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Abstract. Digital halftoning {6] is a problem of computing a binary image approximating an input gray
image. We consider two problems on digital halftoning: mathematical evaluation of a halftoning image and
design of optimization-based halftoning algorithms. First, we propose an efficient automatic evaluation system
of halftoning images by using quality evaluation functions based on discrepancy measures. Then, we give
experimental results on the evaluation system: they infer that the discrepancy corresponding to a regional error
is a good evaluation measurement. Finally, we design heuristic algorithms in order to minimize this regional

discrepancy measure.
1 Introduction

Digital halftoning is a well-known technique for com-
puting a binary image approximating an input gray
(or color) image , so that the binary image looks simi-
lar to the input one. The main motivation of halfton-
ing process is to keep impression of gray-level variation
of the original image in displaying it on binary devices
such as laser printers and fax machines. Therefore
there is a need to design a halftoning algorithm with
a good visual quality.

So far, a large number of techniques have been
presented in this field [6]. However those approaches
don’t propose reasonable criteria for evaluating how
a halftoning image is similar to its original one and
how its quality is good. Up to now, the most popular
criterion to judge the quality is human vision system;
this is inconvenient, since human’s judgment depends
on individual sense of beauty. Therefore, it is desired
to establish an automatic evaluation system, and to
handle the digital halftoning problem fully mathemat-
ically or algorithmically [1]. Consequently, the follow-
ing questions should be answered in order to design a
good digital halftoning system:

e How to give a reasonable mathematical defini-
tion of a good halftoning image ?

o How to evaluate quality of a halftoning image
automatically?

e How can we compute a good halftoning image
with respect to the above mentioned quality
evaluation?

That is to say, we need to convert the digital halfton-
ing problem as a rounding problem with a good op-
timization criterion. In order to evaluate quality of
halftoning image automatically, we need to select a
suitable quality measurement. Discrepancy is a hope-
ful candidate of mathematical measurement concept
representing quality of halftoning images [1, 2, 11].
Intuitively, we consider a family F of regions in the
pixel grid plane and a function f on F whose value at
R € F indicates the “dif ference’” between an input
picture and its output halftoning image within R.

In this paper, we give a prototype system for evalu-
ating a halftoning output based on several discrepancy
measures utilizing an efficient algorithm for comput-
ing discrepancy values. By applying the system to
outputs of popular halftoning methods, we examine
which discrepancy measures are suitable for quality
evaluation. )

Our experimental results using the evaluation sys-
tem infer that the regional discrepancy on k x k rect-
angles is nicely compatible with human’s judgment.
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Thus, we next focus on devising a halftoning algo-
rithm to output an image with small regional discrep-
ancy. Unfortunately, computing the halftoning image
minimizing the regional discrepancy for this family is
NP-hard, and even its approximation is theoretically
hard {3, 2].

Therefore, we provide several heuristic algorithms
based on sequence rounding technique, for which we
transform the pixel grid plane into a one-dimensional
array by filling the grid plane with ordering curves and
consider each curve as a sequence. We show experi-
mental results of the proposed algorithms, in terms of
halftoning outputs and their quality evaluations.

2 Matrix rounding problem and
quality evaluation

A digital image is a two-dimensional array of small
square regions known as pixels. In the case of a

monochromatic (also known as a gray level) image,
the brightness of each pixel is represented by a nu-
meric value. We formulate the digital halftoning prob-
lem into a matrix rounding problem as follows: Let
A = (aij)ij=o0,..,n—1, be an input matrix of size n x n,
representing a gray level image, each pixel a;; has a
real value in the range [0,1], with 0 representing black,
1 representing white and values in between represent-
ing shades of gray. Let B = (b;;); j=0,...n—1 be the
output binary matrix of the same size, representing
halftoning output image, so that each pixel b;; uses
only two values 0 and 1. In this formulation digital
halftoning converts the real matrix 4 to a binary ma-
trix B; thus B is obtained by rounding entries of the
matrix A suitably.

2.1 One dimensional discrepancy

To specify a good quality of one-dimensional rounding,
one needs to define an optimization criterion. Let A =
(ag, @1, - - -,6n-1) be asequence of real numbers in the
range [0,1] and let B = (by,bs,...,bs) be a binary
sequence. Given an integral subinterval I of [0, 1],
|31 (bs — as)| is the absolute difference between A
and B within 7. We fix a family F of intervals, we
define a distance between A and B based on the &-
discrepancy by:

Dist™(A, B) = max
IeF

D w2 b

i€l i€l

We can compute I, attaining the maximum ab-
solute difference in O(n) time by using a simple scan-
ning algorithm. This is a classical topic in algorithm
and programming, and the scanning algorithm is in-
troduced as Kadane's scanning algorithm in the fa-
mous Programming Pearl article by Bentley [5].

2.2 Measurement for matrix rounding

Although Dist™ (A, B) is a good distance between se-
quences, we need to measure the difference between
two matrices. In a halftoning system, an output image
B must look similar to the original image so that dif-
ference between A and B can be ignored by human’s
eye as negligible noise; in other words, it should be
avoided that B has patterns meaningful for human’s
eye (e.g., line segments or curve segments) that are
not in A. Such patterns are often called unexpected
patterns.

For detecting an unexpected pattern that resem-
bles to a horizontal (or vertical) line segment, we can
use one-dimensional discrepancy considered in {9]. In-
deed, we can detect such an unexpected pattern by
applying the scanning algorithm for each column and
row of the image.

Thus, our idea is to consider k& x k subregions in
the pixel grid, and judge that an output image is a
good halftoning if it resembles to the input image in
every such subregion according to a given optimiza-
tion criterion. Therefore, for automatically judging
whether a given output image B is good or not, we
define a quality measurement function f defined on
the set Frxx of all k x k subregions and indicating
discrepancy between A and B, and then design an ef-
ficient algorithm to enumerate regions R with large
f-values. '

2.3 Discrepancy measures in a k x k re-
gion.

We define six objective functions based on discrep-
ancy measures for evaluating errors within a region
R =1 x J € Fixk, where I and J represents inter-
vals of lengths k of row indices and column indices,
respectively.

e Absolute regional error: ARE

ARE(R) =| Y (as; — bij)|
(i.J)eER

it gives the difference of total brightness between
input and output within the region.

e Squared pixel error: SPE

SPE(R) = E (ai,j - bi,j)z’
(i,j)ER

determines the aggregated deviation between each
pixel’s gray value and its binary output.

e Squared row error: SROE
SROE(R) =Y () as; — biy)°

icl jeJ



measures the aggregated deviation between the
input gray level of each row and its output in R.
‘We expect that it can capture horizontal stripe
textures. If its value is large, we can detect un-
expected horizontal stripes in R, especially of
unexpected wide horizontal line segments.

o Squared column error: SCOE

SCOE(R) = S (Y aij ~ biy)?
jeJ i€l
measures the aggregated deviation within R be-
tween the input gray level of each column. We
expect that it can capture vertical stripe tex-
tures.

e Squared (downward and upward) diagonal er-
rors: SDDE and SADE
SDDE and SADE represent diagonal and off-
diagonal features, respectively. We expect that
they can capture diagonal/off-diagonalstripe tex-
tures. For R = [1, k] x [1, k], they are defined by

SDDER) = 3 (3 aiy~by)’
—k+1<y<k—1 i-j=y,(4,5)ER

and

SADE(R)= 3 (),  aiy=biy)’

2<y<2k i+j=y,(i,j)€ER

2.4 Scanning algorithm for computing
evaluation functions

Given a halftoning image, among regions in F g, we
want to list up regions for which the above functions
have large values. We want to investigate the relation
between local quality of the worst & x k region and the
global quality of the image for the human’s eye, and
also find out which of the six functions plays as the
best indicator function for quality of an output.

Proposition 1 We can compute ARE, SPE, SROE
and SCOE for all the regions in Frxr in O(n?) time
using O(n) working space.

Unfortunately, SDDE and SADE are more dif-
ficult to compute, since the diagonal segments in a
k x k matrix have different lengths (from 1 to k), and
we need to consume O(k) time instead of O(1) to up-
date the information if we design a similar algorithm
as above.

Proposition 2 SDDE and SADE for them can be
computed in O(kn?) time using O(n) working space.

We note that if we consider &k x k rotated squares
by 45 degree in the pixel grid instead of axis parallel
squares, we can compute SDDE and SADE for them
in O(n?) time although we have not done experiment
. on that version.

2.5 Evaluation of known halftoning al-
gorithms

By using our scanning algorithm we evaluate the qual-
ity of some well-known halftoning. ‘

2.5.1 Threshold rounding

A naive method to obtain a binary matrix B approx-
imating A is to compare each real entry a;; € [0,1]
to a fixed threshold value, let say 0.5, then determine
the output pixel in binary. The method minimizes the
squared pixel error SPE. However, its output (Fig-
ure 1) gives impression of the most awful quality since
a gray region is transformed into totally white or to-
tally black region.

2.5.2 Randomized rounding

This simple process rounds independently each visited
pixel to 1 with probability a;;, and to 0 with probabil-
ity (1 ~ as;). Unfortunately, an output (Figure 2) of
this method suffers from apparent grainess that makes
the image blurred and it’s hard for human to capture
the outlines of objects in the image.

‘ s

Figure 1: Threshold

rounding

Figure 3: Ordered dither



2.5.3 Ordered dither

This approach partition the image into submatrices
and round each submatrix by comparing its entries
to a threshold matrix of same dimension. Its output
(Figure 3) is much better for human’s eye than those
of threshold rounding and randomized rounding. A
defect of this method is that it generates visible tex-
ture inherited from the dither matrix, and thus its
output image gives an artificial impression.

2.5.4 One dimentional error diffusion

The one-dimensional error diffusion algorithm com-
putes a binary sequence B = (by,by1,...,b,—1) from
A = (ag,a1,...,a,—1) greedily for j = 0,1,2,...,n-1
such that the inequality [$-7_g(a; — bs)| < 0.5 holds
for each j. We process each row of the matrix by using
the above algorithm. Its output (Figure 4) is suffering
from vertical wave (or stripe) patterns and and verti-
cal linear scars. Its due to the application of the same
greedy algorithm for each row and thus adjacent out-
put rows have similar periodical feature. This causes
unexpected scars and vertical wave patterns.

F iguré 5: ‘ wo dlﬁ error diﬁ'ion
2.5.5 Two dimensional error diffusion.

Two-dimensional error diffusion is a neighbor halfton-
ing process given by Floyd and Steinberg [7]. The
algorithm scans a matrix row-wise from its top row to
the bottom one, and rounds entries greedily. The pro-
cessing consists of threshold rounding for each pixel
and an error computation, that is propagated to the
neighboring pixels not yet processed with repect to
fraction coeflicients. Floyd-Steinberg suggested taking

(a, B, v, 8)=(7/16,3/16,5/16,1/16). As seen in Fig-
ure 5, two-dimensional error diffusion leads to higher
halftoned image quality, and contouring artifacts are
minimized. Although it still produces some vertical
scars and artifacts looking like zebra stripes, its visual
quality is best among the methods mentioned above.

2.6 Automatic evaluation of
typical halftoning methods

We illustrate in section 5 Table 4 experimental results
on the validity of our quality evaluation system by ap-
plying it to the outputs of the halftoning algorithms
described in the previous subsection. It shows the
maximum values over all regions in Fsy5 for each of
our measurement functions, where “Row” and “Col”
represents maximum of 1-dimensional discrepancies
of rows and columns, respectively. SPE is not in-
clude in the table due to space limitation. It takes
the value 7 over almost all described algorithms ex-
cept for “Threshold rounding” its value is 6. Clearly,
among these functions, ARE is most compatible with
human’s judgment (Table: 3).

The maximum values might be attained at few sin-
gular parts of the pictures; thus, one may worry that
the maximum values given in Table 4 may fail to de-
scribe the visual feature of the outputs. We consider
L; and L measures which will be discussed in the
next subsection for removing this anxiety.

We present the experimental results of our evalu-
ation system in section 5. They are more detailed in
the full version [10].

2.7 Variations of ARE

We have observed that ARE is very important for
evaluating quality of halftoning measure. Thus, we
examine ARF for different values of k, and also con-
sider variants of ARE. We have considered the max-
imum value of ARE(R) over all regions R € Frxk.
This is called the L., regional measure, and denoted
by ARE}® from now on; that is, :

AREY = max ARE(R).

kxk

Similarly, we define

AREy = Y |ARE(R)|/|Fixx|
REFrxk

and

ARER =[ Y [|ARE(R)|*/|Fixil]*/2.
REFkxk

They basically correspond to L; and L regional mea-
sures, respectively.



For the Ly, ARE measure shown in Table 3, 2D dif-
fusion method is best for the all ranges of 5 < k < 50.
However, for the L, and L, measurements given in
Tables 1 and 2 respectively, phase transition occurs
around k& = 30. If the resolution of the picture be-
comes finer, ARFE for a larger & becomes more im-
portant, since the resolution of human vision is fixed.
Thus, for a future halftoning system, the authors guess
that a method which minimizes ARE for a larger k
will be more important.

3 Minimizing ARFE by using
global roundings

However, it is known to be NP-hard [3] to compute the
binary matrix B minimizing ARE;® even for k = 2,
and hence we need to design a heuristic or approxi-
mation method.

In this section, we modify the one-dimensional er-
ror diffusion algorithm by using the concept of global
rounding given by Sadakane et. al. [9]. Consider a

rounding B = (by, b1,...,bp—1) of A = (ag,a1,...,8n-1)-

Given an integral subinterval I of [0,n — 1], |B(I) —
A(D)] =X ;c1(bi — a;)| is called the interval error of
the rounding within I. For a given family F of inter-
vals over a sequence, the rounding B is called F-global
rounding if |A(I) — B(I)| < 1 holds for every I € F.

A key fact is that there are exactly n + 1 global
roundings (under a nondegeneracy condition)if we
consider the set of all subintervals as the interval fam-
ily. Moreover, we can design an efficient algorithm to
enumerate all of them in O(n?) time [9]. Our strat-
egy is, instead of 1-D error diffusion output, we choose
a rounding from the set of all possible global round-
ings at each row, and try to break the synchroniza-
tion, hoping to reduce scars and wave patterns con-
sequently. By selecting a global rounding randomly
in each row, we can reduce the generation of ver-
tical stripe patterns as shown in the output image
Fig. 6 from the one dimensional error diffusion out-
put {(Fig. 4).

Neglecting long intervals, we define I;-global round-
ing where we consider the set of all subintervals of
lengths at most ¢t < n. The set of all Ix-global round-
ing forms the set of all source-sink paths of a DAG
of size O(tn), and hence we can select an L-global
rounding in an uniformly random fashion; moreover,
we can give side constraints or optimization conditions
so that we can find the optimal I;-global rounding by
applying a shortest-path algorithm. The output im-
ages (for n = 512 and t = 9) are given in Figure 6,
and we can see that they have few vertical scars. The
computation time for all of n rows is O(tn?), which
is less than 0.5t seconds in our experiment. Unfortu-
nately, we observe wave patterns, and the waves are

larger than that of 2-D error diffusion; thus, they give
impression that the outputs are slightly rough.

Figure 6: I,-global rounding (left) and Iy global
rounding (right)

We evaluate quality of outputs of the method based
on the I;-global rounding for different values of ¢ il-
lustrated in [10]. In Table 4 we shows the results of
evaluation functions for t = 9 and t = n = 512.

The values of discrepancy measures tend to de-
crease slightly if we increase ¢ as interpreted in [10],
although the visual difference (via human eyes judg-
ment) between the quality of output images does not
significantly depend on the choices of ¢ if ¢ > 7.

The values of ARE for k = 5 do not depend on
t much; however, for a larger k, ARE) depends on
t heavily, as seen in the following tables 1, 2 and
3. We can observe that, for a larger k, the values
are considerably smaller than the method given in the
previous section if we take a large t. In precise for
k > 20 ARE values are improved comparing with 2-D
error diffusion method if ¢ is large enough.

4 Rounding based on ordering
curves

An alternative approach is to apply sequence round-
ing along an ordering curve (often called grid filling
curve [12, 13}]) that gives a sequential ordering of the
pixels so that the consecutive pixels in the ordering is
adjacent to each other in the grid. We combined the
idea of ordering curve with I;-global rounding method.
The method takes advantage of characteristics of an
ordering curve to reduce a two-dimensional problem
to one-dimensional problem.

A Hilbert curve is a curve to fill pixel grid plane
recursively. For our experiment we considered a non-
recursive curve Hy having 16 vertices each at the cen-
ter of the sixteenth of the unit square. This is il-
lustrated in Figure 7. We partjtion the pixel plane
into horizontal bands of size 4 X n. We order the en-
tries of each band following the H, curve. Doing so,.
we constitute a sequence of length 4n for each band.
The combination of Hs and I,,-global rounding gives



a good halftoning result shown in Figure 8 having low
discrepancy measures. This algorithm outputs an im-
age which takes a relatively small value for every eval-
uation function. One weak point of this algorithm is
its O(n®) time complexity, but it can be reduced by
using I;-global rounding for a smaller ¢; see Figure 9
fort=9.

Tables 1, 2 and 3 show the evaluation quality of
I-global rounding along Hilbert curve for ¢t = 9 and
t = 4n. We observe that if ¢ increase the values of
discrepancy measures tend to decrease {10]. For a
t > 20 and k > 30 ARE} and ARE} are improved
comparatively with 2-D error diffusion method.
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Figure 7: 4x4 Hilbert curve
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Figure g H2

Figure 9: Io-global rounding along H2

We also tried to order entries of an input matrix
following a curve shaped as a union of diagonal zigzags
of width 3. For notational convenience let DZ3 denote
this ordering curve. Figure 10 shows the partition
of the picture into a set of sequences filling the pixel
grid plane. Figure 13 is a halftoning image by the Ig-
global rounding along the DZ3 curve. Unfortunately,
it suffers from downward diagonal stripe patterns.

4.1 Global rounding minimizing the sum

of ARE

We have selected the sequence rounding from the set

of all global roundings in a randomized fashion. How-
ever, we can control the selection by choosing the best

one according to a given criterion. Indeed, we want
to compute the I;-global rounding along an ordering
curve minimizing ARE?. ‘

Therefore we implemented an algorithm in which
the F-global rounding criterion and regional discrep-
ancy criterion are simutaneously treated. Such an
optimized rounding along an ordering curve substan-
tially reduces the regional discrepancy as a solution
for the matrix rounding problem.

The problem seems to be difficult theoretically,
and we give a heuristic algorithm for the curve DZ;
in order to test whether such kind of optimization is
effective or not. Figure 11 illustrates the behavior of
our heuristic algorithm.
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Figure 10: DZs Ordering Figure 11: Regions in F3xs
curve associated with pixels of a
sequence following DZ3

Our heuristic is as follows: For simplicity, we as-
sume that n = 3m+2 for a natural number m. Indeed,
512 = 3 x 170 + 2. For an integer s € [~m,m], let U,
be the tridiagonal region such that its central diago-
nal consists of the matrix entries a; ; satisfying that
j—i=3s.

Let F* = {R|R € F3x3,R C Ui__,,U;}. Starting
with ¢ = —m, we compute the I; global rounding of
U; along DZ3 minimizing Y-z, ARE(R) under the
condition that the roundings of entries in U;;})Uj has
been already computed.

The computation of the rounding of U; can be done
as follows: The set of I; roundings of the sequence
DZ3 NU; (of length at most 3n) can be represented
as a set of shortest path of a directed acyclic graph G
with O(tn) nodes (see Figure 12 for an example). The

Figure 12: The Z3-global
rounding graph for an input
sequence (0.4,0.4,...,0.4)



structure of G is given in Sadakane et. al. [9].

Given the graph G representing the set of I global
roundings, we can compute the global rounding of
DZ3 NU; minimizing 3 pe », ARE(R) as follows: We
keep track of square regions which are in F; but not
in F;—1. Let & be the set of such regions. For each
node v of G, we give a value Sum(v), which is the
total sum of ARE values of regions in & whose all en-
tries are rounded according to the labels of the path
from the root to v; we do not add the ARE values
of regions that contains an entry corresponding to
the edges below the level of v. We sweep the lev-
eled directed acyclic graph G from the root to leaves,
and every time the rounding on a path newly deter-
mines ARE value of a square region, we update v.
If two paths join at v, we take the parent so that
the smaller value of Sum(v) is attained. The suffix
of length 3k of the two paths has the same suffix of
length ¢, and since t > 2k + 1, the suffix only influence
to the non-determined ARE values. When the process
is completed, we take the leaf with the smaller Sum
value, and retrieve the path by using backtracking. It
takes O(tn) computation time for this process for an
2. Thus, in total, we obtain the rounding of the n x n
matrix in O(tn?) time.

The output halftoning image is given in Figure 14.
The problem of the figure is that it has many small
diagonal patterns, and we cannot say that optimiza-
tion gives significant improvement of visual quality.
Moreover, unfortunately, the gain of the optimization
is not very large, we improved our objective function
ARES from 0.86 to 0.79. As shown in Tables 1, 2 and
3, ARE values are mostly improved from the output
of Iy global rounding along the curve, but not as good
as I, global rounding.

4.2 Comparison of halftoning algorithms

The following three tables 1, 2 and 3 show ARE?
errors for p = 1,2, 00 and k = 5, 10, 20, 30, 40, 50. For
larger k, I, global rounding, /4, global rounding along
Ho, and I,, global rounding along DZ3 perform well.
This suggests that these method will work well for a
finer pictures.

Table 4 shows the performance comparison on other
measurement functions. We see that Iy, (or Iy) round-
ing along H, gives good scores for every quality eval-
uation function except the computation time. The
CPU times for computing these image range from 0.6
to 107.1 seconds. Our algorithms are clearly slower
than known methods, but not very slow if ¢ is small.

5 Concluding Remarks

Based on our experiment, it is very important to select
a suitable measurement function. We have succeeded

Figure 13: I5-global rounding along DZ3

Figure 14: With optimization

Method ARE} | ARE}, | ARE), | ARE}, | ARE},
Threshold 7.34 27.21 96.80 196.80 | 459.11
Randomized 1.84 3.68 7.32 1084 | 17.83
Dither 0.98 1.19 2.15 3.70 6.33
1D diffusion 0.74 1.12 1.69 2.15 2.90
2D diffusion 0.61 0.85 1.45 2.19 4.06
I, rounding 0.67 0.99 1.43 1.75 2.26
I rounding 0.72 1.27 2.89 5.59 14.47
Isn along Ha 0.75 1.04 1.45 1.80 2.34
Ig along Ha 0.80 1.31 3.15 6.47 17.75
I, along DZ3 | 0.91 1.30 1.84 2.28 2.93
I along DZ3 | 0.93 1.44 2.75 5.00 13.01
I9-DZ;3 opt. 0.81 1.23 2.16 3.51 8.07
Table 1: Comparison of L} ARE values
Method ARE? | ARE}, | ARE}, | AREZ, | ARE},
Threshold 7.87 29.66 108.39 | 224.13 | 534.91
Randomized 2.31 4.63 9.18 13.70 22.75
Dither C o124 1.50 2.77 4.67 7.98
1D diffusion 0.97 1.48 2.26 2.89 3.89
2D diffusion 0.76 1.08 1.84 2.76 5.11
I, rounding 0.86 1.25 1.81 2.20 2.84
Iy rounding 0.92 1.64 3.78 7.06 17.01
I4n along Ho 0.93 1.33 1.89 2.31 3.00
Io along Hy 0.99 1.69 4.02 7.75 19.30
I, along DZs | 1.14 1.63 2.32 2.87 3.68
Ig along DZ3 1.16 1.82 3.54 6.18 14.46
I9-DZj3 opt. 1.33 1.58 2.79 4.52 9.59

Table 2: Comparison of L2 ARE values

to reduce AREY values (for p = 00,1, or 2) for k > 20 .
as illustrated in Figures 15 and 16, and thus we hope




Method AREZ® | AREJ | ARES; | ARES | AREZS
Threshold 12.29 48.23 186.67 412.70 1127.96
Randomized 11.00 21.16 42.93 67.13 105.98
Dither 5.00 7.42 13.17 21.52 36.56
1D diffusion 4.71 8.78 15.45 19.49 25.54
2D diffusion 3.24 5.98 10.05 13.40 20.81
I, rounding 4.36 6.16 8.13 10.02 11.97
I rounding 4.42 9.16 20.16 41.97 86.65
Iyn along Hy 3.69 8.87 12.25 14.89 16.79
Iy along Hz 3.98 8.01 21.94 42.61 86.76
I, along DZ3 4.50 6.87 10.22 13.83 17.38
Iy along DZ; 5.30 9.02 22.80 40.24 76.75
Is-DZ3 opt. 5.25 9.87 16.80 30.31 49.52
Table 3: Comparison of LY ARE values
Method Row Col SROE | SCOE | SDDE | SADE
Threshold 100 | 206 21 32 30 20
Randomized 37 38 31 28 23 25
Dither 107 | 134 14 15 25 24
1D diffusion 0.99 | 159 4 36 25 25
2D diffusion 16 68 13 33 22 22
I, rounding 0.99 40 4 35 22 23
Iy rounding 9 154 4 34 22 23
I4n along H2 25 25 19 15 22 22
Ig along H2 29 | 35 18 16 22 23
I, along DZ3 31 53 11 34 26 16
Ig along DZ3 | 27 43 12 35 26 16 1
15-DZ3 opt. 42 30 11 32 26 16

2

Table 4: Values of other measurement functions

that our method using global rounding works well for
halftoning a fine image; we will do experiments on
such fine images in our future work.

ARE works well, but it is necessary to give a more
effective measurement function to devise an evalua-
tion system that simulate human’s eye more precisely.
It is necessary that ARE value should be low; how-
ever, optimizing ARE doesn’t always give good look-
ing output. Nevertheless, if we will find a more effec-
tive measurement function, we expect that we will be
able to design a better halftoning method by using an
algorithm for optimizing the measurement function.
Instead of considering partitioning of the grid into or-
dering curves, we could use a covering of the grid by
curves. That is, if two or more curves overlap at a
pixel, we may choose the rounding of the pixel from
the roundings given on the curves by majority and/or
coin-flip. In our future work, we will implement our
evaluation system by using other types of region fam-
ilies, for example, the 2-laminated family proposed by
Asano et al.{2]. Also, we will try to detect unexpected
scars and waves automatically and sensitively.
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