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あらまし G = (N, c) を節点集合 N = {0, 1, . . . , n − 1} と実数の枝の重み関数
c : V × V → Rによって定義されるグラフ（ネットワーク）とする。以下の３つの尺
度を考える。(1) 凸多角形上にグラフを記述したときの枝長の総和、(2) 線形カットの
大きさ、(3) 枝の交差処理による帰着可能性。これらの３つの尺度に関連した半順序
関係を導入し、それらが同値であることを証明する。
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Abstract Let G = (N, c) be a graph with a vertex set N = {0, 1, . . . , n−1} and a
real edge weight function c : V ×V → R. Three measures for comparing two graphs
are considered: (1) the sum of edge length when the graph is drawn on a convex
polygon, (2) sizes of linear-cuts, and (3) reducibility by using cross-operations. Three
partial orders, corresponding the measures respectively, are also introduced. This
paper shows that these three partial orders are equivalent. Moreover, it presents a
polynomial time algorithm for determining G � G′ for given G and G′, where, � is
the partial order.
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1 Introduction

Let G be a graph with a vertex set N =
{0, 1, . . . , n − 1}. Each pair of vertices (i, j)
of a graph has a weight (= number of par-
allel edges) c(i, j) ∈ R (R is the set of real
numbers). c(i, j) may be written as c(i, j;G)
if the graph should be expressed explicitly.
We can define a graph as G = (N, c), where
c : N × N → R. Note that a weight may be
zero, negative, or irrational in this paper. If all
weights are restricted to nonnegative integers,
graphs are called multigraphs. If all weights
are restricted to {0, 1}, graphs are called sim-
ple graphs. Each vertex is labeled by an inte-
ger in N and each edge has a real weight, so
that we may call such graphs labeled weighted
graphs. Graphs appeared in this paper are la-
beled weighted graphs if otherwise stated. In
this paper, selfloops, c(i, i), are meaningless.
For this reason, if c(i, j;G) = c(i, j;G′) for all
i �= j, then we say G = G′. A singleton set {i}
may be simply written as i.

For A,B ⊆ N ,

c(A,B;G) :=
∑

i∈A, j∈B

c(i, j;G).

c(A,N − A;G) may be written as c(A;G).
c(A,B;G) and c(A;G) may be expressed as
c(A,B) and c(A), respectively, if G is clear.
Note that c(i,G) means a degree of i ∈ N .

We adopt the cyclic order for treating inte-
gers (vertices) in N . Thus for i, j ∈ N ,

N [i, j] :=




{i, i + 1, . . . , j}, if i ≤ j,

{i, i + 1, . . . , n − 1, 0, 1, . . . , j},
if i > j.

Moreover, i ≤ j ≤ k means j ∈ N [i, k], i ≤ j ≤
k ≤ h means i ≤ j ≤ k and k ≤ h ≤ i, and
i ± j is i′ ∈ N such that i′ ≡ i ± j (mod n).

Three partial orders are defined as follows.

1. Let x0, x1, ..., xn−1 be vertices of a convex
n-gon P in the plane (each internal angle
may be equal to π), where, x0x1, x1x2, . . .,
xn−2xn−1, and xn−1x0 are edges of the n-
gon. Denote the length of the line segment

xixj by dP (i, j). Define a length of G with
respect to P as

SP (G) :=
∑

i,j∈V

c(i, j;G) · dP (i, j).

SP (G) can be regarded as the sum of edge
length of a graph G drawn in the plane
such that each vertex i of G is equal to
a corresponding vertex xi of P and each
edge of G is given by a straight line seg-
ment(e.g., Figure 1).
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Figure 1: (a) graph G, (b) convex polygon P ,
(c) G drawn on P .

If SP (G) ≤ SP (G′) for any convex polygon
P , then G �l G′ (“l” means length). If
G �l G′ and G �= G′, then G ≺l G′.

2. N [i, j] is called a linear-cut if N [i, j] �=
N (N [i, j] �= ∅ is clear from the defini-
tion). The size of a linear-cut N [i, j] is
defined as c(N [i, j];G). If c(N [i, j];G) ≤
c(N [i, j];G′) for all linear-cuts N [i, j], then
G �c G′ (“c” means cuts). Skiena [9]
showed that if c(N [i, j];G) = c(N [i, j];G′)
for all linear-cuts N [i, j], then G = G′.
(Although he treated only multigraphs, his
proof can be used for general real-weighted
graphs.) It directly follows that if G �c G′

and G′ �c G, then G = G′. Thus we can
say G ≺c G′ if G �c G′ and G �= G′.
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3. We define a cross-operation
X(i, j, k, h;∆), for i ≤ j ≤ k ≤ h and a
positive real value ∆ > 0, as removing ∆
from c(i, j) and c(k, h), and adding ∆ to
c(i, k) and c(j, h). Figure 2 illustrates a
cross-operation X(i, j, k, h; 1). Note that
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Figure 2: Cross-operation X(i, j, k, h; 1).

more than one vertices in i, j, k, and h

may be equal. For example, X(i, i, k, k;∆)
means only adding 2∆ to c(i, k). (Remem-
ber that all selfloops are meaningless in
this paper, thus removing ∆ from c(i, i)
and c(k, k) can be ignored.) If graph G′

can be obtained from graph G by applying
a sequence of cross-operations, then we ex-
press as G �o G′ (“o” means operations).
If G �o G′ and G �= G′, then G ≺o G′.

These three measures, edge-length, cut-size,
and reducibility by the operation, are impor-
tant alone, and have been considered indepen-
dently. However, this paper shows that they
are equivalent. It establishes the next:

Theorem 1 Three partial orders �l, �o, and
�c are equivalent, i.e.,

G �l G′ ⇔ G �c G′ ⇔ G �o G′

for any pair of labeled weighted graphs G and
G′ �

Sum of edge lengths is one of the crucial
criteria on graph drawing. Graph drawing
has recently become a very important research
area [1, 7].

Some properties on linear-cuts have been
found in advance. Mäkinen [6] shows the prob-
lem of finding a permutation π = 〈p0, p1, . . .,

pn−1〉 of the vertices 〈0, 1, . . . , n − 1〉 of a given
multigraph G such that maxi,j∈N c(N [i, j]) is
minimum is NP-hard, and presents a heuris-
tic algorithm. Schröder, et.al. [8] shows some
lower bounds of the maximum size of linear-
cuts for cylindrical mesh graphs. Skiena [9]
considers a problem of reconstructing a graph
from information of linear-cut sizes only, and
shows that

(n
2

)
linear-cuts are necessary and

sufficient for the reconstruction.
Hakimi [2] considered cross-operations and

the reverse of cross-operations and called them
elementary d-invariant transformations (“d”
means dimensions). He showed that every pair
of multigraphs G and G′ such that c(i,G) =
c(i,G′) for all i ∈ N can be transformed from
one to another by using a finite sequence of el-
ementary d-invariant transformations.

The author have presented the following
Theorem 2 [4]. Here, a graph Gp := (N, cp)
is defined as

cp(i, j) :=

{
1, if j = i + p

0, otherwise.

Theorem 2 [4] (1) Gp ≺l Gp+1 for p =
0, 1, . . . , 
n/2� − 1.
(2) For any 2-regular multigraph G(�= G�n/2�),
G ≺l G�n/2�.
(3) If G(�= G1) is a 2-regular multigraph such
that c(N [i, j];G) > 0 for any linear-cut N [i, j],
G1 ≺l G. �

Theorem 2 (1) was firstly conjectured by
Jorge Urrutia in the open problem session
of Japan Conference on Discrete and Com-
putational Geometry 1998 (JCDCG’98). For
an example of this theorem, see Figure 3.
Theorem 2 (1) claims that SP (G1) ≤ SP (G2)
≤ SP (G3) for any convex polygon P . (Note
that in reference [4], the more general prop-
erty “SP (Gq) is a strictly increasing and strictly
concave function for any convex polygon P if
1 ≤ q ≤ 
n/2� − 1” was shown.)

Theorem 1 is a wide generalization of The-
orem 2, i.e., the former gives another proof
for the latter. We show it by using an ex-
ample, Gq ≺c Gq+1 is clear for any q =

3
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Figure 3: (a) G1, (b) G2, and (c) G3 drawn on
a convex polygon P .

0, 1, . . . , 
n/2� − 1. Moreover, G2 can be
obtained from G1 by applying a sequence of
cross-operations 〈(n− 1, 0, 1, 2; 1), (0, 1, 3, 4; 1),
(2, 3, 4, 1; 1), (0, 3, 4, 5; 1), (0, 4, 5, 6; 1), . . . ,

(0, n− 3, n− 2, n− 1; 1)〉 (Figure 4), i.e., G1 ≺o

G2.
We present a proof of Theorem 1 in the

next section. Preliminary results of this
paper were presented in the Japan Confer-
ence on Discrete and Computational Geometry
(JCDCG2000) [5]. In the theorem presented in
[5], edge weights were restricted to nonnegative
integers and only graphs with the same number
of edges could be compared.

2 Proof

Define G∅ = (N, c∅) as c∅(i, j) = 0 for all i, j ∈
N . Note that c(N [i, j];G∅) = 0 for any linear-
cut N [i, j], and SP (G∅) = 0 for any polygon P .
For any pair of G = (N, c) and G′ = (N, c′), we
define G − G′ = (N, c′′) as c′′(i, j) := c(i, j) −
c′(i, j) for every i, j ∈ N . G � G′ (� is any one
of �l, �c, and �o) is equivalent to G−G′ � G∅.
Therefore, it is enough to consider G′ = G∅ for
proving Theorem 1, as a result of this fact, the
proof of Theorem 1 consists of three parts:
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Figure 4: A sequence of cross-operations mod-
ifying G1 into G2.

(1) G �o G∅ ⇒ G �l G∅, (Lemma 1)

(2) G �l G∅ ⇒ G �c G∅, (Lemma 2) and

(3) G �c G∅ ⇒ G �o G∅. (Lemma 3)

Lemma 1 If G �o G∅, then G �l G∅.

Proof: It is clear from the triangle inequality.
�

Lemma 2 If G �l G∅, then G �c G∅.

Proof: Suppose that G �c G∅ does not hold,
i.e., there are i, j ∈ N such that c(N [i, j];G) >

0. We construct a polygon P satisfying
SP (G) > 0 as follows. X = {xk | k ∈ N [i, j]}
and Y = {xk | k ∈ N −N [i, j]}. Let p, r > 0 be
real numbers. Put all vertices xi ∈ X in a circle
whose center is (0, 0) and radius is r. Put all

4
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vertices xi ∈ Y in a circle whose center is (p, 0)
and radius is r. We can locate all vertices sat-
isfying the above conditions and convexity for
any r and p. By letting p be far larger than r,
SP (G) > 0. �

For proving the remaining part, G �c G∅ ⇒
G �o G∅, we need to introduce some notations
as follows. For integers i, j ∈ N ,

N(i, j) := N [i, j] − {i, j}.
The following proposition is well-known.

Since the proof is easy, it is omitted.

Proposition 1 Let A,B,C,D ⊂ N be four
mutually disjoint subsets such that A∪B∪C ∪
D = N , then

c(A∪B)+ c(A∪D) = c(A) + c(C) + 2c(B,D).

�

Now, we can prove the next:

Lemma 3 If G �c G∅, then G �o G∅.

Proof: Assume that G �c G∅, i.e.,

c(N [i, j];G) ≤ 0 for all i, j ∈ N. (1)

Let k be the largest integer such that
c(N [i, j]) = 0 for all (i, j) ∈ {(i, j) | i, j ∈
N, |N [i, j]| ≤ k}. If k ≥ �n/2�, G = G∅.
Hence, we assume k < �n/2�. Then their exists
(i0, j0) such that |N [i0, j0]| = k + 1 and

c(N [i0, j0]) < 0. (2)

By considering Proposition 1 with A =
N(i0, j0), B = {j0}, C = N(j0, i0), and D =
{i0}, we obtain

c(i0, j0)

=
1
2
{c(N [i0 + 1, j0]) + c(N [i0, j0 − 1])

− c(N(i0, j0)) − c(N(j0, i0))}
> 0,

since c(N [i0 + 1, j0]) = c(N [i0, j0 − 1])
= c(N(i0, j0)) = 0 and c(N(j0, i0)) =
c(N [i0, j0]) < 0.

If there is a pair i′ and j′ satisfying the fol-
lowing (a)–(c) (Figure 5 (a)):
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Figure 5: Cross-operation X(i0, j0, j
′, i′;∆)

(a) j0 < j′ ≤ i′ < i0,

(b) c(i′, j′) > 0 or i′ = j′, and

(c) c(N [i, j]) < 0 for all i′ < i ≤ i0 and j0 ≤
j < j′,

then we can apply a cross-operation
X(i0, j0, j

′, i′ : ∆) to G without violating the
relation G �c G∅ (Figure 5), where

∆ = min{c(i0, j0), c(i′, j′),

min
i′<i≤i0, j0≤j<j′

−c(N [i, j])
2

}. (3)

Therefore we try to find such i′ and j′ as fol-
lows.

Let j1 (j0 < j1 < i0) be a vertex such that
c(N [i0, j]) < 0 for all j0 ≤ j < j1 and

c(N [i0, j1]) = 0. (4)

If there is no such j1, then we find a desired
pair (i′, j′) by letting i′ := j′ := i0 − 1 (note
(1) and (2)). Thus we assume such j1 exists.
Let i1 := i0 − 1. Assume that there exists j′ ∈
N [j0 + 1, j1] such that c(i1, j′) > 0. Then i′ :=
i1 and j′ satisfy (a)–(c). Therefore, we assume
there is no such j′, i.e., c(i1, j) ≤ 0 for all j ∈
N [j0 + 1, j1]. It follows that

c(i1, N [j0 + 1, j1]) ≤ 0. (5)

Consider Proposition 1 with A = N [i0, j0],
B = N [j0 + 1, j1], C = (j1, i1), and D =
{i1} (Figure 6). Since (2), (4), (5), and

5
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Figure 6: Applying Proposition 1

c(N [i1, j1]) ≤ 0(because (1)), we obtain

c(N [i1, j0])

= −c(N [i0, j1]) + c(N [i0, j0])

+c(N [i1, j1]) + 2c(i1, N [j0 + 1, j1])

< 0.

Let i′1 := i′′1 := i1, and i1 := i1 − 1 (Figure 7,
which is illustrated generally. i′1 = i′′1 here).
Note that

c(N [i, j]) < 0

for all i′′1 < i ≤ i0, j0 ≤ j < j1,(6)

c(N [i′′1 , j0]) < 0, (7)

c(N [i′′1 , i′1],N [j0 + 1, j1]) ≤ 0. (8)

���
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�
�
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1

i''1 i'1
i 1

Figure 7: i1, i′1, and i′′1

Let j′1 be the closest vertex to j1 such that
j0 < j′1 ≤ j1, c(N [i′′1 , j]) < 0 for all j0 ≤ j < j′1,
and c(i1, j) ≤ 0 for all j0 < j < j′1. If j1 �= j′1,

rename j1 := j′1. The old j1 is called jold
1 for

distinction. Note that (6)–(8) also hold for the
new j1. From the definition of j1, we get

c(N [i′′1 , j]) < 0 for all j0 ≤ j < j1,

c(i1, j) ≤ 0 for all j0 < j < j1. (9)

If j1 = i1, then i′ := j′ := i1 satisfies (a)–(c).
Thus we assume j1 �= i1. If c(i1, j1) > 0, then
i′ := i1 and j′ := j1 satisfy (a)–(c). Then we
assume that

c(i1, j1) ≤ 0. (10)

By considering (9) and (10),

c(i1, N [j0 + 1, j1]) ≤ 0. (11)

We will show c(N [i0, j1]) = 0. If j1 = jold
1 , it is

clear from (4) (note that j1 in (4) is jold
1 , here).

Then assume that j1 �= jold
1 , i.e., j0 < j1 < jold

1 .
If c(N [i0, j1]) < 0, then j1 should be chosen
closer than the present j1 since the definition
of j1 and (10), contradiction. Thus we get

c(N [i0, j1]) = 0. (12)

We will show c(N [i1, j0]) < 0. For this pur-
pose, we make the following assumption and
lead contradiction:

Assumption 1: c(N [i1, j0]) = 0.

From Proposition 1 with A := N [i′′1 , j0],
B = N [j0 + 1, j1], C = N(j1, i1), and D = {i1}
(Figure 8 (a)), we obtain

c(N [i′′1 , j1]) + c(N [i1, j0])

= c(N [i′′1 , j0]) + c(N [i1, j1])

+2c(i1, N [j0 + 1, j1]).

Thus, by considering Assumption 1, (11), and
c(N [i1, j1]) ≤ 0 (because (1)),

c(N [i′′1 , j0]) − c(N [i′′1 , j1])

= c(N [i1, j0]) − c(N [i1, j1])

−2c(i1, N [j0 + 1, j1])

≥ 0.
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Figure 8: Applying Proposition 1

By considering Proposition 1 with A =
N [i0, j0], B = N [j0 + 1, j1], C = N [j1 + 1, i1],
and D = N [i′′1 , i′1] (Figure 8 (b)),

c(N [i′′1 , j0]) − c(N [i′′1 , j1])

= −c(N [i0, j1]) + c(N [i0, j0])

+2c(N [i′′1 , i′1],N [j0 + 1, j1]).

From (2), (8), and (12), we obtain

c(N [i′′1 , j0]) − c(N [i′′1 , j1]) < 0,

contradicting (13). Therefore, Assumption 1 is
denied, i.e.,

c(N [i1, j0]) < 0. (13)

Here, let i′′1 := i1 and i1 := i1 − 1 (i′1 is
not changed), then (6)–(8) also hold. Thus the
preceding discussion (from (6) to (13)) can be
also applied. However, N [i′′1 , i′1] becomes larger
in the new iteration. Thus, such procedure
must be stopped at most |N(j0, i0)| iterations.

Therefore, we must finally find i′ and j′ satis-
fying (a)–(c).

By setting the value of ∆ as (3), we can ap-
ply X(i0, j0, j

′, i′;∆) to G without violating the
relation G �c G∅.

Now, we have found a cross operation that
makes G be closer to G∅. By applying the
preceding discussion iteratively, we can find a
sequence of cross-operations that makes G be
closer to G∅. For completing the proof, we must
show that the length of the sequence is finite.
It is shown as follows.

Let G′ be a graph obtained by
applying X(i0, j0, j

′, i′;∆) to G. There are
three cases: (I) ∆ = c(i0, j0;G), (II) ∆ =
mini′<i≤i0, j0≤j<j′(−c(N [i, j];G))/2, and (III)
∆ = c(i′, j′;G). We consider each case as fol-
lows.

(I) ∆ = c(i0, j0;G). c(i0, j0;G′) becomes zero.
Then by applying Proposition 1 with A =
N(i0, j0), B = {j0}, C = N(j0, i0), and
D = {i0}, we obtain c(N [i0, j0];G′) = 0.
Thus, the number of zero-linear-cuts of G′

is greater than the one of G.

(II) ∆ = mini′<i≤i0, j0≤j<j′(−c(N [i, j];G))/2.
Let i′′ and j′′ be vertices satisfying i′ <

i′′ ≤ i0, j0 ≤ j′′ < j′, and ∆ =
−c(N [i′′, j′′];G)/2. c(N [i′′, j′′];G′) be-
comes zero. Thus, the number of zero-
linear-cuts of G′ is greater than the one
of G.

(III) ∆ = c(i′, j′;G). c(i′, j′;G′) becomes zero.
It is enough to assume c(i0, j0;G′) > 0,
because if c(i0, j0;G′) = 0, then case (I)
can be applied. We can find new i′ and
j′ satisfying (a)–(c). The number of pairs
(i′′, j′′) in G′ such that j0 < j′′ < i′′ < i0
and c(i′′, j′′) > 0 is smaller than the one
in G, so that (III) occurs successively at
most

(|N(j0,i0)|
2

)
< n2 times.

From (I)–(III), the number of zero-linear-cuts
increases during at most n2 cross-operations.
The number of linear-cuts is

(n
2

)
< n2. It fol-

lows that the length of the sequence of cross-

7
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operations is less than n4. By using the se-
quence, G is modified to G∅, i.e., G �o G∅. �

Proof of Theorem 1: Follows immediately from
Lemmas 1, 2, and 3. �

3 Concluding Remarks

This paper shows that three partial-orders �l,
�o, and �c are equivalent. For investigating
G �c G′, only linear-cuts are tested, thus it can
be determined in polynomial time. Therefore,
we can solve a problem of determining whether
or not SP (G) ≤ SP (G′) for any convex polygon
P for given two labeled weighted graphs G and
G′ in polynomial time. Moreover, if G �c G′,
we can find a sequence of cross-operations for
modifying G to G′ by using the discussion of
the proof of Lemma 3 in polynomial time.

In this paper, Euclidean distance is used.
However, for any distance (for example, Lk dis-
tance) in which the triangle inequality holds,
the same results can be obtained.
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