). However, Pattern I and/or Pat-
tern IT may newly appear in A,,.

We first consider Pattern I at time & in 4,,.
Then, there must be a child w of v; such that
Sy(k — 1 — 1(w,v;)) > Sy(k — 7(w,v;)). If
Sulk — 7(w,v;)) # Sw(k+1—7(w,v;)), then
k4+1—7(w,v;) is a jump time in Sy, but k+1
is not a jump time in A,,. Therefore, in this
case, we can regard that the Pattern I comes
from the jump time k+1—7(w,v;) in Sy. On
the other hand, if

Sw(k—1(w,v;)) = Splk+1—7(w,v;)), (4.8)

we have the following two cases (see Figure
3 (a) and (b)). In the following, we simply
write 7 instead of 7(w,v;).

(a) Swk—2—7)>Sy(k—=1—7) > Sy(k—
7)=Sylk+1—7): :
In this case there is another child z such
that S;(k — 2 — 7(z,v;)) <.S,(k -1~
T(z,v;)) since Ay (k —2) < Ay (k—1).
Then k£ — 1 — 7(z,v;) 1s'a jump time in
S,. f k—1—7 is also a jump time in
Sw, then these two jump times become a
single jump time k£ — 1 in A,,. Since in
this case we can regard that the Pattern I
comes from the jump time k—1—7(w,v;)
in S, (where we regard that jump time
k —1in A,, comes from jump time k —
1 —7(z,v;) in S;), we consider the case
when Sy (k—2—7) = Sy (k—1-7). Then
we have Pattern II at time k — 7 in S,

(b) Su(k—2—7) < Sulk—1-7)> Sulk—
#) = Sulk +1—7): |
This is Pattern I at k — 7 in S,

We next consider Pattern II at time £ in

A,,. Similarly as for Pattern I, there must be
a child w of v; such that Sy, (k—1—7(w,v;)) >

° o ©
o
® o © o
] 1 I I | i i 4
IR T N N
k2T k-1-7 kT k411 k2T k-1-T kT kil
Time Steps Time Steps

@ ()
Figure 3: Cases (a) and (b)

Swlk — 7(w,v;)). It Sylk — 7(w,v;)) #
Sw(k+1—7(w,v;)), then we can regard that
the Pattern IT comes from the jump time
k+1—-7(w,v;) in Sy,. Hence we suppose
thet ‘

Swlk—7(w,v;)) = Sy (k+1-7(w,v;)). (4.9)

Now we have the following two cases (see Fig-
ure 3 (a) and (b)). Here, we also simply write
7 instead of 7(w,v;).

(a) Swk—2—-7)2>8Su(k—-1—-7)> Sy(k—
7)=Sulk+1—7):
If Sylk —2—-7) = Sy(k —1—7), this
is Pattern II. Otherwise there is another
child z such that S,(k — 2 — 7(z,v;)) <
S:(k — 1 —7(2,v;)) since A, (k —2) =
Ay, (k —1). Then we can regard that the
Pattern II comes from the jump time k —
1—-7in Sy,.

(b) Sy(k—2—7) < Syk—1-7) > Sy(k—
)= Splk+1—7):
Then this is Pattern I at time k — 7.

Since any two distinct patterns that newly
appear in A,, come from two distinct jump
times, we have

d7,+pz < Z(+p7,]

.:51
= Z(d;j +pi;) +3.
1=1
[}

We are now ready to derive an upper bound
for the number of jump times. More precisely,

we show. by induction that for any vertex v;
inT,
S 3n,—.

di + pi (4.10)

This holds for any leaf v; in T, since d; = 2
and p; = 1. For a non-leaf v; in T (having
children v;;, j = 1,2,---,4;), we assume that

d,‘j +piyy < 3ni]-. (4.11)
Then it follows from (4.1), (4.7) and (4.11)
that

Jj=é;
di+pi < Y (d;+pij)+3 (by (4.7)
j=1
J=6;
< (dij +pij) +3 (by (4.1))
j=1
< 3y

(by (4.11) and n; = Zn”—}—l

Therefore, we have the following lemma.

Lemma 4.3: For any Arriving Tables A,
and Senting Table Sy, the number of its jump
times is at most 3n.

Lemma 4.4: Algorithm Phase I requires
O(n?) time.

Proof. For each v; € V' \ {t}, Sending table
Sy; can be constructed from Arriving Table
Ay, in O(d;) (= O(n)) time. For each non-
leaf v; € V, Arriving Table A,, (see Figure
2) can be obtained from Sending Tables S,,;
(z = 1,2,---4;) and the initial supply b(v;)
as follows. We first construct §; intermediate
tables by shifting S, (i = 1,2,---6;) right
by 7({vij,v;}), and then add them and ng(v;)
(k=0,1,---) given in (2.5). Clearly, it can be
done in O(} <<y, dij)(= O(n)) time. Since
we have n vertices in T, Algorithm Phase I
terminates in O(n?) time. o

Lemma 4.5: Algorithm Phase II requires
0(n?) time.

Proof. Clearly, Steps 0 ~ 2 takes O(n)
time by Lemma 4.3. Note that the number
of iterations between Step 0 and Step 2 is at
most n — 1, since the sequence of new sinks
forms a path in T'. Hence, Algorithm Phase
II requires O(n?) time.]

By combining Lemmas 4.4 and 4.5, we have
the following theorem.

Theorem 4.6: The sink location problem
can be solved in O(n?) time.

5. Concluding Remarks

In this paper we have presented an O(n?)
time algorithm for an optimal sink location
problem for dynamic flows in a tree, which
can be regarded as the l-center problem of
dynamic version. We have assumed that the
network allows intermediate storage at ver-
tices. However, optimal solutions remain the
same if we do not allow intermediate storage.
Moreover, we can deal with the sink location
problem for continuous-time dynamic flows in
the same way as developed in the present pa-
per (cf. [3]). Our algorithm also works for
dynamic tree networks with asymmetric ca-
pacities and transition times.

Finally, the sink location prol;lem for dy-
namic flows can further be extended in many
directions. Some of them are (1) to find a
sink to which we can send a maximum value
of flow from sources within given fixed time,
(2) to consider the sink location problem on
general (non-tree) dynamic networks, and (3)
to consider a multiple-sink location problem.
These are left for future research. ‘

Acknowledgement

This research is partially supported by the
Grant-in-Aid for Creative Scientific Research
of the Ministry of Education, Culture; Sports,
Science and Technology.

References

[1] K. Arata, S. Iwata, K. Makino and
S. Fujishige: Locating sources to meet
flow demands in undirected networks.
SWAT2000, edited by M. M. Halldorsson,
Bergen (Norway), Springer Lecture Notes
in Computer Science 1851, (2000) 300-
313.

[2] J. E. Aronson: A survey of dynamic
network flows. Annals of Operations Re-
search, 20 (1989) 1-66.

[3] L. Fleischer and E. Tardos: Efficient
continuous-time dynamic network flow al-
gorithms. Operations Research Letters,
23 (1998) 71-80.

[4] L.R.Ford, Jr. and D. R. Fulkerson: Flows
in Networks (Princeton University Press,
Princeton, NJ, 1962).

[5] B. Hoppe and E. Tardos: The quickest
transshipment problem. Mathematics of
Operations Research, 25 (2000) 36-62.

[6] H. Ito, H. Uehara and M. Yokoyama: A
faster and flexible algorithm for a location
problem on undirected flow networks. IE-
ICE Trans. Fundamentals, E83-A (2000),
704-712.

[7] P. B. Mirchandani and R. L. Francis: Dis-
crete Location Theory (John Wile & Sons,
Inc., 1989).

[8] H. Tamura, M. Sengoku, S. Shinoda,
and T. Abe: Some covering problems
in location theory on flow networks, IE-
ICE Trans. Fundamentals, E75-A (1992),
678-683.

[9] H. Tamura, H. Sugawara, M. Sengoku,
and S. Shinoda: Plural cover problem on
undirected flow networks. IEICE Trans.
Fundamentals, J81-A (1998), 863-869
(in Japanese).

