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半空間を利用して分類を行う研究はサポートベクタマシンなどを始めとして盛んに行われている。
本稿では、ユークリッド空間上の正例と負例が与えられた時、半空間の和集合を用いて分離する
問題を考える。なお、和集合は正例のみをカバーするものとする。本稿では、分離するために必
要な半空間の個数を最小化する問題について主に考察し、一般にはグラフ彩色問題と少なくとも
同等以上に近似困難であることを示す。一方、２次元においては多項式時間で最適解が計算でき
ることも示す。さらに、近似的に分類する場合などの関連する結果についても示す。

Inferring a Union of Halfspaces from Examples

Tatsuya Akutsu1,2 　 Sascha Ott3

1Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Gokasho, Uji, Kyoto-Fu 611-0011, Japan.

2Dept. Intelligence Science and Technology, Graduate School of Informatics, Kyoto University,
Yoshidahoncho, Sakyo-ku, Kyoto 606-8501, Japan.

3Human Genome Center, Institute of Medical Science, University of Tokyo,
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
takutsu@kuicr.kyoto-u.ac.jp ott@ims.u-tokyo.ac.jp

We consider the following problem which is motivated by applications in Bioinformatics:
given positive and negative points in d-dimensions, find a minimum cardinality set of halfspaces
whose union covers all positive points and no negative points. We prove that approximation of
this problem is at least as hard as approximation of graph coloring. On the other hand, we show
that the two-dimensional case of the problem can be solved in polynomial time. Other related
results are shown, too.

1 Introduction

Separation of positive examples from negative examples using a hyperplane is an important
problem in both machine learning and statistics [2, 3, 6, 13]. Though it is a classic problem,
extensive studies are still being done motivated by the invention of the support vector machine
[6]. Recent studies focus on finding large margin classifiers [6].

Learning a mixture of models is another important problem in machine learning and statistics,
because a single model is not always enough to characterize the given data (the given examples).
Using multiple sets of parameters is also important in Bioinformatics, because parameter sets
(for example, amino acid scores) sometimes depend on environments [7, 15]. For example,
Dirichlet mixture was effectively applied to sequence analysis [7]. Many techniques have been
proposed for deriving a mixture of probability distributions such as the EM algorithm and local
search heuristics [4, 7]. Recently, Arora and Kannan proposed approximation algorithms for
deriving a mixture of Gaussian distributions [4].
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Figure 1: Separation of positive points from negative points using two halfspaces. White circles
and black circles denote positive points and negative points, respectively.

However, to our knowledge, there had been no algorithmic study on deriving a union or a
mixture of halfspaces from examples. Therefore, we study the computational complexity of this
problem and derive inapproximability as well as approximability results. Furthermore, we show
that this problem has a close relationship to the problem of deriving a PSSM (Position Specific
Score Matrix) from examples [1], where PSSMs are widely used in Bioinformatics [7]. We define
the problem in the following way, where a halfspace means a closed halfspace.
Problem 1.
Given point sets POS and NEG in d-dimensional Euclidean space, find a minimum cardinality

set of halfspaces {h1, . . . , hk} such that POS ⊆
⋃

i=1,...,k

hi and NEG∩

 ⋃

i=1,...,k

hi


 = ∅.

Along with the above, we consider the following decision problem.
Problem 2.
Given point sets POS and NEG in d-dimensional Euclidean space and an integer K, find a set

of halfspaces {h1, . . . , hK} such that POS ⊆
⋃

i=1,...,K

hi and NEG∩

 ⋃

i=1,...,K

hi


 = ∅.

It should be noted that there is a solution for K in Problem 2 if there is a solution for K − 1.
Hereafter, we let n = |POS| and m = |NEG|.

In this paper, we prove that approximation of Problem 1 is at least as hard as approximation
of graph coloring. We also prove that Problem 2 is NP-hard even for K = 2. This result is inter-
esting because Problem 2 can be trivially solved in polynomial time using linear programming if
K = 1. On the other hand, we show that the two-dimensional case of Problem 1 can be solved
in polynomial time. We present approximation algorithms for a special case of Problem 1 and
variants (maximization of the number of correctly classified examples) of Problem 2. Though
the Boosting technique [10] might be applied to these problems, it would not solve the problems
optimally or near optimally because we derive strong hardness results.

2 Hardness Results

We briefly introduce the problem of deriving a mixture of PSSMs [1]. Let POSpssm and
NEGpssm be sets of strings of length l over an alphabet Σ. For a string S, S[i] denotes the i-th
letter of S. A PSSM is a function fi(a) from [1, . . . , l]× Σ to the set of real numbers, where

-2-

研究会Temp 
－74－



i ∈ [1, . . . , l] and a ∈ Σ. For a string S and a PSSM f i(a), we define f(S) (the score of S) by
f(S) =

∑
i=1,...,l fi(S[i]).

Problem 3. (Derivation of a Mixture of PSSMs)
Given Σ, POSpssm, NEGpssm and a positive integer K, find a set of K PSSMs and a threshold
Θ which satisfy the following conditions:

• For all S ∈ POSpssm, fk(S) ≥ Θ for some k ∈ [1, . . . , K],

• For all S ∈ NEGpssm and for all k ∈ [1, . . . , K], f k(S) < Θ,

where fk denotes the k-th PSSM.

It was proven in [1] that Problem 3 is NP-hard even for K = 2 and Σ = {0, 1}.
Theorem 1.
Problem 2 is NP-hard even for K = 2.
(Proof)
We use a polynomial time reduction from Problem 3.

We identify Σ with {1, 2, . . . , |Σ|}. For a point p in (l|Σ|)-dimensional Euclidean space, p[i]
denotes the i-th coordinate value of p. From each string S of length l in POSpssm ∪NEGpssm,
we create a point s by s[|Σ|(i− 1) + S[i]] = 1 for i = 1, . . . , l, s[j] = 0 for the other j.

We identify a PSSM fi(a) with an (l|Σ|)-dimensional vector a by a[|Σ|(i− 1) + a] = f i(a)
for i = 1, . . . , l and a = 1, . . . , |Σ|.

Then, we have the following relation:

f(S) ≥ Θ iff. a · s ≥ Θ,

where a ·s is the inner product between a and s. That is, each PSSM corresponds to a halfspace.
It should be noted that each halfspace a · s ≥ θ can be normalized so that the righthand side
value takes Θ.

From this relation, it is straight-forward to see the following:

there exists a solution ({f 1, . . . , fK}, Θ) for Problem 3 iff.
there exists a solution { a1 · x ≥ Θ, . . . , aK · x ≥ Θ } for Problem 2.

Therefore, the theorem follows from the NP-hardness result on Problem 3 [1]. �

Theorem 2.
Problem 3 can not be approximated within a factor of O(n1−ε) for any ε > 0 in polynomial time
unless ZPP = NP , where n denotes the number of positive strings. 1

(Proof)
We construct an approximation preserving reduction from Minimum Graph Coloring (GT4 in
[11]) to Problem 3. Let G = (V, E) be an undirected graph. We define POSG as

POSG = {0i−110n−i | xi ∈ V },
where we choose an arbitrary ordering of the vertices in V and n = |V |. Furthermore, we define
NEGG as

NEGG = {0i−110j−i−110n−j | (xi, xj) ∈ E, i < j} ∪ {0n}.

1 We say that a minimization problem (resp. a maximization problem) can be approximated within a factor of
f(n) if there is an algorithm for which max(APR

OPT
, OPT

APR
) ≤ f(n) holds where APR and OPT are the scores of an

approximate solution and an optimal solution, respectively.
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I = (POSG, NEGG) forms an input for Problem 3. We denote strings of POSG corresponding
to vertex xi as wxi and strings of NEGG corresponding to e ∈ E as we.

It suffices to show, that there is a solution for I with K matrices, iff G can be colored with
K colors. Let g : V → {1, . . . , K} be a coloring for G. For k ∈ {1, . . . , K}, we define a PSSM
fk. Let i ∈ {1, . . . , n} and a ∈ {0, 1}.

fk
i (a) =




0 if a = 0
1 if a = 1, g(xi) = k
-1 if a = 1, g(xi) �= k

With Θ = 1, fk accepts all strings of POSG, which correspond to a vertex colored with color
k. Since every string in NEGG corresponds to an edge of G and all edges of G connect vertices
with different colors, all negative strings are rejected by all PSSMs. Therefore, f 1, . . . , fK is a
solution for I with K PSSMs.

For the proof of the opposite direction, suppose there is a solution for I with K PSSMs. For
every vertex xi, we choose a PSSM fk accepting wxi and color xi with color k. If there were an
edge (xi, xj) ∈ E with both xi and xj colored with the same color k, we could conclude

fk(w(xi,xj)) + fk(0n) = fk(wxi) + fk(wxj) ≥ 2Θ,

which is a contradiction to f k rejecting both w(xi,xj) and 0n.
Thus, the above construction of an input for Problem 3 yields an approximation preserving

reduction from Minimum Graph Coloring to Problem 3. Since Minimum Graph Coloring can
not be approximated within O(|V |1−ε) unless ZPP = NP ([9]), we have the theorem. �

Using the reduction in the proof of Theorem 1, we have:

Corollary 1.
Problem 1 can not be approximated within a factor of O(n1−ε) for any ε > 0 in polynomial time
unless ZPP = NP .

In [1], it was shown that a set of |POS| PSSMs can be computed by linear programming. Though
it is a trivial solution to compute one PSSM for each positive string, this simple algorithm is
surprisingly nearly optimal, since Theorem 2 implies that the minimal number of PSSMs can
not be approximated within a factor of O(|POS|1−ε).

3 A Polynomial Time Algorithm in Two-Dimensions

We assume without loss of generality that all points in POS∪NEG are in general positions (i.e.,
no three points are collinear), where we can modify the algorithm for a general case without
increasing the order of the time complexity.

For sets X and Y , X −Y denotes the subset of X obtained by removing X ∩Y from X . Let
Ω denote the convex hull [8] of NEG, where the boundary is included in Ω. Let δΩ denote the
boundary of Ω and Ω− = Ω− δΩ. Similarly, δh denotes the boundary of a halfplane h.

Proposition 1. (see Fig. 2)
For each halfplane h such that h ∩ NEG = ∅ and h ∩ POS �= ∅, there exists a halfplane
h′ satisfying the following conditions: (i) h ′ ∩ Ω− = ∅, (ii) (h ∩ POS) ⊆ (h′ ∩ POS), (iii)
|h′ ∩ NEG|= 1, (iv) |δh′ ∩ POS| = 1.
(Proof)
First, simply translate h so that the intersection with NEG consists of exactly one point. Next,
rotate the halfplane around the point so that the intersection of the boundary with POS consists
of exactly one point. �
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Figure 2: Explanation of Proposition 1.
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Figure 3: Explanation of Algorithm 1. T [i] is updated if the halftone region (h ∗
j,i−hj −hi) does

not contain a point of POS.

It follows that there exists a solution for Problem 1 and Problem 2 in which each halfplane
is obtained by slightly perturbing a halfplane satisfying the conditions of Proposition 1.

Let H be the set of halfplanes satisfying the conditions of Proposition 1, where the number
of such halfplanes is O(n). We fix an arbitrary element h0 in H . For each halfplane h, we define
angle(h) (the angle of h to h0) as follows. Let q be the intersection point of δh and δh0. Assume
that h0 coincides with h if h0 is rotated clockwise around q by A radian (0 ≤ A < 2π). Then,
we define angle(h) = A.

We define the order on halfplanes by h ≺ h′ iff. angle(h) < angle(h′). For example,
h0 ≺ h∗

j ≺ hj ≺ h∗
i ≺ hi holds for halfplanes in Fig. 3. It should be noted that angle(h) is a

bijection from H to [0, 2π) if the domain of angle(h) is restricted to H . Since each h ∈ H is
tangent to Ω, the ordering gives the total order on H . This ordering allows us to use dynamic
programming.

Let < q1, q2, . . . , qh > be the points in δΩ ∩ NEG, where these points are arranged in the
clockwise order. For each h ∈ H , h∗ is the halfplane such that h∗ ⊃ {qi, qi−1} and h∗ ∩ Ω− = ∅
hold, where qi = h ∩ NEG and q0 = qh. Let < h0, h1, . . . , hN > be the sorted list of H . For
each pair of halfplanes (hj, hi) such that j < i, we define h∗

j,i by h∗
j,i =

(⋃
k=j,...,i h∗

k

)
−h∗

j , where
h∗

j,i = ∅ if h∗
j = h∗

i .
Algorithm 1 shown below (see also Fig. 3) outputs the minimum number of halfplanes, where
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it can be easily modified for computing the halfplanes. Though we assume that h∗
0 �= h∗

ik
holds

for the optimal solution < hi1 = h0, hi2, . . . , hik >, Algorithm 1 can be modified for the case of
h∗

0 = h∗
ik

without increasing the order of the time complexity.

ALGORITHM 1
Construct the convex hull Ω of NEG;
if POS ∩ Ω �= ∅ then output “no solution” and halt;
k ← +∞;
for all h0 ∈ H do k ← min(k,SUBPROC(h0));
Output k;

SUBPROC(h0)
Let < h0, h1, . . . , hN > be the sorted list of H ;
if h0 ∩ POS = POS return 1;
T [0]← 1;
for i = 1 to N do T [i]← +∞;
for i = 1 to N do

for j = 0 to i− 1 do
if

(
h∗

j,i

⋂
POS

)
⊆ hj ∪ hi then T [i]← min(T [i], T [j] + 1);

for i = 1 to N do
if

(
POS − h∗

0,i

)
− (h0 ∪ hi) �= ∅ then T [i]← +∞;

return min{T [i] | i = 1, . . . , N, h ∗
i �= h∗

0};

Algorithm 1.

Theorem 3.
The two-dimensional case of Problem 1 can be solved in polynomial time.
(Proof)
First, we show the correctness of Algorithm 1. Clearly, Problem 1 has a solution if and only if
POS ∩ Ω = ∅.

From Proposition 1, it suffices to find a minimum cardinality set of halfplanes satisfying
POS ⊆ ∪hi and the conditions of Proposition 1. Let Hopt be such a set.

Then, we can put the total order on Hopt by choosing an arbitrary element h0 in Hopt.
Let < h0 = hi1 , hi2, . . . , hik > be the ordered list of Hopt. Since all the elements in POS

must be covered by ∪hik ,
(
h∗

ij ,ij+1
∩ POS

)
⊆ hij ∪ hij+1 must hold for j = 1, . . . , k − 1 and(

POS − h∗
0,ik

)
⊆ (h0∪hik ) must hold. Algorithm 1 finds a smallest Hopt satisfying this condition.

Next we analyze the time complexity. The convex hull of NEG can be constructed in
O(m logm) time [8]. Before applying the dynamic programming, we compute h ∗

i,j ∩POS for all
i, j. It takes O((n + m)2n) time using an incremental procedure, where we omit details. Since
both |H | and |POS| are O(n), the dynamic programming procedure takes O(n3) time per h0.

Therefore, Algorithm 1 takes O(n4 + m2n) time in total. �

4 Approximation Algorithms in d-Dimensions

In this section, we assume that all points in POS ∪NEG are in general positions. It is easy to
see that Problem 2 can be solved in polynomial time if both d and K are fixed.
Proposition 2.
Problem 2 can be solved in O((n + m)dK+1) time for constants d and K.
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Using a reduction to the set cover problem [11, 12], we can also have:
Proposition 3.
Problem 1 can be approximated within a factor of O(logn) in O((n + m) d+1) time if d is a
constant.

From a practical viewpoint, it is more important to develop algorithms for minimizing the
number of misclassified examples or maximizing the number of correctly classified examples,
where the number of halfspaces is bounded by a constant K. We consider the latter case in
this paper, because it seems difficult to develop a good approximation algorithm for the former
problem [3]. Let H be a set of halfspaces. p ∈ POS (resp. p ∈ NEG) is called a true positive
(resp. a false positive) if p ∈ h for some h ∈ H . p ∈ NEG (resp. p ∈ POS) is called a true
negative (resp. false negative) if p /∈ h for any h ∈ H . Let #TP and #FP denote the numbers
of true positives and false positives, respectively. Let #TN and #FN denote the numbers of
true negatives and false negatives, respectively. The following proposition is almost trivial (or
directly follows from the result of Amaldi and Kann [2]).
Proposition 4.
The maximization problem of #TP + #TN can be approximated within a factor of 2 in poly-
nomial time.

We are also interested in maximizing #TP under the condition that #FP = 0 since it is
sometimes important not to output false positives. We call it Problem 4. Clearly, Problem 4 is
NP-hard even for K = 2. We propose a simple randomized approximation algorithm (Algorithm
2) for the case of K = 2.

ALGORITHM 2
Let R be a set of r points randomly selected from POS;
Hmax ← ∅;
for all partition R1 ∪R2 of R do

H ← ∅;
if there is a halfspace h1 such that h1 ∩ R1 = R1 and h1 ∩ NEG = ∅
then H ← H ∪ h1;
if there is a halfspace h2 such that h2 ∩ R2 = R2 and h2 ∩ NEG = ∅
then H ← H ∪ h2;
if |H ∩ POS| > |Hmax ∩ POS| then Hmax ← H ;

Output Hmax;

Algorithm 2.

The performance of Algorithm 2 is poor if #TP in the optimal solution is small (e.g., #TP

is O(logn)). However, such a case is meaningless since we need a classifier with small errors.
Therefore, we are interested in the case where #TP is large enough in the optimal solution.
In order to analyze Algorithm 2 for such a case, we use β-center points. A point c ∈ Rd

is called a β-center point of a point set P if every closed halfspace containing c contains at
least βn points of P [5]. Clarkson et al. showed that

(
1

d+1 − ε
)
-center point can be found in

O((d/ε)2 log(d/ε))d+O(1) log(1/δ)) time with probability 1−δ by using O((d/ε)·log(d/ε)·log(1/δ))
elements randomly sampled from P .
Theorem 4.
Let K = 2. Suppose that #TP > n/2 holds in the optimal solution for Problem 4. For any
constants d, δ > 0 and ε > 0, Algorithm 2 outputs a pair of hyperplanes such that #FP = 0
and #TP ≥ n

4 ·
(

1
(d+1) − ε

)
in O(n + m) time with probability 1− δ.
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(Sketch of Proof)
Let (ha, hb) be an optimal solution, where we assume without loss of generality that |h a∩POS| ≥
|hb ∩ POS|. Using a sufficiently large constant r, there exists R1 with high probability which
can be considered as a random sample of size O((d/ε) · log(d/ε) · log(1/δ)) from h a∩POS. Since
h1 contains R1 and |ha ∩ POS| ≥ n

4 holds, h1 contains n
4 ·

(
1

d+1 − ε
)

points of POS with high
probability.

Since r is a constant and linear programming can be done in linear time for fixed d [14],
Algorithm 2 works in linear time. �

It should be noted that Problem 4 can be solved exactly in O((n+m)dK+1) time for fixed d and
K as in Proposition 2.
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