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Relation among Edge Length of Convex Planar Drawings,
Size of Linear Cuts, and Cross-Operations on Graphs
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Abstract Let G = (N,c) be a graph with a vertex set N = {0,1,...,n—1} and a
real edge weight function ¢: V x V' — R. Three measures for comparing two graphs
are considered: (1) the sum of edge length when the graph is drawn on a convex
polygon, (2) sizes of linear-cuts, and (3) reducibility by using cross-operations. Three
partial orders, corresponding the measures respectively, are also introduced. This
paper shows that these three partial orders are equivalent. Moreover, it presents a
polynomial time algorithm for determining G < G’ for given G and G’, where, < is
the partial order.

Key words: partial order, graph drawing, straight-line, linear-cut, cyclic layout
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1 Introduction

Let G be a graph with a vertex set N =
{0,1,..
of a graph has a weight (= number of par-
allel edges) c(i,j) € R (R is the set of real
numbers). c¢(i,7) may be written as c(7, j; G)
if the graph should be expressed explicitly.
We can define a graph as G = (N, c¢), where
c: N xN — R. Note that a weight may be
zero, negative, or irrational in this paper. If all

.,n — 1}. Each pair of vertices (i,7)

weights are restricted to nonnegative integers,
graphs are called multigraphs. If all weights
are restricted to {0, 1}, graphs are called sim-
ple graphs. Fach vertex is labeled by an inte-
ger in N and each edge has a real weight, so
that we may call such graphs labeled weighted
graphs. Graphs appeared in this paper are la-
beled weighted graphs if otherwise stated. In
this paper, selfloops, ¢(i,7), are meaningless.
For this reason, if ¢(i,j; G) = ¢(i,5; G') for all
i # j, then we say G = G'. A singleton set {i}
may be simply written as .

For A,BC N,

c¢(A,B;G) := Z c(i, J; G).

i€A, jEB
c¢(A,N — A;G) may be written as c¢(4;G).
¢(A,B;G) and ¢(A;G) may be expressed as
¢(A,B) and c(A), respectively, if G is clear.
Note that ¢(i, G) means a degree of i € N.

We adopt the cyclic order for treating inte-
gers (vertices) in N. Thus for 7,5 € N,

{iyi+1,...,5}, ifi<j,
{i,i+1,...,n—1,0,1,...
iti>j.

Nli,j] = ,Jts

Moreover, i < j < k means j € N[i,k],1 < j <

k< hmeans: < j < kand k < h <14, and

i+ jisi € N such that i/ =i+ j (mod n).
Three partial orders are defined as follows.

1. Let xg,x1,...,2,_1 be vertices of a convex
n-gon P in the plane (each internal angle
may be equal to ), where, xoz1, T129, . ..,
Tp_9Tn_1, and x,_1xzg are edges of the n-
gon. Denote the length of the line segment

x;x; by dp(i,j). Define a length of G with
respect to P as
Sp(G) = Y (i, j;G) - dp(i,j).

1,5€V

Sp(G) can be regarded as the sum of edge
length of a graph G drawn in the plane
such that each vertex i of G is equal to
a corresponding vertex x; of P and each
edge of GG is given by a straight line seg-
ment(e.g., Figure 1).

(©

Figure 1: (a) graph G, (b) convex polygon P,
(¢) G drawn on P.

If Sp(G) < Sp(G) for any convex polygon
P, then G <; G' (“I” means length). If
G =X, G and G # G, then G <; G'.

2. NJi,j] is called a linear-cut if NJi,j|] #
N (NJi,j] # 0 is clear from the defini-
tion). The size of a linear-cut NJi,j] is
defined as ¢(NJi, j|; G). If ¢(Ni,j];G) <
¢(NTi, j]; G') for all linear-cuts N[i, j], then
G <. G' (“¢” means cuts). Skiena [9]
showed that if ¢(N[i, j]; G) = ¢(Ni, j]; G")
for all linear-cuts NJi,j], then G = G’
(Although he treated only multigraphs, his
proof can be used for general real-weighted
graphs.) It directly follows that if G <. G’
and G’ <. G, then G = G'. Thus we can
say G <. G'if G <. G' and G # G'.
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3. We define a cross-operation
X(i,j,k,h;A), for i < j <k < hand a
positive real value A > 0, as removing A
from ¢(i,j) and c(k,h), and adding A to
c(i,k) and c(j,h). Figure 2 illustrates a
cross-operation X (i,7,k,h;1). Note that

@ (b)

Figure 2: Cross-operation X(i,j,k, h;1).

more than one vertices in 4,3, k, and h
may be equal. For example, X (i,1, k, k; A)
means only adding 2A to ¢(i, k). (Remem-
ber that all selfloops are meaningless in
this paper, thus removing A from c(i,1)
and c(k,k) can be ignored.) If graph G’
can be obtained from graph G by applying
a sequence of cross-operations, then we ex-
press as G <, G’ (“0” means operations).
If G <, G and G # G, then G <, G'.

These three measures, edge-length, cut-size,
and reducibility by the operation, are impor-
tant alone, and have been considered indepen-
dently. However, this paper shows that they
are equivalent. It establishes the next:

Theorem 1 Three partial orders <, =<,, and
=¢ are equivalent, i.e.,

G=<Ges60<0aG=<,0

for any pair of labeled weighted graphs G and
G O

Sum of edge lengths is one of the crucial
criteria on graph drawing. Graph drawing
has recently become a very important research
area [1, 7].

Some properties on linear-cuts have been
found in advance. Mékinen [6] shows the prob-

lem of finding a permutation = = (pg, p1, ...,

pn—1) of the vertices (0,1,...,n — 1) of a given
multigraph G such that max; jen c(N[i,j]) is
minimum is NP-hard, and presents a heuris-
tic algorithm. Schroder, et.al. [8] shows some
lower bounds of the maximum size of linear-
cuts for cylindrical mesh graphs. Skiena [9]
considers a problem of reconstructing a graph
from information of linear-cut sizes only, and
shows that (%) linear-cuts are necessary and
sufficient for the reconstruction.

Hakimi [2] considered cross-operations and
the reverse of cross-operations and called them
elementary d-invariant transformations (“d”
means dimensions). He showed that every pair
of multigraphs G and G’ such that c(i,G) =
c(i,G") for all i € N can be transformed from
one to another by using a finite sequence of el-
ementary d-invariant transformations.

The author have presented the following

Theorem 2 [4]. Here, a graph G, := (N, ¢p)
is defined as
N I ifj=i+p
(i J) = { 0, otherwise.

Theorem 2 [4] (1) Gp <; Gpy1 for p =
0, 1, ..., [n/2] - 1.

(2) For any 2-reqular multigraph G(# G|, /2)),
G < Gm/%.

(3) If G( G1) is a 2-regular multigraph such
that ¢(NTi, j]; G) > 0 for any linear-cut Ni, j],
G < G. O

Theorem 2 (1) was firstly conjectured by
Jorge Urrutia in the open problem session
of Japan Conference on Discrete and Com-
putational Geometry 1998 (JCDCG’98). For
an example of this theorem, see Figure 3.
Theorem 2 (1) claims that Sp(Gi) < Sp(G2)
< Sp(Gs) for any convex polygon P. (Note
that in reference [4], the more general prop-
erty “Sp(Gy) is a strictly increasing and strictly
concave function for any convex polygon P if
1<q¢<|n/2| —1" was shown.)

Theorem 1 is a wide generalization of The-
orem 2, i.e., the former gives another proof
for the latter.
ample, G; <. Gg41 is clear for any ¢ =

We show it by using an ex-
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Figure 3: (a) Gy, (b) Ga, and (c) G3 drawn on
a convex polygon P.

0, 1, In/2] — 1. Moreover, Gy can be
obtained from G by applying a sequence of
cross-operations ((n—1,0,1,2;1), (0,1,3,4;1),
(2,3,4,1;1), (0,3,4,5;1), (0,4,5,6;1), ...,
(0,n—3,n—2,n—1;1)) (Figure 4), i.e., G1 <,
Go.

We present a proof of Theorem 1 in the
next section.  Preliminary results of this
paper were presented in the Japan Confer-
ence on Discrete and Computational Geometry
(JCDCG2000) [5]. In the theorem presented in
[5], edge weights were restricted to nonnegative
integers and only graphs with the same number
of edges could be compared.

2 Proof

Define Gy = (N, ¢p) as ¢y(i,j) =0 for all i,j €
N. Note that ¢(NJi, j]; G

cut NJi, j|, and Sp(Gy) = 0 for any polygon P.
For any pair of G = (N, ¢) and G’ = (N, ), we
define G — G' = (N, ") as '(i,7) = c(i,j) —
d(i,7) for every i,j € N. G <X G' (= is any one
of <y, <., and <,) is equivalent to G—G' < Gy.
Therefore, it is enough to consider G’ = G for
proving Theorem 1, as a result of this fact, the
proof of Theorem 1 consists of three parts:

¢) = 0 for any linear-

4 4
5 3 5 3
6 2 6 2
0 1 0 1

@
4 4
5 3 5 3
6 2 6 2
0o 1 0o 1
(©
4 4
5 3 5 3
6 2 6 2
0o 1 0o 1
(€

Figure 4: A sequence of cross-operations mod-
ifying G into Gs.

(1) G %, Gy = G =; Gp, (Lemma 1)
(2) G =, Gy = G =, Gy, (Lemma 2) and
(3) G <. Gy = G =, Gy. (Lemma 3)
Lemma 1 If G <, Gy, then G =; Gy.

Proof: It is clear from the triangle inequality.
O

Lemma 2 If G =; Gy, then G <. Gy.

Proof: Suppose that G <. Gy does not hold,
i.e., there are i,j € N such that ¢(NJi, j|; G) >
0. We construct a polygon P satisfying
Sp(G) > 0 as follows. X = {z} | k € NJ[i,j|}
and Y = {zy | k € N—NJi,j]}. Let p,r > 0 be
real numbers. Put all vertices x; € X in a circle
whose center is (0,0) and radius is r. Put all

0 300


研究会Temp 
－30－


vertices z; € Y in a circle whose center is (p, 0)
and radius is r. We can locate all vertices sat-
isfying the above conditions and convexity for
any r and p. By letting p be far larger than r,
Sp(G) > 0. O

For proving the remaining part, G <. Gy =
G =, Gy, we need to introduce some notations
as follows. For integers 7,7 € N,

The following proposition is well-known.
Since the proof is easy, it is omitted.

Proposition 1 Let A,B,C,D C N be four
mutually disjoint subsets such that AUBUC U
D = N, then

¢(AUB)+c¢(AUD) = c¢(A)+¢(C)+2¢(B, D).

O
Now, we can prove the next:
Lemma 3 If G <. Gy, then G =, Gy.
Proof: Assume that G <. Gy, i.e.,
¢(Ni,j];G) <0 for all i,5 € N. (1)
Let k£ be the largest integer such that

¢(N[i,j]) = 0 for all (i,5) € {(i,7) | 4,j €
N,IN[i,jl| < k). Itk > [n/2], G = Gj.
Hence, we assume k < [n/2]. Then their exists
(io,jo) such that |N[’Lo,]0” =k—+1 and

c(NTio, jo]) < 0. (2)

By considering Proposition 1 with A =
N(iO)jO)v B = {jO}a C = N(jOa/L'O)a and D =
{ip}, we obtain

c(io, jo)
_ %{C(N[io + 1, jo]) + ¢(Nlio, jo — 1])
~ e(N (i jo)) — (N (o, i0)))
> 0,
since ¢(Nlip + 1,70]) =
= ¢(N(io,jo)) =
¢(NTig, jo]) < 0.

If there is a pair ¢/ and j’ satisfying the fol-
lowing (a)—(c) (Figure 5 (a)):

c(Nlio,jo — 1])
0 and ¢(N(jo,%0)) =

(b)

Figure 5: Cross-operation X (ig, jo, j’,'; A)

(a) jo < j' <" <o,

b) ¢(i,5") > 0or ¢ =3, and

( J J

(c) ¢(Ni,j]) <0 for all ¥/ < i < iy and jy <
J<i,

then we can apply a cross-operation
X (ig, jo,j',7 : A) to G without violating the
relation G <. Gy (Figure 5), where

A = min{c(io,jo), C(i/,j/),
— 271 (3
z"<z‘§z‘§u£§j<j’ 2 F )

Therefore we try to find such ¢ and 5’ as fol-
lows.

Let j1 (jo < 71 < ip) be a vertex such that
¢(NTig, 7]) < 0 for all jo < j < j; and

¢(Nlio, j1]) = 0. (4)

If there is no such ji, then we find a desired
pair (i, 7') by letting ¢/ := j := ig — 1 (note
(1) and (2)). Thus we assume such j; exists.
Let 41 := 49 — 1. Assume that there exists j/ €
Nljo + 1, 1] such that c(i1,5’) > 0. Then ¢’ :=
i1 and j" satisfy (a)—(c). Therefore, we assume
there is no such 7', i.e., ¢(i1,j) <0 for all j €
Njo + 1, j1]. It follows that

c(i1, Nljo +1,j1]) < 0. (5)
Consider Proposition 1 with A = Nig, jo],

B = N[jo + 1,51], C = (j1,i1), and D =
{i1} (Figure 6). Since (2), (4), (5), and

0310


研究会Temp 
－31－


Figure 6: Applying Proposition 1

¢(Nli1, j1]) < O0(because (1)), we obtain

c(NTi1, jo])
—c(Nlio, j1]) + ¢(NTio, jo))
+c(Ni1, j1]) + 2¢(i1, N[jo + 1, j1])

e

<

Let ¢} := ] := 41, and iy := iy — 1 (Figure 7,
which is illustrated generally. ¢ = i/ here).
Note that

c(NT[i, j]) <0
for all i <i <ig, jo <j < j1/6)
c(NTif, jo]) <0, (7)

¢(N[iy, 1], N[jo +1,71]) <O0. (8)

i "';"
1 i

. Ly 1
Figure 7: 41, 47, and 43

Let j; be the closest vertex to j; such that
Jo < g1 < ji, e(N[if, 3]) <0 for all jo < j < i,
and c(i1,7) < 0 for all jo < j < ji. If 51 # J1,

rename j; := j;. The old j; is called j¢¢ for
distinction. Note that (6)—(8) also hold for the
new ji. From the definition of j;, we get

c(NTiY, 51)
c(i1, )

< 0 for all jo <j < j1,
< 0for all jo < j < j1.

(9)

j':=1y satisfies (a)—(c).
Thus we assume j; # i1. If ¢(i1,71) > 0, then

If jl = ’il, then 7' :=

i’ := iy and j' := j; satisfy (a)-(c). Then we
assume that
c(i1, j1) < 0. (10)
By considering (9) and (10),
c(i1, Nljo +1,71]) < 0. (11)

We will show ¢(NTig, j1]) = 0. If j; = j9!¢, it is
clear from (4) (note that j; in (4) is j¢'¢, here).
Then assume that j; # j¢'9, i.e., jo < j1 < j¥%.
If ¢(NTio,71]) < 0, then j; should be chosen
closer than the present j; since the definition
of j1 and (10), contradiction. Thus we get

c¢(Nlig, 1]) = 0. (12)

We will show ¢(NJi1, jo]) < 0. For this pur-
pose, we make the following assumption and
lead contradiction:

Assumption 1: ¢(N]i1, jo]) = 0.

From Proposition 1 with A := NI, jol,
B = N[jo+1,51], C=N(j1,11), and D = {ir }
(Figure 8 (a)), we obtain

¢(NTi{, j1]) + ¢(NTix, jo])
= ¢(NIi, jo]) + c¢(Nli1, j1])
+2c(ir, N[jo + 1, j1]).

Thus, by considering Assumption 1, (11), and
¢(NTi1, j1]) < 0 (because (1)),

c(NTif, jo]) — (N, j1])
= ¢(Nli1, jo]) — e(Nli1, j1])
—2c(i1, N(jo + 1, j1])
> 0.
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Figure 8: Applying Proposition 1

By considering Proposition 1 with A =
N[i07j0]7 B = N[JO + 17j1]7 C= N[Jl + 17i1]7
and D = N[i{,i}] (Figure 8 (b)),

e(N[i, jo]) — e(NT[if, 1])
= —c(NTio, j1]) + ¢(NTio, jo])
+2¢(NTif, 4], Nljo + 1, 1))

From (2), (8), and (12), we obtain
c(NTi1, jo]) — e(NTi1, j1]) <0,

contradicting (13). Therefore, Assumption 1 is
denied, i.e.,

c(NTi1, jo]) < 0. (13)

Here, let ¢ := i3 and 41 = 43 — 1 (i} is

not changed), then (6)—(8) also hold. Thus the

preceding discussion (from (6) to (13)) can be

also applied. However, N|[i{, ] becomes larger

Thus, such procedure
must be stopped at most |N(jo,i0)| iterations.

in the new iteration.

(111)

Therefore, we must finally find 7’ and j’ satis-
fying (a)—(c).

By setting the value of A as (3), we can ap-
ply X (io, jo,j’,'; A) to G without violating the
relation G <. Gy.

Now, we have found a cross operation that
makes G' be closer to Gj.
preceding discussion iteratively, we can find a

By applying the

sequence of cross-operations that makes G be
closer to Gy. For completing the proof, we must
show that the length of the sequence is finite.
It is shown as follows.

Let G’ graph  obtained by
applying X (ig, jo,j’,i';A) to G. There are
three cases: (I) A = c(ip,jo; G), (II) A =
ming <i<io, jo<j<j (—¢(N[i, j]; G))/2, and (III)
A = ¢(i,j';G). We consider each case as fol-
lows.

be a

(I) A = ¢(ig, jo; G). c(ig, jo; G') becomes zero.
Then by applying Proposition 1 with A =
N(io, jo), B = {jo}, C = N(jo,io), and
D = {ip}, we obtain ¢(Nlig, jo]; G') = 0.
Thus, the number of zero-linear-cuts of G’
is greater than the one of G.

(I A = mingci<ig, jo<j<j' (=N, j]; G))/2.
Let i” and j” be vertices satisfying i’ <
i < g, jo < J7 < j and A =
—c(N[i",j";G)/2.  ¢(N[i",j"];G") be-
comes zero. Thus, the number of zero-
linear-cuts of G’ is greater than the one

of G.

A =c(i,j;G). c(,j;G") becomes zero.
It is enough to assume c(ig, jo; G') > 0,
because if ¢(ig, jo; G') = 0, then case (I)
can be applied. We can find new ¢ and
j' satisfying (a)—(c). The number of pairs
(i",7") in G’ such that jo < j” < i" < iy
and c(i”,j") > 0 is smaller than the one
in G, so that (III) occurs successively at
most (|N(j§’i°)|) < n? times.

From (I)—(III), the number of zero-linear-cuts
increases during at most n? cross-operations.
< n?. It fol-
lows that the length of the sequence of cross-

The number of linear-cuts is (Z)
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operations is less than n*. By using the se-

quence, GG is modified to Gy, i.e., G <, Gy. O

Proof of Theorem 1: Follows immediately from
Lemmas 1, 2, and 3. O

3 Concluding Remarks

This paper shows that three partial-orders =,
<o, and =, are equivalent. For investigating
G =. G, only linear-cuts are tested, thus it can
be determined in polynomial time. Therefore,
we can solve a problem of determining whether
or not Sp(G) < Sp(G’) for any convex polygon
P for given two labeled weighted graphs GG and
G’ in polynomial time. Moreover, if G <. G’,
we can find a sequence of cross-operations for
modifying G' to G’ by using the discussion of
the proof of Lemma 3 in polynomial time.

In this paper, Euclidean distance is used.
However, for any distance (for example, Ly dis-
tance) in which the triangle inequality holds,
the same results can be obtained.
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