完全グラフの均衡的 $\left(C_{4}, C_{6}, C_{6}\right)$－Trefoil 分解アルゴリズム

> 藤本 英昭 潮 和彦 近畿大学理工学部 電気電子工学科 情報学科 〒 $577-8502$ 東大阪市小若江 $3-4-1$

アブストラクト
グラフ理論において，グラフの分解問題は主要な研究テーマである。 $C_{4}, ~ C_{6}$ をそれぞれ 4 点， 6点を通るサイクルとする。1点を共有する辺素な 3 個のサイクル $C_{4}, ~ C_{6}, ~ C_{6}$ からなるグラフを $\left(C_{4}, C_{6}, C_{6}\right)$－trefoil という。本研究では，完全グラフ K_{n} を $\left(C_{4}, C_{6}, C_{6}\right)$－trefoil 部分グラフに均衡的に分解する分解アルゴリズムを与える。

キーワード：均衡的 $\left(C_{4}, C_{6}, C_{6}\right)$－trefoil 分解；完全グラフ；グラフ理論

Balanced $\left(C_{4}, C_{6}, C_{6}\right)$－Trefoil Decomposition Algorithm of Complete Graphs

Hideaki Fujimoto Kazuhiko Ushio
Department of Electric and Electronic Engineering Department of Informatics Faculty of Science and Technology
Kinki University
Osaka 577－8502，JAPAN
Tel：＋81－6－6721－2332（ext．4555（Fujimoto）4615（Ushio））
Fax：＋81－6－6727－2024（Fujimoto）＋81－6－6730－1320（Ushio）
E－mail：fujimoto＠ele．kindai．ac．jp ushio＠is．kindai．ac．jp

Abstract

In graph theory，the decomposition problem of graphs is a very important topic．Various types of decompositions of many graphs can be seen in the literature of graph theory．This paper gives a balanced（ C_{4}, C_{6}, C_{6} ）－trefoil decomposition algorithm of the complete graph K_{n} ．

Keywords：Balanced（ C_{4}, C_{6}, C_{6} ）－trefoil decomposition；Complete graph；Graph theory

1．Introduction

Let K_{n} denote the complete graph of n vertices．Let C_{4} and C_{6} be the 4 －cycle and the 6 －cycle， respectively．The $\left(C_{4}, C_{6}, C_{6}\right)$－trefoil is a graph of 3 edge－disjoint cycles C_{4}, C_{6} and C_{6} with a common vertex and the common vertex is called the center of the（ C_{4}, C_{6}, C_{6} ）－trefoil．
When K_{n} is decomposed into edge－disjoint sum of（ C_{4}, C_{6}, C_{6} ）－trefoils，we say that K_{n} has a $\left(C_{4}, C_{6}, C_{6}\right)$－trefoil decomposition．Moreover，when every vertex of K_{n} appears in the same num－ ber of $\left(C_{4}, C_{6}, C_{6}\right)$－trefoils，we say that K_{n} has a balanced $\left(C_{4}, C_{6}, C_{6}\right)$－trefoil decomposition and
this number is called the replication number.
It is a well-known result that K_{n} has a C_{3} decomposition if and only if $n \equiv 1$ or $3(\bmod 6)$. This decomposition is known as a Steiner triple system. See Colbourn and Rosa[1] and Wallis[5, Chapter 12 : Triple Systems]. Horák and Rosa[2] proved that K_{n} has a (C_{3}, C_{3})-bowtie decomposition if and only if $n \equiv 1$ or $9(\bmod 12)$. This decomposition is known as a bowtie system.
In this paper, it is shown that the necessary and sufficient condition for the existence of a balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{n} is $n \equiv 1(\bmod 32)$.

2. Balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{n}

We use the following notation for a (C_{4}, C_{6}, C_{6})-trefoil.
Notation. We denote a (C_{4}, C_{6}, C_{6})-trefoil passing through $v_{1}-v_{2}-v_{3}-v_{4}-v_{1}-v_{5}-v_{6}-v_{7}-v_{8}-$ $v_{9}-v_{1}-v_{10}-v_{11}-v_{12}-v_{13}-v_{14}-v_{1}$ by $\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}\right),\left(v_{1}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right),\left(v_{1}, v_{10}, v_{11}, v_{12}, v_{13}, v_{14}\right)\right\}$.

We have the following theorem.
Theorem. K_{n} has a balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition if and only if $n \equiv 1(\bmod 32)$.
Proof. (Necessity) Suppose that K_{n} has a balanced (C_{4}, C_{6}, C_{6})-trefoil decomposition. Let b be the number of (C_{4}, C_{6}, C_{6})-trefoils and r be the replication number. Then $b=n(n-1) / 32$ and $r=7(n-1) / 16$. Among $r\left(C_{4}, C_{6}, C_{6}\right)$-trefoils having a vertex v of K_{n}, let r_{1} and r_{2} be the numbers of $\left(C_{4}, C_{6}, C_{6}\right)$-trefoils in which v is the center and v is not the center, respectively. Then $r_{1}+r_{2}=r$. Counting the number of vertices adjacent to $v, 6 r_{1}+2 r_{2}=n-1$. From these relations, $r_{1}=(n-1) / 32$ and $r_{2}=13(n-1) / 32$. Therefore, $n \equiv 1(\bmod 32)$ is necessary.
(Sufficiency) Put $n=32 t+1$. Construct $\operatorname{tn}\left(C_{4}, C_{6}, C_{6}\right)$-trefoils as follows:
$B_{i}^{(1)}=\{(i, i+4 t+1, i+29 t+2, i+5 t+1),(i, i+1, i+8 t+2, i+24 t+3, i+12 t+2, i+2 t+$ 1), $(i, i+t+1, i+10 t+2, i+27 t+3, i+14 t+2, i+3 t+1)\}$
$B_{i}^{(2)}=\{(i, i+4 t+2, i+29 t+4, i+5 t+2),(i, i+2, i+8 t+4, i+24 t+6, i+12 t+4, i+2 t+$
2), $(i, i+t+2, i+10 t+4, i+27 t+6, i+14 t+4, i+3 t+2)\}$
$B_{i}^{(3)}=\{(i, i+4 t+3, i+29 t+6, i+5 t+3),(i, i+3, i+8 t+6, i+24 t+9, i+12 t+6, i+2 t+$ $3),(i, i+t+3, i+10 t+6, i+27 t+9, i+14 t+6, i+3 t+3)\}$
$\dddot{B}_{i}^{(t)}=\{(i, i+5 t, i+31 t, i+6 t),(i, i+t, i+10 t, i+27 t, i+14 t, i+3 t),(i, i+2 t, i+12 t, i+30 t, i+$ $16 t, i+4 t)\}(i=1,2, \ldots, n)$,
where the additions $i+x$ are taken modulo n with residues $1,2, \ldots, n$.
Then they comprise a balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{n}.
Note. We consider the vertex set V of K_{n} as $V=\{1,2, \ldots, n\}$.
The additions $i+x$ are taken modulo n with residues $1,2, \ldots, n$.
Example 1. A balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{33}.
Construct $33\left(C_{4}, C_{6}, C_{6}\right)$-trefoils as follows:
$B_{1}=\{(1,6,32,7),(1,2,11,28,15,4),(1,3,13,31,17,5)\}$
$B_{2}=\{(2,7,33,8),(2,3,12,29,16,5),(2,4,14,32,18,6)\}$
$B_{3}=\{(3,8,1,9),(3,4,13,30,17,6),(3,5,15,33,19,7)\}$
$B_{4}=\{(4,9,2,10),(4,5,14,31,18,7),(4,6,16,1,20,8)\}$
$B_{5}=\{(5,10,3,11),(5,6,15,32,19,8),(5,7,17,2,21,9)\}$
$B_{6}=\{(6,11,4,12),(6,7,16,33,20,9),(6,8,18,3,22,10)\}$
$B_{7}=\{(7,12,5,13),(7,8,17,1,21,10),(7,9,19,4,23,11)\}$

$$
\begin{aligned}
& B_{8}=\{(8,13,6,14),(8,9,18,2,22,11),(8,10,20,5,24,12)\} \\
& B_{9}=\{(9,14,7,15),(9,10,19,3,23,12),(9,11,21,6,25,13)\} \\
& B_{10}=\{(10,15,8,16),(10,11,20,4,24,13),(10,12,22,7,26,14)\} \\
& B_{11}=\{(11,16,9,17),(11,12,21,5,25,14),(11,13,23,8,27,15)\} \\
& B_{12}=\{(12,17,10,18),(12,13,22,6,26,15),(12,14,24,9,28,16)\} \\
& B_{13}=\{(13,18,11,19),(13,14,23,7,27,16),(13,15,25,10,29,17)\} \\
& B_{14}=\{(14,19,12,20),(14,15,24,8,28,17),(14,16,26,11,30,18)\} \\
& B_{15}=\{(15,20,13,21),(15,16,25,9,29,18),(15,17,27,12,31,19)\} \\
& B_{16}=\{(16,21,14,22),(16,17,26,10,30,19),(16,18,28,13,32,20)\} \\
& B_{17}=\{(17,22,15,23),(17,18,27,11,31,20),(17,19,29,14,33,21)\} \\
& B_{18}=\{(18,23,16,24),(18,19,28,12,32,21),(18,20,30,15,1,22)\} \\
& B_{19}=\{(19,24,17,25),(19,20,29,13,33,22),(19,21,31,16,2,23)\} \\
& B_{20}=\{(20,25,18,26),(20,21,30,14,1,23),(20,22,32,17,3,24)\} \\
& B_{21}=\{(21,26,19,27),(21,22,31,15,2,24),(21,23,33,18,4,25)\} \\
& B_{22}=\{(22,27,20,28),(22,23,32,16,3,25),(22,24,1,19,5,26)\} \\
& B_{23}=\{(23,28,21,29),(23,24,33,17,4,26),(23,25,2,20,6,27)\} \\
& B_{24}=\{(24,29,22,30),(24,25,1,18,5,27),(24,26,3,21,7,28)\} \\
& B_{25}=\{(25,30,23,31),(25,26,2,19,6,28),(25,27,4,22,8,29)\} \\
& B_{26}=\{(26,31,24,32),(26,27,3,20,7,29),(26,28,5,23,9,30)\} \\
& B_{27}=\{(27,32,25,33),(27,28,4,21,8,30),(27,29,6,24,10,31)\} \\
& B_{28}=\{(28,33,26,1),(28,29,5,22,9,31),(28,30,7,25,11,32)\} \\
& B_{29}=\{(29,1,27,2),(29,30,6,23,10,32),(29,31,8,26,12,33)\} \\
& B_{30}=\{(30,2,28,3),(30,31,7,24,11,33),(30,32,9,27,13,1)\} \\
& B_{31}=\{(31,3,29,4),(31,32,8,25,12,1),(31,33,10,28,14,2)\} \\
& B_{32}=\{(32,4,30,5),(32,33,9,26,13,2),(32,1,11,29,15,3)\} \\
& B_{33}=\{(33,5,31,6),(33,1,10,27,14,3),(33,2,12,30,16,4)\} . \\
& \text { This decomposition can be written as follows: } \\
& B_{i}=\{(i, i+5, i+31, i+6),(i, i+1, i+10, i+27, i+14, i+3),(i, i+2, i+12, i+30, i+16, i+4)\} \\
& (i=1,2, \ldots, 33) . \\
& \text { Then they comprise a balanced }\left(C_{4}, C_{6}, C_{6}\right) \text {-trefoil decomposition of } K_{33} .
\end{aligned}
$$

Example 2. A balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{65}.

Construct $130\left(C_{4}, C_{6}, C_{6}\right)$-trefoils as follows:
$B_{i}^{(1)}=\{(i, i+9, i+60, i+11),(i, i+1, i+18, i+51, i+26, i+5),(i, i+3, i+22, i+57, i+30, i+7)\}$
$B_{i}^{(2)}=\{(i, i+10, i+62, i+12),(i, i+2, i+20, i+54, i+28, i+6),(i, i+4, i+24, i+60, i+32, i+8)\}$
($i=1,2, \ldots, 65$).
Then they comprise a balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{65}.
Example 3. A balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{97}. Construct $291\left(C_{4}, C_{6}, C_{6}\right)$-trefoils as follows:
$B_{i}^{(1)}=\{(i, i+13, i+89, i+16),(i, i+1, i+26, i+75, i+38, i+7),(i, i+4, i+32, i+84, i+44, i+10)\}$
$B_{i}^{(2)}=\{(i, i+14, i+91, i+17),(i, i+2, i+28, i+78, i+40, i+8),(i, i+5, i+34, i+87, i+46, i+11)\}$
$B_{i}^{(3)}=\{(i, i+15, i+93, i+18),(i, i+3, i+30, i+81, i+42, i+9),(i, i+6, i+36, i+90, i+48, i+12)\}$ ($i=1,2, \ldots, 97$).
Then they comprise a balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{97}.
Example 4. A balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{129}.
Construct $516\left(C_{4}, C_{6}, C_{6}\right)$-trefoils as follows:
$B_{i}^{(1)}=\{(i, i+17, i+118, i+21),(i, i+1, i+34, i+99, i+50, i+9),(i, i+5, i+42, i+111, i+58, i+13)\}$
$B_{i}^{(2)}=\{(i, i+18, i+120, i+22),(i, i+2, i+36, i+102, i+52, i+10),(i, i+6, i+44, i+114, i+60, i+14)\}$
$B_{i}^{(3)}=\{(i, i+19, i+122, i+23),(i, i+3, i+38, i+105, i+54, i+11),(i, i+7, i+46, i+117, i+62, i+15)\}$
$B_{i}^{(4)}=\{(i, i+20, i+124, i+24),(i, i+4, i+40, i+108, i+56, i+12),(i, i+8, i+48, i+120, i+64, i+16)\}$
($i=1,2, \ldots, 129$).
Then they comprise a balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{129}.
Example 5. A balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{161}. Construct $805\left(C_{4}, C_{6}, C_{6}\right)$-trefoils as follows:
$B_{i}^{(1)}=\{(i, i+21, i+147, i+26),(i, i+1, i+42, i+123, i+62, i+11),(i, i+6, i+52, i+138, i+72, i+16)\}$
$B_{i}^{(2)}=\{(i, i+22, i+149, i+27),(i, i+2, i+44, i+126, i+64, i+12),(i, i+7, i+54, i+141, i+74, i+17)\}$
$B_{i}^{(3)}=\{(i, i+23, i+151, i+28),(i, i+3, i+46, i+129, i+66, i+13),(i, i+8, i+56, i+144, i+76, i+18)\}$
$B_{i}^{(4)}=\{(i, i+24, i+153, i+29),(i, i+4, i+48, i+132, i+68, i+14),(i, i+9, i+58, i+147, i+78, i+19)\}$
$B_{i}^{(5)}=\{(i, i+25, i+155, i+30),(i, i+5, i+50, i+135, i+70, i+15),(i, i+10, i+60, i+150, i+$ $80, i+20)\}$
$(i=1,2, \ldots, 161)$.
Then they comprise a balanced $\left(C_{4}, C_{6}, C_{6}\right)$-trefoil decomposition of K_{161}.

References

[1] C. J. Colbourn and A. Rosa, Triple Systems. Clarendom Press, Oxford (1999).
[2] P. Horák and A. Rosa, Decomposing Steiner triple systems into small configurations, Ars Combinatoria 26 (1988), pp. 91-105.
[3] K. Ushio and H. Fujimoto, Balanced bowtie and trefoil decomposition of complete tripartite multigraphs, IEICE Trans. Fundamentals, Vol.E84-A, No.3, pp.839-844, March 2001.
[4] K. Ushio and H. Fujimoto, Balanced foil decomposition of complete graphs, IEICE Trans. Fundamentals, Vol.E84-A, No.12, pp.3132-3137, December 2001.
[5] W. D. Wallis, Combinatorial Designs. Marcel Dekker, New York and Basel (1988).

