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We consider the following problem which is motivated by applications in Bioinformatics:
given positive and negative points in d-dimensions, find a minimum cardinality set of halfspaces
whose union covers all positive points and no negative points. We prove that approximation of
this problem is at least as hard as approximation of graph coloring. On the other hand, we show
that the two-dimensional case of the problem can be solved in polynomial time. Other related
results are shown, too.

1 Introduction

Separation of positive examples from negative examples using a hyperplane is an important
problem in both machine learning and statistics [2, 3, 6, 13]. Though it is a classic problem,
extensive studies are still being done motivated by the invention of the support vector machine
[6]. Recent studies focus on finding large margin classifiers [6].

Learning a mizture of models is another important problem in machine learning and statistics,
because a single model is not always enough to characterize the given data (the given examples).
Using multiple sets of parameters is also important in Bioinformatics, because parameter sets
(for example, amino acid scores) sometimes depend on environments [7, 15]. For example,
Dirichlet mizture was effectively applied to sequence analysis [7]. Many techniques have been
proposed for deriving a mixture of probability distributions such as the EM algorithm and local
search heuristics [4, 7]. Recently, Arora and Kannan proposed approximation algorithms for
deriving a mixture of Gaussian distributions [4].
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Figure 1: Separation of positive points from negative points using two halfspaces. White circles
and black circles denote positive points and negative points, respectively.

However, to our knowledge, there had been no algorithmic study on deriving a union or a
mixture of halfspaces from examples. Therefore, we study the computational complexity of this
problem and derive inapproximability as well as approximability results. Furthermore, we show
that this problem has a close relationship to the problem of deriving a PSSM (Position Specific
Score Matriz) from examples [1], where PSSMs are widely used in Bioinformatics [7]. We define
the problem in the following way, where a halfspace means a closed halfspace.

Problem 1.
Given point sets POS and N EG in d-dimensional Euclidean space, find a minimum cardinality

set of halfspaces {h1,..., i} such that POS C U h; and NEGN ( U hi) = 0.
i=1,...k i=1,...k
Along with the above, we consider the following decision problem.
Problem 2.
Given point sets POS and N EG in d-dimensional Euclidean space and an integer K, find a set

i=1,...,.K i=1,...,.K
It should be noted that there is a solution for K in Problem 2 if there is a solution for K — 1.
Hereafter, we let n = |[POS| and m = |[NEG]|.

In this paper, we prove that approximation of Problem 1 is at least as hard as approximation
of graph coloring. We also prove that Problem 2 is NP-hard even for K = 2. This result is inter-
esting because Problem 2 can be trivially solved in polynomial time using linear programming if
K = 1. On the other hand, we show that the two-dimensional case of Problem 1 can be solved
in polynomial time. We present approximation algorithms for a special case of Problem 1 and
variants (maximization of the number of correctly classified examples) of Problem 2. Though
the Boosting technique [10] might be applied to these problems, it would not solve the problems
optimally or near optimally because we derive strong hardness results.

of halfspaces {hi, ..., hx} such that POS C U h; and NEGN ( U hi) = 0.

2 Hardness Results
We briefly introduce the problem of deriving a mixture of PSSMs [1]. Let POS,ss, and

NEG pssm be sets of strings of length [ over an alphabet ¥. For a string S, S[i] denotes the i-th
letter of S. A PSSM is a function f;(a) from [1,...,1] X ¥ to the set of real numbers, where
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i€[l,...,l]] and a € X. For a string S and a PSSM f;(a), we define f(S) (the score of S) by
f(8) = Xizr, .0 fi(Si]).-
Problem 3. (Derivation of a Mixture of PSSMs)

Given X, POSpssm, NEG pssm and a positive integer K, find a set of K PSSMs and a threshold
© which satisfy the following conditions:

e For all S € POSpssm, f*(S) > © for some k € [1,..., K],
e For all S € NEG 55, and for all k € [1,..., K], f*(S) < 6,

where f* denotes the k-th PSSM.
It was proven in [1] that Problem 3 is NP-hard even for K = 2 and ¥ = {0, 1}.

Theorem 1.

Problem 2 is NP-hard even for K = 2.

(Proof)

We use a polynomial time reduction from Problem 3.

We identify ¥ with {1,2,...,|3|}. For a point p in (I|X|)-dimensional Euclidean space, pl[i]
denotes the i-th coordinate value of p. From each string S of length [ in POSssm U NEG pssm,
we create a point s by s[|X|(: — 1) + S[i]] =1 for i = 1,...,1, s[j] = 0 for the other j.

We identify a PSSM f;(a) with an (I|X])-dimensional vector a by a[|X|(i — 1) 4+ a] = f;(a)
fori=1,...,land a=1,...,|X|.

Then, we have the following relation:

f(S)y>0iff. a-s >0,

where a- s is the inner product between a and s. That is, each PSSM corresponds to a halfspace.
It should be noted that each halfspace a - s > 6 can be normalized so that the righthand side
value takes ©.

From this relation, it is straight-forward to see the following:

there exists a solution ({f!,..., fX},0) for Problem 3 iff.
there exists a solution { al - > 0O, ..., a® -z > O } for Problem 2.

Therefore, the theorem follows from the NP-hardness result on Problem 3 [1]. O

Theorem 2.
Problem 3 can not be approximated within a factor of O(n!~¢) for any € > 0 in polynomial time
unless ZPP = NP, where n denotes the number of positive strings.

(Proof)

We construct an approzimation preserving reduction from Minimum Graph Coloring (GT4 in
[11]) to Problem 3. Let G = (V, E') be an undirected graph. We define POS¢ as

POSg = {0i=110" | 2; € V},

where we choose an arbitrary ordering of the vertices in V' and n = |V|. Furthermore, we define
NEGq as

NEGq = {077110777110"77 | (z;,2;) € E, i < j}U{0"}.

! We say that a minimization problem (resp. a maximization problem) can be approximated within a factor of

f(n) if there is an algorithm for which max(55%, $5%) < f(n) holds where APR and OPT are the scores of an

approximate solution and an optimal solution, respectively.
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I = (POSg, NEGg) forms an input for Problem 3. We denote strings of POS¢ corresponding
to vertex x; as w,, and strings of NEG g corresponding to e € E as we.

It suffices to show, that there is a solution for I with K matrices, iff G can be colored with
K colors. Let g : V — {1,..., K} be a coloring for G. For k € {1,..., K}, we define a PSSM
fE. Letiec{1,...,n} and a € {0,1}.

0 ifa=0
fik(a) = {1 ifa=1, g(x;) =k
-1 ifa=1, g(z;) # k

With © = 1, f* accepts all strings of POS¢, which correspond to a vertex colored with color
k. Since every string in N FG g corresponds to an edge of G and all edges of G connect vertices
with different colors, all negative strings are rejected by all PSSMs. Therefore, f1,..., fK is a
solution for I with K PSSMs.

For the proof of the opposite direction, suppose there is a solution for I with K PSSMs. For
every vertex x;, we choose a PSSM f* accepting wg, and color x; with color k. If there were an
edge (zj,x;) € E with both x; and x; colored with the same color k, we could conclude

S Wiy + FHOM) = fF(wg,) + fF(we,) > 20,

which is a contradiction to f* rejecting both Wz, ;) and 0™

Thus, the above construction of an input for Problem 3 yields an approximation preserving
reduction from Minimum Graph Coloring to Problem 3. Since Minimum Graph Coloring can
not be approximated within O(|V|*~¢) unless ZPP = NP ([9]), we have the theorem. O

Using the reduction in the proof of Theorem 1, we have:

Corollary 1.
Problem 1 can not be approximated within a factor of O(n!~¢) for any € > 0 in polynomial time
unless ZPP = NP.

In [1], it was shown that a set of |[POS| PSSMs can be computed by linear programming. Though
it is a trivial solution to compute one PSSM for each positive string, this simple algorithm is
surprisingly nearly optimal, since Theorem 2 implies that the minimal number of PSSMs can
not be approximated within a factor of O(|POS|!~¢).

3 A Polynomial Time Algorithm in Two-Dimensions

We assume without loss of generality that all points in POSUN EG are in general positions (i.e.,
no three points are collinear), where we can modify the algorithm for a general case without
increasing the order of the time complexity.

For sets X and Y, X —Y denotes the subset of X obtained by removing X NY from X. Let
Q2 denote the convex hull [8] of N EG, where the boundary is included in Q. Let 0£2 denote the
boundary of 2 and 27 = Q — §Q2. Similarly, §h denotes the boundary of a halfplane h.

Proposition 1. (see Fig. 2)

For each halfplane h such that h " NEG = () and h N POS # (), there exists a halfplane
B’ satisfying the following conditions: (i) A’ N Q~ = @, (ii)) (h N POS) C (A’ N POS), (iii)
| N NEG| =1, (iv) [60h' N POS| = 1.

(Proof)

First, simply translate h so that the intersection with N EG consists of exactly one point. Next,
rotate the halfplane around the point so that the intersection of the boundary with POS consists
of exactly one point. O
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Figure 3: Explanation of Algorithm 1. T'i] is updated if the halftone region (h}; — h; — h;) does
not contain a point of POS.

It follows that there exists a solution for Problem 1 and Problem 2 in which each halfplane
is obtained by slightly perturbing a halfplane satisfying the conditions of Proposition 1.

Let H be the set of halfplanes satisfying the conditions of Proposition 1, where the number
of such halfplanes is O(n). We fix an arbitrary element hg in H. For each halfplane h, we define
angle(h) (the angle of h to hg) as follows. Let g be the intersection point of 64 and dhg. Assume
that ho coincides with h if hg is rotated clockwise around g by A radian (0 < A < 27). Then,
we define angle(h) = A.

We define the order on halfplanes by h < K iff. angle(h) < angle(h’). For example,
ho < h} < hj < hi < h; holds for halfplanes in Fig. 3. It should be noted that angle(h) is a
bijection from H to [0,2) if the domain of angle(h) is restricted to H. Since each h € H is
tangent to €2, the ordering gives the total order on H. This ordering allows us to use dynamic
programming.

Let < q;,4q>,...,q; > be the points in 62 N NEG, where these points are arranged in the
clockwise order. For each h € H, h* is the halfplane such that h* D {q;,q;,_1} and R*"NQ~™ =0
hold, where q; = hN NEG and q, = q;,.- Let < hg,h1,...,hx > be the sorted list of H. For
each pair of halfplanes (h;, h;) such that j < i, we define h}, by h},; = (Ukzjz hZ) — b}, where
hs; =0 if b} = h}.

Algorithm 1 shown below (see also Fig. 3) outputs the minimum number of halfplanes, where
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it can be easily modified for computing the halfplanes. Though we assume that hg # h;, holds
for the optimal solution < h;; = hg, hi,, ..., h;, >, Algorithm 1 can be modified for the case of
hg = h;, without increasing the order of the time complexity.

ALGORITHM 1
Construct the convex hull 2 of NEG,
if POSNQ # () then output “no solution” and halt;
k «— 4o00;
for all hy € H do k «— min(k,SUBPROC (hy));
Output k;

SUBPROC (k)

Let < hg, h1,...,hxy > be the sorted list of H;
if ho N POS = POS return 1;
T[0] < 1;
for i =1 to N do T[i] «— +oc;
for i =1to N do

for j=0toi—1do

if (h, N POS) C h; U h; then T[] « min(T[i], T[j] + 1);

for i =1to N do

if (POS — hj;) — (ho U i) # 0 then T[] « +o;
return min{7T'[i] | i =1,...,N,h} # h{};

Algorithm 1.

Theorem 3.
The two-dimensional case of Problem 1 can be solved in polynomial time.

(Proof)

First, we show the correctness of Algorithm 1. Clearly, Problem 1 has a solution if and only if
POSNQ=10.

From Proposition 1, it suffices to find a minimum cardinality set of halfplanes satisfying
POS C Uh; and the conditions of Proposition 1. Let H,,; be such a set.

Then, we can put the total order on H,, by choosing an arbitrary element hg in Hopy.
Let < hg = hi, hiy,...,h;, > be the ordered list of H,,. Since all the elements in POS

must be covered by Uh;, , (h;‘kj,iHl OPOS) C hi; Uh must hold for j = 1,...,k— 1 and

(POS — haik) C (hoUh;, ) must hold. Algorithm 1 finds a smallest H ,; satisfying this condition.
Next we analyze the time complexity. The convex hull of NEG can be constructed in

O(mlogm) time [8]. Before applying the dynamic programming, we compute h} ;N POS for all

i,j. It takes O((n 4+ m)?n) time using an incremental procedure, where we omit details. Since

both |H| and |POS| are O(n), the dynamic programming procedure takes O(n?) time per hq.
Therefore, Algorithm 1 takes O(n* + m?n) time in total. O

Tj41

4 Approximation Algorithms in d-Dimensions

In this section, we assume that all points in POS U N EG are in general positions. It is easy to
see that Problem 2 can be solved in polynomial time if both d and K are fixed.

Proposition 2.
Problem 2 can be solved in O((n + m)?®+1) time for constants d and K.
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Using a reduction to the set cover problem [11, 12], we can also have:

Proposition 3.
Problem 1 can be approximated within a factor of O(logn) in O((n 4 m)®*1) time if d is a
constant.

From a practical viewpoint, it is more important to develop algorithms for minimizing the
number of misclassified examples or maximizing the number of correctly classified examples,
where the number of halfspaces is bounded by a constant K. We consider the latter case in
this paper, because it seems difficult to develop a good approximation algorithm for the former
problem [3]. Let H be a set of halfspaces. p € POS (resp. p € NEG) is called a true positive
(resp. a false positive) if p € h for some h € H. p € NEG (resp. p € POS) is called a true
negative (resp. false negative) if p ¢ h for any h € H. Let #TP and #F P denote the numbers
of true positives and false positives, respectively. Let #TN and #F N denote the numbers of
true negatives and false negatives, respectively. The following proposition is almost trivial (or
directly follows from the result of Amaldi and Kann [2]).

Proposition 4.
The maximization problem of #TP + #T N can be approximated within a factor of 2 in poly-
nomial time.

We are also interested in maximizing #71'P under the condition that #F P = 0 since it is
sometimes important not to output false positives. We call it Problem 4. Clearly, Problem 4 is
NP-hard even for K = 2. We propose a simple randomized approximation algorithm (Algorithm
2) for the case of K = 2.

ALGORITHM 2

Let R be a set of r points randomly selected from PO.S;

Hmaac — @;

for all partition 1 U Ry of R do
H « (;
if there is a halfspace h; such that hi N Ry = Ry and hi N NEG = ()
then H «— H U hy;
if there is a halfspace hg such that ho N Ry = Ry and ho N NEG = ()
then H «— H U ho;
if |H N POS| > |Hpax N POS| then H,pop — H;

Output Hnaz;

Algorithm 2.

The performance of Algorithm 2 is poor if #7'P in the optimal solution is small (e.g., #1P
is O(logn)). However, such a case is meaningless since we need a classifier with small errors.
Therefore, we are interested in the case where #TP is large enough in the optimal solution.
In order to analyze Algorithm 2 for such a case, we use [3-center points. A point ¢ € R?
is called a (-center point of a point set P if every closed halfspace containing ¢ contains at
least On points of P [5]. Clarkson et al. showed that (di—l - e) -center point can be found in
O((d/e)*1og(d/e))*OM 1og(1/4)) time with probability 1—§ by using O((d/€)-log(d/€)-log(1/4))
elements randomly sampled from P.

Theorem 4.
Let K = 2. Suppose that #TP > n/2 holds in the optimal solution for Problem 4. For any
constants d, § > 0 and € > 0, Algorithm 2 outputs a pair of hyperplanes such that #FP = 0

and #TP > 7 - (ﬁ - e) in O(n +m) time with probability 1 — .
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(Sketch of Proof)
Let (hg, hy) be an optimal solution, where we assume without loss of generality that |h ,NPOS| >
|hy N POS|. Using a sufficiently large constant r, there exists R; with high probability which

can be considered as a random sample of size O((d/¢) -log(d/€) -log(1/9)) from h ,N POS. Since
hy contains Ry and |h, N POS| > 7% holds, hy contains 7 - (di—l — e) points of POS with high
probability.

Since r is a constant and linear programming can be done in linear time for fixed d [14],
Algorithm 2 works in linear time. O

It should be noted that Problem 4 can be solved exactly in O((n+m)%5+1) time for fixed d and
K as in Proposition 2.
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