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Abstract

Combinatorial strongly polynomial algorithms for minimizing submodular func-
tions have been developed by Iwata, Fleischer, and Fujishige (IFF) and by Schrijver.
The IFF algorithm employs a scaling scheme for submodular functions, whereas
Schrijver's algorithm exploits distance labeling. This paper combines these two.
techniques to yield a faster combinatorial algorithm for submodular function mini-
mization. The resulting algorithm improves over the previously best known bound
by an almost linear factor in the size of the underlying ground set.

1 Introduction

Let V be a finite nonempty set of cardinality n. A set function f on V is submodular if
it satisfies
f(X)+f(Y)2f(XﬂY)+f(XUY), VX, Y CV.

Submodular functions are discrete analogues of convex functions [12]. Examples include
cut capacity functions, matroid rank functions, and entropy functions.

The first polynomial-time algorithm for submodular function minimization is due to
Grétschel-Lovasz—Schrijver [7]. A strongly polynomial algorithm has also been described
by Grétschel-Lovész—Schrijver [8]. These algorithms rely on the ellipsoid method, which
is not efficient in practice.

Recently, combinatorial strongly polynomial algorithms have been developed by Iwata—
Fleischer-Fujishige (IFF) [11] and by Schrijver [13]. Both of these algorithms build on
the first combinatorial pseudopolynomial algorithm due to Cunningham [2]. The IFF
algorithm employs a scaling scheme developed in capacity scaling algorithms for the sub-
modular flow problem [5, 9]." In contrast, Schrijver [13] achieves a strongly polynomial
bound by distance labeling argument. similar to-{1]. In this paper, we combine these two
techniques to yield a faster combinatorial algorithm.

Let v denote the time required for computing the functioni value of f and M the max-
imum absolute value of f. The IFF scaling algorithm minimizes an integral submodular '



function in O(n®ylog M) time. The strongly polynomial version runs in O(n7ylogn)
time, whereas an improved variant of Schrijver’s algorithm runs in O(n 7y +n®) time [4].

The time complexity of our new scaling algorithm is O((n*y + n%)log M). Since the
function evaluation oracle has to identify an arbitrary subset of V' as its argument, it is
quite natural to assume vy is at least linear in n. Thus the new algorxthm is faster than
the IFF algorithm by a factor of n. The strongly polynomial version of the new scaling
algorithm runs in O((n%y + n”)logn) time. This is an improvement over the previous
best bound by an almost linear factor in n.

These combinatorial algorithms perform multiplications and divisions, although the
problem of submodular function minimization does not involve those operations. Schri-
jver [13] asks if one can minimize submodular functions in strongly polynomial time
using only additions, subtractions, comparisons, and the oracle calls for function values.
Such an algorithm is called ‘fully combinatorial.” A very recent paper [10] settles this
problem by developing a fully combinatorial variant of the IFF algorithm. Similarly,
we can implement the strongly polynomial version of our scaling nlgorithm in a fully
combinatorial manner. The resulting algorlthm runs in O(n8ylog?n) time, improving
the previous Bound by a factor of n. a i

This paper is organized as follows. Section 2 provides preliminaries on submodular
functions. In Section 3, we describe the new scaling algorithm. Section 4 is devoted to
its complexity analysis. Finally, in Section 5, we discuss its extensions as well as a fully
combinatorial implementation.

2 Preliminary

This section provides preliminaries on submodular functions. See [6, 12] for more details
and general background.

For a vector z € RV and a subset Y C V, we denote z(Y) = Y,cy z(u). We also
denote by z~ the vector in RV with 2™ (u) = min{z(u),0}. For each u € V, let x4
denote the vector in RY with xy(u) = 1 and . xy(v) = 0 for v € V\{u}..

For a submodular function f : 2¥ — R with f(@) = 0, we consider the base polyhedron

B(f)={z|zeRY, z(V) = f(V),VY CV:2(Y) < f(¥)}.

A vector in B(f) is called a base. In particular, an extreme point of B(f) is called an
extreme base. An extreme base can be computed by the greedy algorithm of Edmonds [3]
and Shapley [14] as follows. :

Let L = (v1,---,vn) be a linear ordering of V. For any v; € V, we denote L(v;) =
{v1,---,v;}. The greedy algorithm with respect to L generates an extreme base y € B(f)
by

y(u) = f(L(w) = fF(Lw)\{u}).
Conversely, any extreme base can be obtained in this way with an appropriate linear
ordering.

For any base z € B(f) and any subset Y C V', we have z=(V) < z(Y) < f(Y'). The
following theorem shows that these mequahtles are in fact tight for appropriately chosen
zand Y.

Theorem 2.1 For a submodular functioh f:2Y - R, we have
‘max{z" (V) |z € B(f)} = mm{f(Y Y CV}

Moreover, if f is mteger—valued then the marimizer x-can be chosen from am ong integral
bases. ; B
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- This theorem is immediate from the vector reduction theorem on polymatroids due
to Edmonds [3]. It has motivated combinatorial algorithms for minimizing submodular
functions. ~ ‘

3 A scaling algorithm

This section presents a new scaling algorithm for minimizing an integral submodular
function f: 2V — Z.

The algorithm consists of scaling phases with a scale parameter § > 0. It keeps a
set of linear orderings {L | © € I} of the vertices in V. We denote v X; u if v precedes
u in L; or v = u. Each linear ordering L; generates an extreme base y; € B(f) by the
greedy algorithm. The algorithm also keeps a base z € B(f) as a convex combination
T = Y jer Miti of the extreme bases. Initially, I = {0} with an arbitrary linear ordering
Ly and Ay = 1.

" Furthermore, the algorithm works with a flow in the complete directed graph on the
vertex set V. The flow is represented as a skew-symmetric function ¢ : V x V — R.
Each arc capacity is equal to §. Namely, ¢(u, v) + ¢(v,u) = 0 and —6 < ¢(u,v) < § hold
for any pair of vertices u,v € V. The boundary d¢ is defined by dp(u) = > ,cv <p(u v)
for u € V.. Initially, p(u,v) =0 for any u,v € V.

Each scaling phase aims at increasing z~ (V) for z = z + J¢p. leen a flow ¢, the
procedure constructs an auxiliary directed graph G, = (V A,) witharcset A, = {(u, v) |
u# v, ou,v) <0} Let S={v]|z2(v) < -6} and T = {v| 2(v) > §}. A directed path
in G, from S to T is called an augmenting path.

If there is an augmenting path P, the algorithm augments the flow ¢ along P by

o(u,v) := p(u,v) + ¢ and p(v,u) := ¢(v,u) — § for each arc (u v) in P. This procedure
is referred to as Augment(yp, P).

Each scaling phase also keeps a valid labeling d A labeling d : V — Z is valid if
d(u) = 0 for u € S and v X; v implies d(v) < d(u) + 1. A valid labeling d(v) serves as a
lower bound on the number of arcs from S to v in the directed graph Gy = (V, A1) with
the arc set A7 = {(u,v) | F € I, v X; u}.

Let W be the set of vertices reachable from S in G, and Z be the set of vertices
that attains the minimum labeling in V\W. A pair (u,v) of u € W and v € Z is called
active for ¢ € I if v is the first element of Z in L; and w is the last element in L; with
v %; v and d(v) = d(u) + 1. A triple (4,u,v) is also called active if (u,v) is active for
i € I. The procedure Multiple-Exchange (i, u, v) is applicable to an active triple (2, u, v).

For an active triple (¢,u,v), the set of elements between v and v in L; is called an
active interval. Any element w in the active interval must satisfy d(v) < d(w) < d(u).
The active interval is divided into Q@ and R by Q = {w | w € W, v <; w =; u} and
R={w|we V\W,v < w=; u}.

The procedure Multiple-Exchange(i, u, v) moves the vertices in R to the place imme-
diately after u in L;, without changing the ordering in @ and in R. Then it computes
an extreme base y; generated by the new L;. This results in y;(g) > y.(g) for ¢ € @ and
y;i(r) < yi(r) for r € R, where y] denotes the previous ;.

Consider a complete bipartite graph with the vertex sets @ and R. The algorithm
finds a flow £ : @ x R — Ry such that 3_.cp&(q,7) = 4i(q) — y;(q) for each ¢ € Q and
Y ge€(q;m) = yi(r) — yi(r) for each r € R. Such a flow can be obtained easily by the
so-called northwest corner rule. Then the procedure computes n = max{{(q,r) | ¢ €
@, r € R}. If \jn < 6, Multiple-Exchange (i, u, v) is called saturating. Otherwise, it is
called nonsaturating.



In the nonsaturating Multiple-Exchange(i, u,v), a new index k is added to /. The
associated linear ordering Ly, is the previous L;. The coefficient Ay is determined by Ay, :=
X\ — 8/n, and then ); is replaced by X; := §/n. Whether saturating or nonsaturating,
the procedure adjusts the flow ¢ by (g, 7) := @(g,7) — Aié(g,7) and o(r, q) := @(r, q) +

Xi€(g,r) for every (g.7) € Q@ x R.
Let h denote the number of vertices in the active interval. The number of function

evaluations required for computing the new extreme base y; by the greedy algorithm is
at most h. The northwest corner rule can be implemented to run in O(k) time. Thus
the total time complexity of Multiple-Exchange (4, u,v) is O(h7).

If there is no active triple, the algorithm applies Relabel to each v € Z. The procedure
Relabel(v) increments d(v) by one. Then the labeling d remains valid.

" The number of extreme bases in the expression of z increases as a consequence of
nonsaturating Multiple-Exchange. In order to reduce the complexity, the algorithm occa-
sionally applies a procedure Reduce(z,I) that computes an expression of z as a convex
combination of affinely independent extreme bases chosen from the currently used ones.
This computation takes O(n?|I]) time with the aid of Gaussian elimination.

We are now ready to describe the new scaling algorithm. -

Step 0: Let Ly be an arbitrary linear ordering. Compute an extreme base yo by the
greedy algorithm with respect to Lg. Put z := yo, Ag := 1, I := {0}, and ¢ :=
|lz=(V)I/n?. «

Step 1: Put d(v) :=0for v e V, and p(u,v):=0foru,v e V.

Step 2: Put S:={v]|z(v) < =4} and T = {v ]| z(v) > 6}. Let W be the set of vertices
reachable from S in Go,.

Step 3: If there is an augmenting path P, then do the following.

(3-1) Apply Augment(¢p, P).
~ (3-2) Apply Reduce(z,I).
(3-3) Go to Step 2.
Step 4: Compute £ := min{d(v) | v € V\W} and put Z := {v | ve VAW, d(v) = é} If
£ < n, then do the following.
(4-1) If there is an active triple (4,u,v), then apply Multlple—Exchange(z U v)
(4-2) Otherwise, apply Relabel(v) for each v € Z.
(4-3) Go to Step 2. ‘

Step 5: Determine the set X of vertices reachable from S in G;. If 6 > 1 /n?, then
apply Reduce(z,I), § := §/2, and go to Step 1.

We now intend to show that the scaling algorithm obtains a minimizer of f
Lemma 3.1 At the end of each scaling phase, 2~ (V) > f(X)—n(n+ 1)6/2.

Proof. At the end each scaling phase, d(v) = n for every v € VA\W. Since d(v) is
a lower bound on the number of arcs from S to v, this means there is no directed
path from S to VAW in G;° Thus we have X C W C V\T, which implies z(v) < ¢
for v € X. It follows from S C X that z(v) > =6 for v € V\X Since there is
no arc in Gy emanating from X, we have yi(X) = f(X ) for each i € I, and hence
(X)) = Sier dwi(X) = f(X). Therefore, we ‘have 2 (V) = z7(X) + 2~ (V\X)

2(X) = 8| X| - 8|[V\X| = z(X) + 8p(X) —nd > f(X)—n(n+1)d/2. ' I



Lemma 3.2 At the end of each scaling phase, x~ (V) > f(X) — n26.

Proof. Since z = = + d¢, we have z7(V) 2 27 (V) — h(n- 1)6/2, which together with
Lemma 3.1 implies 7 (V) > f(X) — n?3. v ‘ , =

Theorem 3.3 At the end of the last scaling phase, X is a minimizer of f.

Proof. Since § < 1/n? in the last scéling phase, Lemma 3.2 implies z = (V) > f‘(X ) -
Then it follows from the integrality of f that f(X) < f(Y) holds for any Y C V.

4 Complexity
This section is devoted to complexity analysis of the new scaling algorithm.
Lemma 4.1 Each scaling phase performs Augment O(n?) times.

Proof. At the beginning of each scaling phase, the set X obtained in the previous scaling
phase satisfies z~ (V) > f(X) — 2n%8 by Lemma 3.2. For the first Scaling phase, we have
the same inequality by taking X = 0. Note that z= (V) < 2(Y) < f(Y) 4+ n(n—1)§/2 for
any Y C V throughout the procedure. Thus each scaling phase increases z~ (V) by at
most 3n24. Since each augmentation increases z~ (V) by §, each scaling phase performs
at most 3n? augmentations. ]

Lemma 4.2 Each scaling phase performs Relabel O(n?) times.

Proof.. Each application of Relabel(v) increases d(v) by one. Since Relabel(v) is applied
only if d(v) < n, Relabel(v) is applied at most n times for each v € V' in a scaling phase.
Thus the total number of relabels in a scaling phase is at most n2. ' |

Lemma 4.3 The number of indices in I is at most 2n.

Proof. A new index is added as a result of nonsaturating Multiple-Exchange. In a
nonsaturating Multiple-Exchange (i, u, v), at least one vertex in R becomes reachable from
8 in G, which means the set W is enlarged. Thus there are at most n applications of
nonsaturating Multiple-Exchange between augmentations. Hence the number of indices
added between augmentations is at most n. After each augmentation, the number of
indices is reduced to at most n. Thus {I] < 2n holds. |

In order to analyze the number of function evaluations in each scaling phase, we
now introduce the notion of reordering phase. A reordering phase consists of consecutive
applications of Multiple-Exchange between those of Relabel or Reduce. By Lemmas 4.1
and 4.2, each scaling phase performs O(n?) reordering phases.

Lemma 4.4 There are O(n?) function evaluations in each reordering phase.

Proof. ‘The. number of function evaluation in Multiple-Exchange (i, u,v) is at most the
number of vertices in the active interval for (i, u, v). In order to bound the total number of
function evaluations in a reordering phase, suppose the procedure Multiple-Exchange (7, u, v)-
marks each pair (1, w) for w in the active interval. We now intend to claim that any pair
(i,w) of i € I and w € V is marked at most once in a reordering phase. .

In areordering phase, the algorithm does not change the labeling d nor delete a vertex
from W. Hence the minimum value of d in. V\W is nondecreasing. - After execution of
Multiple-Exchange (4, u, v), there will not be an active pair for ¢ until the minimum value
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of d in V\W becomes larger. Let Multiple-Exchange(i, s, t) be the next application of
Multiple-Exchange to the same index ¢ € I. Then we have d(t) > d(v) = d(u) + 1, which
implies v <; u <; t <; s in the linear ordering L; before Multiple-Exchange(i. u, v). Thus a
pair (i, w) marked in Multiple-Exchange (i, u, v) will not be marked again in the reordering
phase.

Since |I| < 2n by Lemma 4.3, there are at most 2n? possible marks without duphca—
tions. Therefore, the total number of function evaluations in a reordering phase is O(n )

Theorem 4.5 The algorithm performs O(n* log M) function evaluations and O(n log M)
arithmetic computations.

Proof. Since —2M <z~ (V) for z € B(f), , the initial value of & satisfies § < 2M/n? Each
scaling phase cuts the value of § in half, and the algorithm termmates when § < 1 / n
Thus the algorithm consists of O(log M) bcahng phases.

Since each scaling phase performs O(n?) reordering phases, Lemma 4.4 implies that
the number of function evaluations in a scaling phase is O(n4) In addition, by Lemma 4.1,
each scaling phase performs O(n?) calls of Reduce, which requires O(n®) arithmetic com-
putations. Thus each scaling phase consists of O(n?) function evaluations and O(n %)

arithmetic computations. Therefore, the total running time bound is O( (n*y4n®) log M).
]

5 Discussions

A family D C 2" is called a distributive lattice (or a ring family) if X NY € D and
X UY € D for any pair of X,Y € D. A compact representation of D is given by a
directed graph as follows. Let D = (V, F) be a directed graph with the arc set F. A
subset Y C V is called an ideal of D if no arc enters Y in D. Then the set of ideals of D
forms a distributive lattice. Conversely, any distributive lattice D C 2 V with 0,V eD
can be represented in this way. Moreover, we may assume that the directed graph D is
acyclic.

For minimizing a submodular functlon fonD, we apply the scaling algorithm w1th
a minor modification. The modified version uses the directed graph G, =.(V, A, U F)
instead of G, = (V, A,). The initial linear ordering Lo must be consistent with D, ie.
v =; w if (u,v) € F. Then all the linear orderings that appear in the algorithm will be
consistent with D. This ensures that the set X obtained at the end of each scaling phase
belongs to D. Thus the modification of our scaling algorithm finds a minimizer of f in
D. . :
Iwata~Fleischer-Fujishige [11] also describes a strongly polynomial algorithm that
repeatedly applies their scaling algorithm with O(logn) scaling phases. The number
of iterations is O(n?). Replacing the scaling algorithm by the new one, we obtain an
improved strongly polynomial algorithm that runs in O((n by +n7)logn) time.

A very recent paper [10] has shown that the strongly polynomial IFF algorithm can
be implemented by using only additions, subtractions, comparisons, and oracle calls for
function values.” Similarly, the new strongly polynomial scaling algorithm can be made
fully combinatorial as follows.

The first step towards a fully combinatorial implementation is to neglect Reduce.
This causes growth of the number of extreme bases for convex combination. However,
the number is still bounded by a polynomial in n. Since the number of indices added



between augmentations is at most n, each scaling phase yields O(n3) new extreme bases.
Hence the number of extreme bases through the O(log n) scaling phases is O(n3logn).

The next step is to choose an appropriate step length in Multiple-Exchange, so that
the coefficients should be rational numbers with a common denominator bounded by a
polynomial in n. Let o denote the value of § in the first scaling phase. For each i € I,
we keep \; = p;0/0 with an integer u;. We then modify the definition of saturating
Multiple-Exchange. Multiple-Exchange(%, ©) is now called saturating if \;£(q,r) < (g, r)
for every (g,r) € @ x R. Otherwise, it is called nonsaturating. In nonsaturating
Multiple-Exchange(7, u), let v be the minimum integer such that v£(g,7) > (g, r)o /8§ for
some (g,7) € @ x R. Then the new coefficients Ay and A; are determined by py 1= p; —v
and y; := v. Thus the coefficients are rational numbers whose common denominator is
o /8, which is bounded by a polynomial in n through the O(log n) scaling phases. Then
it is easy to implement this algorithm using only additions, subtractions, comparisons,
and oracle calls for the function values.

Finally, we discuss time complexity of the resulting fully combinatorial algorithm.
The algorithm performs O(n?) iterations of O(logn) scaling phases. Since it keeps
O(n3logn) extreme bases, each scaling phase requires O(n®logn) oracle calls for func-
tion evaluations and O(n®logn) fundamental operations. Therefore, the total running
time is O(n8~log?n). This improves the previous O(nylog?n) bound in [10] by a factor
of n.
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