
一般グラフの極大マッチングを列挙するアルゴリズム

宇野 毅明
国立情報学研究所, 〒 101-8430 東京都千代田区一ツ橋 2-1-2, e-mail: uno@nii.ac.jp

抄録： グラフのマッチングとは，グラフの枝部分集合で、その集合の枝がたがいに隣接しないも
のをいう．集合の意味で極大なマッチングを極大マッチングという．本稿では，与えられたグラ
フ G = (V, E)の極大マッチングを列挙するアルゴリズムを提案する。極大マッチングは、極大安
定集合を列挙するアルゴリズムを用いて列挙できるが，その場合の計算時間は，極大マッチング 1
つあたり O(|V ||E |2) となる．本稿で提案するアルゴリズムは，極大マッチング 1つあたり O(∆)
となり,大幅な高速化が行われた．ここで ∆ は G の頂点の最大次数である.

キーワード: 列挙, 列挙木, 列挙アルゴリズム, 極大マッチング

An Algorithm for Enumerating All Maximal
Matchings of a Graph

Takeaki UNO
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, JAPAN,

e-mail: uno@nii.ac.jp

Abstract: For a graph, a matching is an edge set such that no two edges of it are adjacent
to each other. A maximal matching is an matching included in no other matching. In this
paper, we propose an algorithm for enumerating all maximal matchings of a given non-bipartite
graph G = (V, E). Maximal matchings can be enumerated by an algorithm for enumerating
maximal stable sets, however it takes O(|V ||E |2) time per maximal matching. The algorithm
in this paper runs in O(∆) time per maximal matching, quite fast compared with the previous
algorithm. Here ∆ denotes the maximum degree of G.

Keywords: enumeration, enumeration tree, listing, maximal matching

1 Introduction

Let G = (V, E) be a non-bipartite undirected graph with vertex set V and edge set E =
{e1, ..., em}. We assume that there is neither isolated vertices nor parallel edges. ∆ denotes the
degree of a vertex of the maximum degree in G. A matching M of the graph G is an edge set such
that no two edges in M share their endpoints. For a matching M of G = (V, E), let Ê(G, M)
denote the edges of E \ M adjacent to no edge of M. Note that Ê(G, M) = E if M = ∅. We
call a matching which is contained in no other matching a maximal matching. M is a maximal
matching of G if and only if Ê(G, M) = ∅. This paper considers the problem of enumerating all
maximal matchings in G.

A matching in a graph G is equivalent to a stable set in the line graph of G. The line graph of
G is (E, Ẽ) such that (e, e′) ∈ E×E is included in Ẽ if and only if e and e′ are adjacent in G. The
problem of enumerating maximal matchings is reducible to the problem of enumerating stable
sets of the line graph, hence we can enumerate maximal matchings by using the algorithm
of Tsukiyama et al. [5]. Since the line graph of G has |E | vertices and O(|V ||E |) edges,
their algorithm takes O(|V ||E |2N ) time and O(|V ||E |) space where N denotes the number of

1

研究会Temp
ア　ル　ゴ　リ　ズ　ム

研究会Temp 
86－７

研究会Temp 
（２００２． ９． １９）

研究会Temp 
－43－



e1

e2
e3

e5

e4G
G1

G2

G3

G4

G5

Figure 1: An instance of enumeration tree.

maximal matchings in G. The computation time is probably too slow to be practical. In 1988,
D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou [2] proposed another algorithm for
enumerating maximal stable sets, however their algorithm has the same time complexity as
Tsukiyama et al’s.

Matchings have some “good” properties that stable sets do not have, hence many matching
problems can be solved more easily than stable set problems. For example, we can find a
maximum matching of a graph in polynomial time, but the maximum stable set problem is
known to belong to the class of NP-hard problems. Therefore, there naturally seem to exist
possibilities of making a fast algorithm for enumerating maximal matchings, if not for stable
sets. In this paper, we use such “good” properties, and improve on the algorithm of Tsukiyama
et al. by adapting them to maximal matchings.

Our improvements also are composed of two areas. The first is that we use several techniques
to speed up iterations. In this way, we reduce the time complexity from O(|V ||E |2N ) to O(|E |N ).
The second is that we introduce a preprocessing of the input to the algorithm to decrease the
number of iterations and amortized time complexity. By detailed analysis, we reduce the time
complexity to O(∆N ). Our improvements also result in optimal memory complexity.

2 Reverse Search Algorithm for Maximal Matchings

In this section, we describe the framework of our algorithm obtained by modifying the algorithm
of Tsukiyama et al. We also show our techniques to reduce the computation time of an iteration.

For constructing enumeration algorithms, we have a scheme called reverse search [1]. The
algorithm of Tsukiyama et al. can be considered as a type of reverse search, and our algorithm
is thereby based on reverse search. Reverse search is a scheme for enumerating all elements of
a set. It utilizes a parent-child relationship among elements of the set, which has to satisfy the
following two conditions:

(1) any element except one element has its unique parent
(2) no element is a proper ancestor of itself.

The graph expression of this relationship, composed of vertices corresponding to its elements

2

研究会Temp 
－44－



w1 w2

u1 u2

Figure 2: Generating a type-2 child: bold edges are edges of M. We obtain a matching M ′ by
adding (w1, w2) to M and removing (w1, u1) and (w2, u2). If (w1, u1) has a larger index than e1

or e2, then M ′ is a type-2 child of M. If there is an edge (u1, u2), then M is not maximal.

and edges connecting children to their parents, forms a tree under these conditions. The tree
is called an enumeration tree. Reverse search traverses all vertices of the tree in a depth first
search manner, and outputs all elements in the order in which they are visited. A feature of
reverse search is that its memory complexity does not depend on the number of output. Reverse
search does not store the whole enumeration tree in the memory. It holds the vertex currently
being traversed, and to move to the child of the vertex, uses an algorithm for finding all the
children of the vertex.

Let us look at the operation of reverse search for maximal matchings arising from the method of
Tsukiyama et al. Let Gi = (V, Ei) where Ei = {e1, ..., ei}. A maximal matching M of a subgraph
Gi is called an i-maximal matching, and is denoted by (M, i). Our parent-child relationship in
the following is defined among all the i-maximal matchings. The 1-maximal matching, which
is the unique maximal matching of G1, has no parent in our relationship. The parent of an i-
maximal matching (M, i), i �= 1, denoted by p(M, i), is defined by the (i− 1)-maximal matching
obtained by the following procedure.

(P1) If ei /∈ M then output (M, i− 1) ; stop
(P2) M ′ := M \ {ei}
(P3) If Ê(Gi−1, M

′) = ∅ then output (M ′, i− 1) ; stop
(OP4)M ′ := M ∪ { the edge with the minimum index among Ê(Gi−1, M

′)}, and Go to (OP3)

From this algorithm, p(M, i) is defined uniquely, and no i-maximal matching is its proper
ancestor. Hence, we obtain an enumeration tree the vertices of which correspond to all the
i-maximal matchings. The leaves of the tree correspond to all the maximal matchings in G (
see Figure 1 ).

Next we explain how to find all children of an (i−1)-maximal matching (M, i−1). The method
is based on the following lemma. Let E(M, i) be the set of edges of M that are adjacent to ei.

Lemma 1 (M ′, i) is a child of (M, i− 1) if and only if one of the following conditions hold.
(a) E(M, i) �= ∅, and M ′ = M

(b) E(M, i) = ∅, and M ′ = M ∪ {ei}
(c) E(M, i) �= ∅, p(M ′, i) = (M, i− 1), and M ′ = M ∪ {ei} \ E(M, i).

Proof : We first state the “if” part. In each case of (a), (b) and (c), M ′ is an i-maximal matching.
If (a) holds, then ei is adjacent to an edge of M ′. Hence, p(M ′, i) = (M, i−1). If (b) holds, then
ei is included in M ′. Since M ′ \ {ei} is an (i − 1)-maximal matching, p(M ′, i) = (M, i − 1). If
(c) holds, then obviously p(M ′, i) = (M, i − 1).

We next state the “only if” part. Suppose that (M ′, i) is a child of (M, i− 1). If M ′ does not
include ei, then M = M ′ and E(M, i) �= ∅. Hence, (a) holds. If M ′ includes ei and M ′ \ {ei}
is an (i − 1)-maximal matching, then M = M \ {ei}, and E(M, i) = ∅. Hence, (b) holds.

3

研究会Temp 
－45－



v

e1
e2

e3

e4

e5

e6

Figure 3: An instance of A(v, M, i) and l(v, M, i): The bold edges are edges of M. In this case,
A(v, M, i) = {e2, e5} and l(v, M, i) = 1.

If M ′ includes ei and M ′ \ {ei} is not an (i − 1)-maximal matching, then E(M, i) �= ∅, and
M ′ = M ∪ {ei} \ E(M, i). Hence, (c) holds.

Therefore, the lemma holds.

We illustrate the case of (c) of the lemma in Figure 2. From the proof of the lemma, we can
see that any i-maximal matching has a child satisfying (a) if E(M, i) �= ∅, and a child satisfying
(b) if E(M, i) = ∅. Moreover, any i-maximal matching has at most one child satisfying (c). We
call a child satisfying (a) or (b) a type-1 child, and a child satisfying (c) type-2 child. From
this, we can see that there are no fewer i-maximal matchings than there are (i − 1)-maximal
matchings.

A type-1 child (M ′, i) of (M, i − 1) is obtained from (M, i) in O(1) time by adding ei if ei is
adjacent to no edge of M. To find type 2 children, we introduce the following variables and state
several lemmas. For an i-maximal matching (M, i) and a vertex v, let A(v, M, i) be the set of
edges (v, u) ∈ Ei such that u is incident to no edge of M. If v is incident to an edge ej of M, we
define l(v, M, i) by the number of edges el of A(v, M, i) with l < j. Let w1 and w2 denote the
endpoints of ei. An instance of A(v, M, i) and l(v, M, i) is illustrated in Figure 3.

Lemma 2 Suppose that |E(M, i− 1)| = 1, and E(M, i− 1) = {(u1, w1)} for a vertex u1. Then,
(M, i− 1) has a type-2 child if and only if the following conditions (1-a) and (1-b) hold.

(1-a) A(u1, M, i− 1) = ∅.
(1-b) l(w1, M, i− 1) = 0, and (u1, w2) has a larger index than (u1, w1) if (u1, w2) ∈ Ei.

Proof : Suppose that (M ′, i) is a type-2 child of (M, i − 1). Then M ′ = M \ {(u1, w1)} ∪ {ei},
and u1 is incident to no edge of M ′. Hence, any vertex adjacent to u1 is incident to an edge of
M ′. Since w1 is incident to (u1, w1), (1-a) holds. From this, it follows that Ê(Gi, M

′ \ {ei}) is
composed of edges in A(w1, M, i− 1), and includes (u1, w2) if (u1, w2) ∈ Ei. Hence, (1-b) holds.

Let M ′ = M \{(u1, w1)}∪{ei}. Suppose that (1-a) and (1-b) both hold. From (1-a), Ê(Gi, M \
{(u1, w1)}) is composed of edges in A(w1, M, i−1)∪{(u1, w2)}. Hence, Ê(Gi, M

′) = ∅, M ′ is an
i-maximal matching, and p(M ′, i) includes exactly one edge e′ that is not included in M ′. From
(1-b), e′ = (u1, w1). Hence, p(M ′, i) = (M, i− 1).

Lemma 3 Suppose that |E(M, i−1)| = 2, and E(M, i−1) = {(u1, w1), (u2, w2)} where (u1, w1)
has a smaller index than (u2, w2). Then, (M, i−1) has a type-2 child if and only if the following
conditions, (2-a), (2-b), and (2-c), hold.

(2-a) A(uj, M, i− 1) = ∅ for each j, and (u1, u2) /∈ Ei−1.
(2-b) l(w1, M, i− 1) = 0 and any of (w2, u1) and (w1, u2) has a larger index than (w1, u1).
(2-c) l(w2, M, i− 1) = 0.

4

研究会Temp 
－46－



It can be proved in the same way as the proof of Lemma 2, hence we omit the proof. Refer
the figure 3.

By using these lemmas, we can find all the children of an i-maximal matching. The following
algorithm is our reverse search algorithm using this method for finding the children. By executing
Enum Maximal Matching ({e1}, 1), we can enumerate all maximal matchings in G.

ALGORITHM Enum Maximal Matching (M, i)
(EM1) If i = n then output M and return // bottom of the recursion

// Construct type 1 child
(EM2) If ei+1 is adjacent to an edge of M then M ′ := M else M ′ := M ∪ {ei+1}
(EM3) Compute A(v, M ′, i + 1) and l(v, M ′, i + 1) // update A and l
(EM4) Call Enum Maximal Matching (M ′, i + 1) // recursive call for type 1 child

// (EM5) to (EM10) check the existence of the type 2 child
(EM5) If ei+1 is adjacent to no edge of M then go to (EM13)
(EM6) For each (v, wj) ∈ E(M, i + 1)

if A(v, M, i) �= ∅ or l(v, M, i) > 0 then go to (EM13)
(EM7) If |E(M, i + 1)| = 2 then do
(EM8) If (u1, u2) ∈ Ei then go to (EM13)
(EM9) For each ej ∈ {(u1, w2), (u2, w1)}

If j < any index of any edge in E(M, i + 1) then go to (EM13)
(EM10) End If of (EM7)
(EM11) M ′ := M ∪ {ei+1} \ E(M, i + 1) // Construct type 2 child
(EM12) Compute A(v, M ′, i + 1) and l(v, M ′, i + 1) // update A and l
(EM13) Call Enum Maximal Matching (M ′, i + 1) // recursive call for type 2 child

Lemma 4 The time complexity of Enum Maximal Matching is O(|E |N ) and the space com-
plexity of it is O(|V | + |E |).
Proof : The memory complexity is obviously O(|V | + |E |).

As we saw, an iteration takes O(1) time except for updating A and l. Let F�F ′ denote the
symmetric difference between two sets F and F ′. For an edge set F, V (F ) denotes the vertices
incident to an edge of F. For any matching M and its child M ′, |M�M ′| is constant. If a vertex
v satisfies A(v, M, i) �= A(v, M ′, i + 1) or l(v, M, i) �= l(v, M ′, i + 1), then v is in V (M�M ′)
or adjacent to a vertex of V (M�M ′). The update of A(v, M, i) and l(v, M, i) can be done in
O(d(v)) time if v ∈ V (M�M ′), and in O(1) time otherwise. The number of vertices adjacent to
vertices of V (M�M ′) is O(∆). Since the number of type-2 children generated over all iterations
is N−1, the total computation time to update of A and l for the recursive calls of type 2 children
is O(∆N ).

Next we bound the total updating time for type 1 children. Let C be the set of (M, i) of
the enumeration tree such that (M, i) is a type-2 child of p(M, i). Consider a graph obtained
from the enumeration tree by deleting edges ((M, i), p(M, i)) for each (M, i) ∈ C. The graph is
composed of paths. We call each of these paths type-1 child paths, and use P to denote the set
of all the type-1 child paths. An isolated vertex is also considered to be a type-1 child path.
An example of generation of P is shown in Figure 4. For a path P in the enumeration tree, let
T (P ) be the total computation to update for type 1 children in the iterations corresponding to
the vertices of P.

Suppose that P ∈ P is composed of maximal matchings (Mk, k), ..., (Mn, n). From the above,

T (P ) = O(
n−1∑

i=k

∑

v∈V (Mi�Mi+1)

d(v))

5

研究会Temp 
－47－



Figure 4: Partitioning the enumeration tree: the left side is partitioned into type-1 paths, and
the right side is partitioned to paths of P̂ .

= O(2
∑

v∈V (Mn\Mk)

d(v))

= O(|E |)
since any pair of Mi and Mi+1 satisfy Mi ⊆ Mi+1. Since any internal vertex has a type-1 child,
one of the endpoints of any P ∈ P must be a leaf, hence |P| = N. Therefore, the time complexity
of this algorithm is O(|E |N ).

3 Reduce the Time Complexity

In the previous section, we bound the time complexity by O(|E |N ) since any type-1 child path
can have a length up to |E |. If the mean length of type-1 child paths is smaller than Θ(|E |),
then we can reduce the time complexity. The lengths of type-1 child paths change with the
indices of the edges changes. So, by finding a good ordering of edges, we may obtain a smaller
time complexity. Consider an enumeration tree. If any type-1 child path P includes a number of
vertices having type-2 children that is proportional to the length of P, then the computation time
per type-1 child path can be reduced. Conversely, if several type-1 child paths have subpaths
composed of matchings that have no type-2 child, then we may not be able to produce no ‘good’
analysis. Thus, we introduce an ordering of edges in consideration of these conditions.

Let us look at the following algorithm for generating desired indices of edges. The algorithm
takes G as its input, then assigns indices by using a partition B1, ..., Bk of E which are generated
in the computation of the algorithm.

Algorithm Put Indices (G = (V, E))
(PI1) b, b′ := edges adjacent to each other
(PI2) If no such pair exists then i := 1 ; B1 := E ; K0 := 0
(PI3) Else S := {b, b′, and all edges adjacent to b or b′}
(PI4) E := E \ S ; i := Put Indices (G) ; E := E ∪ S

(PI5) bi := b ; b′i := b′ ; Bi := S
(PI6) End if
(PI7) Ki := Ki−1 + |Bi|
(PI8) Assign unique indices ranging from Ki−1 + 1 to Ki to all edges of Bi

(PI9) Return i

6

研究会Temp 
－48－



Each Ki satisfies Ki =
∑i−1

j=1 |Bj|, hence the edges are assigned unique indices. The indices
satisfy the property that the index of any edge e ∈ Bi is smaller than that of any edge e′ of Bj

if i < j. For any i, we have |Bi| < 3∆ and bi and b′i are adjacent to no edge of Bj , for any j < i.
Since any edge of G is deleted only once by the algorithm, this algorithm takes O(|V | + |E |)
time and O(|V | + |E |) memory.

Consider a partition of a type-1 child path obtained by removing edges ((M, Kj+1), p(M, Kj+
1)) for all possible K ′

js. Let P̂ be the set of all subpaths obtained by partitioning each type-1
child path. An example of the generation of P̂ is shown in Figure 4. For a path P ∈ P̂, let
the head of P be the vertex of P which is an ancestor of all the other vertices of P. Since B1

is a matching, any Gi that has i ≤ K1 has only one maximal matching. Hence, only a path P0

satisfies the property that the head (M, i) of P0 satisfies i < K2 among all paths in P̂. When
the indices assigned by the algorithm are used, P̂ satisfies the following properties.

Property 1 For any P ∈ P̂, T (P ) = O(∆).

Proof : Suppose that P is composed of maximal matchings {(Mp, p), (Mp+1, p+1), ..., (Mq, q)}. If
P = P0, then the maximum degree of any Gi, p ≤ i ≤ q is one, hence T (P ) = O(p−q+1) = O(∆).
Consider the case P �= P0. Since all edges of Bi are adjacent to bi or b′i, Mq \ Mp includes at
most three edges. Hence, from the proof of Lemma 4, the condition can be seen to hold.

Property 2 For any vertex (M, Ki), 1 < Ki < n, at least two Ki+1-maximal matchings are
descendants of (M, Ki).

Proof : Since Ki > 1, both bi and b′i are defined. Since bi and b′i are incident to no edge
of Bj for any j < i, there are two Ki+1-maximal matchings (M ′

1, Ki+1), M ∪ {bi} ⊆ M ′
1 and

(M ′
2, Ki+1), M ∪ {b′i} ⊆ M ′

2. To obtain the parent of any (M ′, j), no edge with an index smaller
than j is deleted. Hence, for each (M ′

j, Ki+1), the ancestor (M̂, Ki) of (M ′
j, Ki+1), which is a

Ki-maximal matching, includes all edges of M. Since M is a Ki-maximal matching, M = M̂.

Property 3 P̂ includes at most 2N paths.

Proof : We describe a function f : P̂ \ {P0} → C such that for any c ∈ C, at most two paths
P ∈ P̂ \ {P0} satisfy f(P ) = c. Note that |C| = N − 1. For any P ∈ P̂ \ {P0}, if the head c of P

is an element of C, then we define f(P ) = c. If not, from Property 2, at least one vertex of P has
a type-2 child c′. Hence, we define f(P ) = c′. From this, f is defined on all paths in P̂ \ {P0},
and at most two paths P ∈ P̂ \ {P0} satisfy f(P ) = c for any c ∈ C. Thus, we have |P̂| ≤ 2N.

From these properties, we can bound the time complexity of the algorithm.

Theorem 1 All maximal matchings of a non-bipartite graph G = (V, E) can be enumerated in
O(|E |+ |V | + ∆N ) time within O(|E |+ |V |) memory space where N is the number of maximal
matchings in G, and ∆ is the degree of the maximum degree vertex of G.

Proof : From the above properties, we have
∑

P∈P
T (P ) =

∑

P∈P̂
O(∆)

= |P̂|O(∆)
= O(∆N ).

7

研究会Temp 
－49－



The time to output is O(|V |). This can be decreased by using compact output method [3, 4],
which outputs object by the symmetric difference between the object and the object output jest
before. Since the symmetric defference between a parent and its child is constant size, the total
computation time for outputting is reduced to the order of the number of the iteration. Hence,
the time complexity of the algorithm is O(∆N ).

4 Conclusion

We have considered the problem of enumerating all maximal matchings of a given non-bipartite
graph G = (V, E). We have constructed a simple algorithm by improving the algorithm of
Tsukiyama et al., and proved that the time complexity of the algorithm is bounded by O(∆N )
by assigning indices to the edges in our way. The space complexity of the algorithm is O(|E |),
the same as that of the algorithm of Tsukiyama et al. Here N denotes the number of maximal
matchings in the graph, and ∆ denotes the maximum degree of G. The second area where we
have made improvements is not based on modification of the algorithm, which can be considered
interesting from the viewpoint of algorithm engineering. However, the problem of decreasing
the time complexity of stable set enumeration is still open. Further research may achieve solid
results in this area.

Acknowledgment

We gratefully acknowledge Professor Masakazu Kojima of Tokyo Institute of Technology for
giving a variety of comments. We also owe a special debt of gratitude Professor Akihisa Tamura
of Kyoto University.

References

[1] D. Avis and K. Fukuda, “Reverse Search for Enumeration,” Discrete Appl. Math. 65, pp.21-
46, 1996.

[2] Johnson D. S. ; Yannakakis M. ; Papadimitriou C. H., “On Generating All Maximal Inde-
pendent Sets,” Info. Processing Lett., 27, pp.119-123, 1988.

[3] H. N. Kapoor and H. Ramesh, “Algorithms for Generating All Spanning Trees of Undi-
rected, Directed and Weighted Graphs,” Lec. Notes Comp. Sci., 519, pp.461-472, 1992.

[4] A. Shioura, A. Tamura. and T. Uno, “An Optimal Algorithm for Scanning All Spanning
Trees of Undirected Graphs, ” SIAM J. Comp., 26, No. 3, pp.678-692, 1997.

[5] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, “A New Algorithm for Generating
All the Maximum Independent Sets,” SIAM J. on Comp., 6, pp.505-517, 1977.

8

研究会Temp 
－50－




