gooooao 850 O
ogooooboooooo

FPCA % Fi\WW/= CKY N—Y v 7 o Edt,

R WEEA, ROV - T %)b, R
Bldl\ ey S e ST i PNE S Ty NE 2
TR BL AR ZER
T 923-1292 f7)IIIRAESERDR DHTIE A 1-1
(yasuaki,bordim,knakano)@jaist.ac.jp

AT, UREBESTRICHT S CKY A=Y U 7 % BT) ATMKERIBIC L5 FPGA NOFELRET
5. XIRBHEEE G L XXFF| e MEXONEL 2T, CKY A=Y U713 Gz 2 BT 20BN R HET L. 20
CKY R=Y V7%, z DRI n 0L X, O0®) BETENT L1 2HETLTEL 22 hTn 5, 8D
XIRE AL GMREZ S & &1, ZO3RTHT S CKY RX=Y V7 %475 N—K 7= 7 d Velilog HDL i %
ERTEIN-R0 27V =23V —F%2R7. ERINERIE, FPGAICERESHh, RO FES) ¢ icxL ¢, GM®
z ZEETLIEHET S, 2D FPGA IR, FFEOXEGRML TORNS—V VT 2ITIDT, NIMEEN—-F U=
TTHY, BBOERIDFETHS. ZON—R =T OWREEZ ¥ A IV TITICKVEHMEL, ¥z, 7T oD
FPGA % W CEMEMER2/To 2. BERELT, VIMT=7ICES CKY X—=Y U7 XV 150 fEmichH b 2 &
Rhh -7,

Accelerating the CKY Parsing using FPGAs !

Y. Ito, J. L. Bordim, K. Nakano
School of Information Science
Japan Advanced Institute of Science and Technology
1-1, Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
(yasuaki,bordim,knakano)@jaist.ac.jp

The main contribution of this paper is to present an FPGA-based implementation of an instance-specific
hardware which accelerates the CKY (Cook-Kasami- Younger) parsing for context-free grammars. Given a context-
free grammar G and a string z, the CKY parsing determines if G derives z. It is well-known that the CKY parsing
runs in O(n®) time, where n is the length of 2. We provide an instance-specific hardware that accelerates the CKY
parsing. More precisely, we present a hardware generator that creates a Verilog HDL hardware source performing
the CKY parsing for any given context-free grammar G. The created source is embedded in an FPGA using the
design software provided by the FPGA vendor. For any given string z, the FPGA determines if G derives z.
Since the FPGA performs parsing for a particular context-free grammar G, it is an instance-specific hardware that
allows us to achieve extreme acceleration. We evaluate the instance-specific hardware generated by our hardware
generator using a timing analyzer and test it using the Altera FPGAs. Since the generated hardware attains a
speed-up factor of approximately 750 over the software CKY parsing algorithm, we believe that our approach is
a promising solution.

1 Work supported in part by the Ministry of Education, Science, Sports, and Culture, Government of Japan, Grant-in-Aid
for Exploratory Research (90113133).

0 350

研究会Temp
ア ル ゴ リ ズ ム

研究会Temp
85－６

研究会Temp
（２００２． ７． ２５）

研究会Temp
－35－

1 Introduction

An FPGA (Field Programmable Gate Array) is a
programmable VLSI in which a hardware designed
by users can be embedded instantly. Typical FP-
GAs consist of an array of programmable logic el-
ements, distributed memory blocks, and program-
mable interconnections between them. The logic
block usually contains either a two-input logic func-
tion or a 4-to-1 multiplexer and several flip-flops.
The distributed memory block is usually a dual-port
RAM on which a word of data for possibly distinct
addresses can be read/written at the same time.
The user’s hardware logic design can be embedded
into the FPGAs using the design tools supplied by
the FPGA vendor. Our goal is to use the FPGAs
to accelerate useful computations. In particular,
the challenge is to develop FPGA-based solutions
which are faster and more efficient than traditional
software approaches.

Our basic idea for accelerating computations us-
ing the FPGAs is inspired by the notion of partial
computation [5]. Let f(z,y) be a function to be
evaluated in order to solve a given problem. Note
that such a function might be repeatedly evalu-
ated only for a fixed . When this is the case, the
computation of f(z,y) can be simplified by eval-
uating an instance-specific function f, such that
f=(y) = f(z,y). For example, imagine a prob-
lem such that an algorithm to solve it evaluates
f(z,y) = 23 + 2%y + y repeatedly. If f(z,y) is eval-
uated only for = 2, then the formula can be sim-
plified such that fo(y) = 8 + 5y. The optimization
of function f, for a particular z is called a partial
computation. Usually, a partial computation has
been used for optimizing a function f, in the con-
text of software, i.e., sequential programs [5]. Our
novel idea is to built a hardware that is optimized
to compute f;(y) for a fixed z and various y. More
specifically, our goal is to present an FPGA-based
instant-specific solution for problems that involves
a function evaluation for f(z,y) satisfying the fol-
lowing property:

o the value of a fixed instance = depends on the
instance of the problem, and

e the value of f(z,y) is evaluated repeatedly for
various y, to solve the problem.

The FPGA-based instance-specific solution that we
propose evaluates f(y) (= f(z,y)) using a hard-
ware for function f,. If the problem we need to
solve satisfies these properties, it is worth attempt-
ing the instance-specific solution.

Let us consider a simple, but practical applica-
tion, that involves a function evaluation satisfying
the properties aforementioned. Let f be a func-
tion such that f(z,y) returns the value indicating
the similarity of two images ¢ and y. We assume
that f(z,y) takes a larger value when = and y are
more similar. Given a query image z and a database
storing a number of images y1,¥s2, - - - , Yn, the image
searching problem asks to find the most similar im-
age to x. We can solve the image searching problem
by computing f(xa yl): f(xayQ)a LR f(xayn) in turn
and taking their maximum. The instance-specific
solution for this problem is to build a hardware in
the FPGA that evaluates f;(y) (= f(z,y)) for a
fixed image x and various y. This FPGA-based so-
lution for the image searching has been presented
in [7].

The advantage of our instance-specific solution
using an FPGA is that the evaluation time of f,
by the FPGA can be faster than that of f(z,y) by
software. Although sometimes it may need several
hours to generate the circuit design for f, and em-
bed it into the FPGA, the total computing time
can be improved if f(x,y) needs to be evaluated for
a number of times. For example, if the database
has a huge number of images, i.e. n is very large,
the evaluation time for f(x,y) is dominant. Even
if the preprocessing time necessary to compile and
embed the circuit for f, takes several hours, we can
accelerate the entire computing time. Further, note
that an ASIC (Application-Specific Integrated Cir-
cuit) cannot be used instead of the FPGA, although
ASICs are much faster and have more gates than
FPGAs. The value of z can be changed, that is,
one may want to change a query image = and may
want to search similar images of the new z in the
database. Once z is changed, we need to rebuild
a hardware to compute f, for the new x. Thus, if
an ASIC is used, it may take several months to be
rebuilt, in addition, is too costly. Clearly, it is in-
adequate to manufacture an ASIC for each query.
By using FPGAs, one can embed the designed hard-
ware instantly. In other words, our instance-specific
approach proposes a new and useful application of
FPGAs to accelerate computations, which is not
suitable to be implemented in ASICs.

The main contribution of this paper is to present
an instance-specific hardware which accelerates the
parsing for context-free grammars [9] using the FP-
GA-based approach described above. Let f(G,z)
be a function such that G is a context grammar, z is
a string, and f(G,z) returns a Boolean value such
that f(G,z) returns TRUE iff G derives z. It is

0 360

研究会Temp
－36－

well-known that the CKY(Cook-Kasami-Younger)
parsing [1] computes f(G,z) in O(n®) time, where
n is the length of z [1]. The parsing of context-
free languages has many application in various areas
including natural language processing [3], compiler
construction [1], informatics [10], among others.

Several studies have been devoted to accelerate
the parsing of context-free languages [2, 6, 8]. It has
been shown that the parsing for a string of length n
can be done in O((logn)?) time using n® processors
in the PRAM [6]. Also, using the mesh-connected
processor arrays, the parsing can be done in O(n?)
time using n processors as well as in O(n) time
using n? processors [8]. Since these parallel algo-
rithms need at least n processors, they are unreal-
istic for large n. Ciressan et al. [4] have presented a
hardware for the CKY parsing for a restricted class
of context-free grammar and have tested it using
FPGA. However, the hardware design and the con-
trol algorithm are essentially the same as those on
the mesh-connected processors [8], and they are not
instance-specific.

For the purpose of instance-specific solution for
parsing context-free languages, we present a hard-
ware generator that produces a Verilog HDL hard-
ware source that performs the CKY parsing for any
given context-free grammar G. The key ingredi-
ent of the produced design is a hardware compo-
nent to compute a binary operator ®g such that
2N x 2N 5 2N where N is the set of non-terminal
symbols in G. More specifically, let U and V be a
set of non-terminals in G that derive strings a and
B, respectively. The operator UQgV returns the set
of non-terminals that derive a8 (i.e. the concate-
nation of @ and). The CKY parsing algorithm
repeats the evaluation of ®¢ for O(n?) times. The
details of ®¢ will be explained in Section 2. Our
hardware generator provides two types of hardware.
The first hardware has one component for comput-
ing ®g. The second one has two or more compo-
nents to further accelerate the table algorithm for
the CKY parsing.

The generated Verilog HDL source is compiled
using the Altera Quartus IT design tool, and the
object file obtained is downloaded in the Altera
APEX20K series FPGAs.. The programmed FPGA
compute fg(x), i.e. determines if G derives z for a
given string z. Figure 1 illustrates our hardware
CKY parsing system. Given strings zi,z2,x3,...
by the host PC, the FPGA computes and returns
fa(z1), fa(x2), fa(x3),. .. to the host.

(From the theoretical point of view, our instance-
specific solution is much faster than the software

(context-free grammar G)

Our hardware generator

[Verilog HDL source of]

the CKY parser host PC
Design tool
FPGA strings z1, z2, 3, .. ()

<
<

> L°

fa (1), fa(@2), fa(ws), ...

Figure 1: Our hardware parsing system

solutions. To clarify how our solution speed up the
CKY parsing, we provide the following two software
approaches as counterparts:

naive algorithm: This algorithm computes ®¢ by
checking all p production rules in O(p) time.
The CKY parsing using the naive algorithm
runs in O(n®p) time.

table algorithm: This algorithm computes ®¢ by
looking up (2)? tables of 22¢ words with b bits
in O((%)?) time, where b is the number of non-
terminal symbols in G. Although ¢ can take
any integer, in practice, ¢ does not exceed 16,
possibly ¢ < 8. The CKY parsing using the
table algorithm runs in O(n3(%)?) time.

Our instance-specific solution evaluates ® g in O(log
b) time and the CKY parsing using this approach
runs in O(n®logb) time. Since b < p always hold,
our solution is faster than these software approaches
from theoretical point of view.

We have evaluated the performance our instance-
specific solution using the timing analyzer of Quar-
tus IT and test it using a APEX20K series FPGA. In
order to evaluate the performance of our instance-
specific solution, we also implemented the above
software solutions and measure the performance us-
ing a Pentium4-based PC. The timing analysis re-
sults show that our instance-specific hardware at-
tains up to 750 speed-up factor over the software
solutions. Thus, we strongly believe that our ap-
proach for parsing context-free languages is a promis-
ing solution.

2 The CKY parsing and soft-
ware solutions

The main purpose of this section is to briefly de-
scribe the CKY parsing and show two software so-
lutions.

0370

研究会Temp
－37－

Let G = (N, X, P, S) denote a context-free gram-
mar such that NV is a set of non-terminal symbols,
3 is a set of terminal symbols, P is a set of pro-
duction rules, and S (€ N) is the start symbol. A
context-free grammar is said to be a Chomsky Nor-
mal Form (CNF), if every production rule in P is in
either form A — BC or A — a, where A, B, and C
are non-terminal symbols and a is a terminal sym-
bol.

We are interested in the parsing problem for a
context-free grammar with CNF. More specifically,
for given a CNF context-free grammar G and a
string = over X, the parsing problem asks to de-
termine if the start symbol S derives z. For exam-
ple, let Gexample = (N, X, P, S) be a grammar such
that N = {S,A,B}, ¥ = {a,b}, and P = {S —
AB,S —- BA,S - SS,A — AB,B —» BAA -
a,B — b}. Context grammar G derives abaab, be-
cause S derives it as follows: S = AB = ABA =
ABAA = ABAAB = --- = abaab.

We are going to explain the CK'Y parsing scheme
that determines whether G derives z for a CNF
context-free grammar G and a string z. Let z =
T1Z2 -+ - T, be a string of length n where each z;
(1<i<n)isin X. Let N[i,j] (1 <i<j < n)
denote a subset of N such that every A in N, j]
derives a substring x;z;+1---2;. The idea of the

CKY parsing is to compute every NJi, j] using the
following relations:
Nli,i] = {A|(A—x;) € P}
j-1
N[i,j] = |J{A|(4— BC) € P,B € N[i,k],
k=i

and C € N[k + 1,5}

A two-dimensional array N is called the CKY table.
A grammar G generates a string z iff S is in N[1,n].
Let ®g denote a binary operator 2V x 2V — 2V
such that U®gV = {A | (A - BC) € P,B €
U, and C € V}. The details of the CKY parsing
are spelled out as follows:

CKY parsing

1. N[44« {A|(A— z;) € P} forevery i (1<i<m)
2. N[i,jl+ O foreveryiand j (1 <i<j<mn)

3. for j « 2tondo

4. for i < j — 1 downto 1 do

b) for k< itoj—1do

6 NTi, 5] + N[, 5] (N[, K] ®c Nk + 1, 5])

The first two lines initialize the CKY table, and the
next four lines compute the CKY table. Figure 2 il-
lustrates the CKY table for Gexample and the string

S,A| B

Figure 2: The CKY table for Gexample and abaab.

abaab. Since S € N[1,5], one can see that Gexample
derives abaab.

Clearly, the last four lines are dominant in the
CKY parsing. Let T be the computing time nec-
essary to perform an iteration of the line 6. Then,
the line 6 is executed for

n—-1j—-1j-1 n—1j—1

2.2 2. T=T) > (i)

j=2 i=1 k=i j=2 i=1

T (n®—3n%4+2n)

times. Let us evaluate the computing time 7" neces-
sary to perform the line 6, i.e., necessary to evalu-
ate a binary operator ®g. We will present two ap-
proaches that compute U ®¢ V by sequential (soft-
ware) algorithm for any given U and V.

In the first approach that we call naive algo-
rithm, it is checked whether B € U and C' € V for
every production rule A — BC in P. Clearly, us-
ing a reasonable data structure, this can be done in
O(1) time. Hence, U®gV can be evaluated in O(p)
time 2 , where p is the number of production rules
in P that has the form A — BC. Thus, the first
approach enables us to perform the CKY parsing in
O(n’p) time.

Suppose that N has b non-terminal symbols,
and let N = {Ny,N,,...,Np}. The second ap-
proach that we call table algorithm uses a huge look-
up table that stores the values of U Qg V for ev-
ery pair U and V. For a given U (€ 2%V), let
uius - - -up be the b-bit vector such that w; = 1

2 If we can guarantee that each NTi,j] has few non-
terminal symbols, then ® ¢ may be evaluated faster. For ex-
ample, if every N[z, j] has no more than ¢ non-terminals, then
®¢g can be computed in O(c?) time. However, in this paper,
we give no assumption on the number of non-terminals in
each NTi, j].

0380

研究会Temp
－38－

iff N; € U for every ¢ (1 <4 < b). Similarly, let
v1v2 - - - vy be the b-bit vector for V (€ 2V). For
the purpose of computing U ® V', we use a look-
up table of 22® x b in memory i.e. the address
and the data are 2b bits and b bits, respectively.
The uyus - - - upvy V9 - - - Vp-th entry of the table stores
wiws -+ - Wy, where wiws ---wp is the b-bit vector
representation of W = U ®g V. Clearly, if such
table is available, U ® ¢ V' can be computed in O(1)
time. However, the table can be too large even if b
is not large. If P has b = 64 non-terminal symbols,
then the table must have 2264 x 64 = 2134 ~ 1040
bits, which is unfeasibly large.

We will modify the table algorithm to reduce
the size of table. Let us partition N into equal-equal
sized subsets such that N = { Ne(i=D+1 Ne(i=1)+2
..., N} (1 <i<). Weuse (2)? binary operators
®gj (1 <4,j < %) such that

o ®y is 2V x 2V — 2N and

o« (UNN)®Y (VANI)={A|(A— BC) e
P,BeUnNN;, andCEVﬂNj}.

It is easy to see that,

U

1<i4,j<(%)2

UggV = (UNNY) @Y (VnN).

Thus, by evaluating ®gj for every pair ¢ and j, we
can compute ®¢g. As before, ®gj can be computed
by looking up a table of size 22¢ x b. Hence, ®¢
can be computed in O((%)?) time by looking up
(2)? tables. The total size of the tables is I;—2220
bits. If b = 64 and ¢ = 8, then the tables should
have 228 = 256 M bits, which is feasible. However,
we need to look up the table for (%) = 64 times.
Note that the size of the tables and the number of
times needed to be looked up are independent of
the number p of production rules. Thus, the second
approach is more efficient for large p.

3 Our instance - specific hard-
ware for the CKY parsing

This section is devoted to show our instance-specific
hardware for the CKY parsing. We first accelerate
the evaluation of ® by building a circuit for com-
puting ®¢ in an FPGA. We then go on to show the
hardware details to build this circuit.

Recall that each U and V (€ 2V) are represented
by b-bit binary vectors ujus - --up and vivs - - - vp,
respectively. Our goal is to compute the vector

Figure 3: The circuit for computing Q¢

example

wiws - - - wy, which represents W = U ®¢ V. For a
particular wy, we are going to show how wy, is com-
puted. Let Ny — Nileu Ny — Ni2Nj2, ..., and,
N — N;,Nj, be the production rules in P whose
non-terminal in the left-hand side is Ny. Then, wy
is computed by the following formula:

Wy = (vil /\ujl) \ (viQ Au]é) V-V (vis /\ujs)

Thus, wy can be computed by a combinatorial cir-
cuit using s AND-gates and s — 1 OR-gates with
fan-in 2. Further, the depth of the circuit (or the
maximum number of gates over all paths in the
circuit) is [log(s — 1)] + 1. Since we have p pro-
duction rules of the type A — BC in P, then
wiws - - wp can be computed by a circuit with p
AND-gates and p — b OR-gates. Because s < b? al-
ways hold, the depth of the circuit is no more than
[log(b? — 1)] + 1 < 2logb + 1. Thus, the CKY
parsing can be done in O(n3logb) time using this
circuit. Figure 3 illustrates a circuit for ®g,,.mpie-
Since Gexample has 5 production rules and 3 non-
terminal symbols, the circuit has 5 AND gates and
5—3 =2 OR gates.

The sequential algorithms we have shown in Sec-
tion 2 takes O(p) time or O((%)?) time to evalu-
ate ®g. On the other hand, our circuit for ®g
has the delay time proportional to O(logb). Since
b < p < b always holds, the circuit for ®¢ is faster
than the sequential algorithms from the theoretical
point of view.

In what follows, we are going to show the im-
plementation details of our instance-specific hard-
ware. QOur first hardware implementation of the
CKY parsing uses the following basic components:

e a b-bit n?-word (dual-port) memory,

e a b-bit n-word (dual-port) memory,

0390

研究会Temp
－39－

b-bit n2-word memory

b-bit n-word memory

Input

CKY table

t

1T
I
L

b-bit register

Figure 4: A hardware implementation for the CKY
parsing

e 3 CKY circuit for ®¢,
e an array of b OR gates, and
e a b-bit register

The b-bit n?-word memory stores the CKY ta-
ble. The input, N[1,1],N[2,2],...,N[n,n] is sup-
plied to the b-bit n2-word memory. The b-bit n-
word memory stores a row of the CKY table that
is being processed. In other words, it stores the j-
th row NJ[1,4],N[2,7],... of the CKY table, where
j is the variable appearing in line 3 of the CKY
parsing. The b-bit register stores the current value
of NTi, j], which is computed in line 6 of the CKY
parsing. The array of b OR gates is used to com-
pute “{J” in line 6. The b-bit n?-word memory
supplies the b-bit vector representing NJi, k] to the
CKY circuit. Similarly, the b-bit n-word memory
outputs the b-bit vector for N[k + 1,5]. The CKY
circuit receives them and computes the b-bit vector
for N[i, k]®cN[k+1,j]. Using this hardware imple-
mentation, line 6 of the CKY parsing is computed in
a clock cycle. Thus, the CKY parsing can be done
in n® clock cycles. Furthermore, in a real imple-
mentation, a clock cycle is proportional to O(logb).
Thus, the computing time is O(n® logb).

We are going to parallelize the CKY parsing
using two or more CKY circuits. For this pur-
pose, we partition the CKY table into m subtables
S5(0),S5(1),...,S(m — 1) such that S(I) is storing
NTi, j] satisfying j — ¢ mod m = [I. Figure 5 illus-
trates the partitioning scheme of the CKY table
into four subtables. Clearly, for any m consecu-
tive elements N[i, k], N[i,k + 1],...,N[i,k + m —
1] in a column of the CKY table, these elements
are stored in distinct subtables. Thus, the con-
secutive m elements can be accessed in the same
time if each subtable is stored in a memory bank.
This fact allows us to parallelize the CKY pars-

Figure 5: Partitioning the CKY table

ing using m CKY circuits. In order to evaluate
the performance of the above approaches, we have
implemented the instance-specific hardware CKY
parser using a single CKY circuit (single-circuit),
two CKY circuits (double-circuit), and four CKY
circuits (quad-circuit).

Our parallel implementation of the CKY parsing
uses the following basic components:

e m (dual-port) memory banks of b-bit %2 words
e m (dual-port) memory banks of b-bit - words
e m CKY circuits for ®q,

e m arrays of b OR gates, and

e a b-bit register

Figure 6 illustrates our parallel implementation for
the CKY parsing. The m memory banks of b-bit
%2 words are used to store m subtables, one bank
for each subtable. Also, the m memory banks of
b-bit words store a row of the CKY table that
is currently being processed. When NTi, j] is com-
puted, these m memory banks are storing the j-th
row N[1,j],N[2,4],...,N[j,j] of the CKY table.
More precisely, N[l + 1,j], N[l + m + 1,5], N[l +
2m + 1,7],... are stored in the I-th bank (0 <1 <
m). Thus, m evaluations of ®¢, say, N[1,1] Q¢
N[2,7],N[1,2]®aN]3,4],-- ., N[1,m]@aN[m+1, j],
can be evaluated in a clock cycle because N[1,1],
N[2,7],N[1,2], N[3,4], ..., N[1,m], N[m+1, j] are
stored in distinct memory banks. This allows us
to accelerate the CKY parsing by a factor of m.
Thus, the computing time for the CKY parsing is

O("a—ln:g—b) for m <mn.
4 The performance evaluation
We have evaluated the performance our instance-

specific solution using the timing analyzer of Quar-
tus IT and tested it using the APEX20K series FPGA

0400

研究会Temp
－40－

m memory banks of
b-bit 2— words m memory banks of
m

b-bit 2 words
m

m CK

| circuits
i

m arrays of
b OR gates

b-bit register

Figure 6: Our parallel implementation of the CKY
parsing for m =4

(EP20K400EBC652-1X, typical 400K gates with 200
Kbits embedded memory and 16K logic elements).
In order to evaluate the performance of our instance-
specific solution, we implemented two software so-
lutions and measure the performance on a 1.7GHz
Pentium4-PC using Linux OS (Kernel 2.4.9). More
specifically, we first evaluate the performance of
both software and hardware solutions to compute
the function ®g. Next, we show the performance
evaluation for the CKY parsing algorithm.

10°

CWCLII[(32'bI[) T *
Naive(32bit) -)
Table(32bit) ,%: o
Circuit(64bit) —LI— R
10° b Naive(64bit) —li— o -+
Table(64bit) —-O-- - — eE
N
10 P o & .+
,,,,,,,,, B o P O SEEEEENY @ SN WIS ¢ SR
- O O T ©
. -
: e
g 10 .,: 4
= B e S S e e s S St

32 64 128 256 512 1024 2048 4096 8192 16384

Number of Rules

Figure 7: Computing time to evaluate ®¢.

Figure 7 shows the running time of our hardware
and software implementations to compute the func-
tion ®g. Note that a word of data on a Pentium-
based PC is 32bit. Thus, we have implemented the
32-bit vector using a single word and the 64-bit vec-

tor using two words. As a consequence, the two
word implementation for the 64-bit vector adds an
overhead which makes it slower than the 32-bit vec-
tor solution. Recall that the naive algorithm checks
whether or not B € U and C' € V for every pro-
duction rule A — BC in P. Hence, the computing
time of the naive algorithm is proportional to the
number of production rules.

As for the table algorithm, the computing time
obeys a more regular pattern since the running time
does not depend on the number of rules but rather
it depends on the number of times it has to ac-
cess the table. Recall that the table algorithm has
to perform (£)? table look-ups for b non-terminal
symbols to compute ®g. Thus, by increasing the
value of b, the running time of the table algorithm
also increases. As expected, for small values of p,
the running time of the naive algorithm beats the
table algorithm. However, as the number of p in-
creases, the table algorithm is much faster than the
naive algorithm.

In computing the function ®g, our hardware im-
plementation attained an speed up of nearly 1000
over the table algorithm, using 64-bit vector ap-
proach. An speed up of nearly 100 is observed us-
ing 32-bit vector approach. Comparing the results
with the naive algorithm, the gain is even more ap-
parent: for p = 16384, our hardware implementa-
tion attained an speed up of nearly 22,000 over the
naive algorithm, using 64-bit vector approach, and
an speed up of nearly 7,300, using 32-bit vector
approach. Since the running time or our hardware
implementation is independent of the number of en-
coding bits, the 32-bit vector and the 64-bit vector
approaches have nearly the same running time.

Figure 8 shows the computing time of the CKY
algorithm for b = 64 and | = 32 (where [repre-
sents the length of the input string). As mentioned
before, the 64-bit vector approach adds an extra
overhead to the software solutions which does not
occur on the hardware implementations. As a re-
sult, we observe a degradation on the running time
of the software solutions. The number of logic ele-
ments necessary to compute p = 2048, using a quad-
circuit, is nearly 9,600. For p = 8192, the num-
ber of logic elements necessary to build quad-circuit
surpasses the overall number of logic elements pro-
vided by our FPGA. Hence, we have implemented
the quad-circuit for p up to 2048.

Table 4 shows the speed-up of the CKY algo-
rithm over the table algorithm (software approach).
For b = 32 and I = 32, our hardware approach
achieved speed-up of: nearly 40 using a single-circuit;

0410

研究会Temp
－41－

b=32,1=32 b=164,1= 32
p || Single | Double | Quad || Single | Double | Quad
32 25 33 44 - - -
64 25 35 50 304 419 611
128 29 34 51 395 519 731
256 30 35 53 441 577 730
512 37 46 64 454 552 736
1024 38 48 66 413 513 742
2048 36 45 60 362 475 600
4096 26 34 41 326 418 -
8196 18 22 37 314 348 -

Table 1: Speed up of the CKY hardware approach over the CKY table algorithm.

10 T v
Naive —X—

) Table -
DSm Ie-c!rcu!t -
ouble-circuit —
I Quad-circuit —l—

Time [us]

10°F

L L L L L
256 512 1024 2048 4096

Number of Rules

Figure 8: Computing time to of the CKY algorithm
with b = 64 and [= 32.

nearly 50 using a double-circuit, and; nearly 70 us-
ing a quad-circuit. Our results are even more ap-
pealing for b = 64 and [= 32. In this case, our
hardware approach achieved speed-up of nearly 460
using a single-circuit; nearly 580 using a double-
circuit; and nearly 750 using a quad-circuit. Thus,
from the above results, we argue that our hardware
approach is indeed a promising solution to solve the
CKY parsing.

References

[1] A. V. Aho and J. D. Ullman. The Theory of
Parsing Translation and Compiling. Prentice
Hall, 1972.

8192 [5]

[10]

[2] J. Chang, O. Ibarra, and M. Palis. Parallel
parsing on a one-way array of finite-state ma-
chines. IEEE Transactions on Computers, C-
36(1):64-75, 1987.

E. Charniak. Statistical Language Learning.
MIT Press, Cambridge, Massachusetts, 1993.

[3]

[4] C. Ciressan, E. Sanchez, M. Rajman, and J.-C.
Chappelier. An FPGA-based coprocessor for
the parsing of context-free grammars. In Proc.
of IEEE Symposium on Field-Programmable

Custom Computing Machines, 2000.

Y. Futamura, K. Nogi, and A. Takano. Essence
of generalized partial computation. Theoretical
Computer Science, 90:61-79, 1991.

[6] A. Gibbons and W. Rytter. Efficient Parallel

Algorithms. Cambridge University Press, 1988.

[7] T. Kean and A. Duncan. A 800Mpixel/sec
reconfigurable image correlator on XC6216.
In Proc. of International Conference on Field
Programmable Logic and Applications (FPL),

pages 382-391, 1997.
[8]

S. R. Kosaraju. Speed of recognition of
context-free languages by array automata.

SIAM J. on Computers, 4:331-340, 1975.
[9]

J. C. Martin. Introduction to languages and
the theory of computation (2nd Edition). Mac-

Graw Hill, 1996.

Y. Sakakibara, M. Brown, R. Hughey, 1. S.
Mian, K. Sjolander, R. C. Underwood, and
D. Haussler. Stochastic context-free grammars
for tRNA modeling. Nucleic Acids Research,
22:5112-5120, 1994.

0420

研究会Temp
－42－

