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1 Introduction

Recall that the prime CNF of a monotone Boolean
function f is the unique formula ¢ = A g ¢ in con-
junctive normal form where S is the set of all prime
implicates of f, i.e., minimal clauses ¢ which are log-
ical consequences of f. In this paper, we consider the
following problem:

Problem DUALIZATION
Input: The prime CNF ¢ of a monotone Boolean
function f = f(z1,...,Zm).
Output: The prime CNF ¢ of its dual f%.

Here fd = f(Z1,-..,Tm). Itis well known that DU-
ALIZATION is-equivalent to'the TRANSVERSAL COM-
PUTATION problem, which requests to compute the set
of all minimal transversals (i.e., minimal hitting sets)
of a given hypergraph H, in other words, the transver-
sal hypergraph Tr(H) of H. Actually, these problems
can be viewed as the same problem, if the clauses in a
monotone CNF ¢ are identified with the sets of vari-
ables they contain. DUALIZATION is a search prob-
lem; the associated decision problem DUAL is to de-
cide whether two given monotone prime CNFs ¢ and
1 represent a pair (f,g) of dual Boolean functions.
Analogously, the decision problem TRANS-HYP asso-
ciated with TRANSVERSAL COMPUTATION is decid-
ing, given hypergraphs H and G, whether G = Tr(H).

DUALIZATION and several problems which are like
transversal computation known to be computationally
equivalent to problem DUALIZATION (see [14]) are
of interest in various areas such as database theory
(e.g. [37, 48]), machine learning and data mining (e.g.,
[5, 6, 11, 21]), game theory (e.g. [25, 41, 42]), artifi-
cial intelligence (e.g., [20, 27, 28, 43]), mathematical
programming (e.g., [4]), and distributed systems (e.g.,
[17, 26]) to mention a few.

While the output CNF 1) can be exponential in the
size of ¢, it is currently not known whether ¢ can be
computed in output-polynomial (or polynomial total)
time, i.e., in time polynomial in the combined size of ¢
and 1. Any such algorithm for DUALIZATION (or for
TRANSVERSAL COMPUTATION) would significantly
advance the state of the art of several problems in the
above application areas. Similarly, the complexity of
DUAL (equivalently, TRANS-HYP) is open since more
than 20 years now (cf. [2, 14, 29, 30, 32)).

Note that DUALIZATION is solvable in polynomial
total time on a class C of hypergraphs iff DUAL is
in PTIME for all pairs (H,G), where H € C [2].
DUAL is known to be in co-NP and the best cur-
rently known upper time-bound is quasi-polynomial
time [16, 18, 46]. Determining the complexities of
DUALIZATION and DUAL, and of equivalent problems
such as the transversal problems, is a prominent open
problem. This is witnessed by the fact that these prob-
lems are cited in a rapidly growing body of literature
and have been referenced in various survey papers and
complexity theory retrospectives, e.g. [29, 33, 39].

Given the importance of monotone dualization and
equivalent problems for many application areas, and
given the long standing failure to settle the complex-
ity of these problems, emphasis was put on finding
tractable cases of DUAL and corresponding polyno-
mial total-time cases of DUALIZATION. In fact, sev-
eral relevant tractable classes were found by various
authors; see e.g. [3, 7, 8, 9, 11, 13, 14, 19, 34, 35,
38, 40] and references therein. Moreover, classes of
formulas were identified on which DUALIZATION is
not just polynomial total-time, but where the conjuncts
of the dual formula can be enumerated with incre-
mental polynomial delay, i.e., with delay polynomial
in the size of the input plus the size of all conjuncts
so far computed, or.even with polynomial delay, i.e.,
with delay polynomial in the input size only. On the
other hand, there are also results which show that cer-
tain well-known algorithms for DUALIZATION are not
polynomial-total time. For example, [14, 38] pointed
out that a well-known sequential algorithm, in which
the clauses ¢; of a CNF ¢ = ¢; A -+ A ¢, are pro-
cessed in order ¢ = 1,...,m, is not polynomial-total
time in general. Most recently, [45] showed that this
holds even if an optimal ordering of the clauses is as-
sumed (i.e., they may be arbitrarily arranged for free).

Main Goal. The main goal of this paper is to present
important new polynomial total time cases of DUAL-
IZATION and, correspondingly, PTIME solvable sub-
classes of DUAL which significantly improve previ-
ously considered classes. Towards this aim, we first
present a new algorithm DUALIZE and prove its cor-
rectness. DUALIZE can be regarded as a generaliza-
tion of a related algorithm proposed by Johnson, Yan-
nakakis, and Papadimitriou [30]. As other dualization
algorithms, DUALIZE reduces the original problem by
self-reduction to smaller instances. However, the sub-



division into subproblems proceeds according to a par-
ticular order which is induced by an arbitrary fixed or-
dering of the variables. This, in turn, allows us to de-
rive some bounds on intermediate computation steps
which imply that DUALIZE, when applied to a vari-
ety of input classes, outputs the conjuncts of ¥ with
polynomial delay or incremental polynomial delay. In
particular, we show positive results for the following
input classes:

o Degenerate CNFs. = We generalize the notion
of k-degenerate graphs [49] to hypergraphs and de-
fine k-degenerate monotone CNF's resp. hypergraphs.
We prove that for any constant k&, DUALIZE works
with polynomial delay on k-degenerate CNFs. More-
over, it works in output-polynomial time on O(logn)-
degenerate CNFs.

e Read-k CNFs. A CNF is read-k, if each variable
appears at most k times in it. We show that for read-k
CNFs, problem DUALIZATION is solvable with poly-
nomial delay, if k is constant, and in total polynomial
time, if & = O(log(]|¢|). Our result for constant k
significantly improves upon the previous best known
algorithm [11], which has a higher complexity bound,
is not polynomial delay, and outputs the clauses of ¥
in no specific order. The result for £ = O(log||¢]|) is
a non-trivial generalization of the result in [11], which
was posed as an open problem [10].

e Acyclic CNFs. There are several notions of hy-
pergraph resp. monotone CNF acyclicity [15], where
the most general and well-known is a-acyclicity. As
shown in [14], DUALIZATION is polynomial total time
for B-acyclic CNFs; 3-acyclicity is the hereditary ver-
sion of a-acyclicity and far less general. A similar re-
sult for cv-acyclic prime CNFs was left open. (For non-
prime a-acyclic CNFs, this is trivially as hard as the
general case.) In this paper, we give a positive answer
and show that for a-acyclic (prime) ¢, DUALIZATION
is solvable with polynomial delay.

o Formulas of Bounded Treewidth. The
treewidth [44] of a graph expresses its degree of
cyclicity. Treewidth is an extremely general notion,
and bounded treewidth generalizes almost all other
notions of near-acyclicity. Following [12], we define
the treewidth of a hypergraph resp. monotone CNF ¢
as the treewidth of its associated (bipartite) variable-
clause incidence graph. We show that DUALIZATION
is solvable with polynomial delay (exponential in

k) if the treewidth of ¢ is bounded by a constant
k, and in polynomial total time if the treewidth is

O(loglog [|]]).

e Recursive Applications of DUALIZE and k-
CNFs. We show that if DUALIZE is applied recur-
sively and the recursion depth is bounded by a con-
stant, then DUALIZATION is solved in polynomial to-
tal time. We apply this to provide a simpler proof of
the known result [7, 14] that monotone k-CNFs (where
each conjunct contains at most k variables) can be du-
alized in output-polynomial time.

After deriving the above results, we turn our atten-
tion to the fundamental computational nature of prob-
lems DUAL and TRANS-HYP in terms of complexity
theory.

Limited nondeterminism. In a landmark paper, Fred-
man and Khachiyan [16] proved that problem DUAL
can be solved in quasi-polynomial time.” More pre-
cisely, they first gave an algorithm A solving the prob-
lem in 2°0°* ™) time, and then a more complicated al-
gorithm B whose runtime is bounded by n #x(m+0(1)
where x(n) is defined by x(n)X(®™ = n. As noted
in [16], x(n) ~ logn/loglogn = o(logn); there-
fore, duality checking is feasible in 7.°0°8™) time. This
is the best upper bound for problem DUAL so far,
and shows that the problem is most likely not NP-
complete.

A natural question is whether DUAL lies in some
lower complexity class based on other resources than
just runtime. In the present paper, we advance the
complexity status of this problem by showing that its
complement is feasible with limited nondeterminism,
i.e, by a nondeterministic polynomial-time algorithm
that makes only a poly-logarithmic number of guesses.
For a survey on complexity classes with limited non-
determinism, and for several references see [22]. We
first show by using a simple but effective technique,
which succinctly describes computation paths, that
testing non-duality is feasible in polynomial time with
O(log? n) nondeterministic steps. We then observe
that this approach can be improved to obtain a bound
of O(x(n)-log n) nondeterministic steps. This result is
surprising, because most researchers dealing with the
complexity of DUAL and TRANS-HYP believed so far
that these problems are completely unrelated to limited.
nondeterminism.



We believe that the results presented in this paper
are significant, and we are confident that they will be
prove useful in various contexts. First, we hope that
the various polynomial/output-polynomial cases of the
problems which we identify will lead to better and
more general methods in various application areas (as
we show, e.g. in learning and data mining [11]), and
that based on the algorithm DUALIZE or some future
modifications, further relevant tractable classes will be
identified. Second, we hope that our discovery on
limited nondeterminism provides a new momentum to
complexity research on DUAL and TRANS-HYP, and
will push it towards settling these longstanding open
problems.

The rest of this paper is structured as follows. The
next section provides some preliminaries and intro-
duces notation. In Section 3, we present our algorithm
DUALIZE for dualizing a given monotone prime CNF.
In Section 4 we then show that DUAL can be solved
with limited nondeterminism.

2 Preliminaries and Notation

A Boolean function (in short, function) is a map-
ping f : {0,1}" — {0,1}, where v € {0,1}" is
called a Boolean vector (in short, vector). As usual,
we write ¢ < f if f and g satisfy g(v) < f(v) for
alv € {0,1}", and g < fifg < fand g # f.
A function f is monotone (or positive), if v < w
(i.e., v; < w; for all ¢) implies f(v) < f(w) for all
v,w € {0,1}™ Boolean variables 1, zs3,...,2, and
their complements Z1, %2, ..., Z, are called literals.
A clause (resp., term) is a disjunction (resp., conjunc-
tion) of literals containing at most one of z ; and Z; for
each variable. A clause c (resp., term t) is an impli-
cate (resp., implicant) of a function f, if f < ¢ (resp.,
t < f); moreover, it is prime, if there is no implicate
¢ < c (resp., no implicant ¢’ > t) of f, and mono-
tone, if it consists of positive literals only. We denote
by PI(f) the set of all prime implicants of f.

A conjunctive normal form (CNF) (resp., disjunc-
tive normal form, DNF) is a conjunction of clauses
(resp., disjunction of terms); it is prime (resp. mono-
tone), if all its members are prime (resp. monotone).
For any CNF (resp., DNF) p, we denote by |p| the
number of clauses (resp., terms) in it. Furthermore,
for any formula ¢, we denote by V(i) the set of vari-
ables that occur in ¢, and by ||| its length, i.e., the
number of literals in it. We occasionally view CNFs ¢

also as sets of clauses, and clauses as sets of literals,
and use respective notation (e.g., ¢ € ¢, Ty € cetc).

As well-known, a function f is monotone iff it
has a monotone CNF. Furthermore, all prime im-
plicants and prime implicates of a monotone f are
monotone, and it has a unique prime CNF, given
by the conjunction of all its prime implicates. For
example, the monotone f such that f(v) = 1 iff
v € {(1100),(1110), (1101), (0111), (1111)} has the
unique prime CNF ¢ = xq{x1 V 23)(21 V 24).

Recall that the dual of a function f, denoted f¢,
is defined by f4(x) = f(Z), where f and T is the
complement of f and z, respectively. By definition,
we have (f%)¢ = f. From De Morgan’s law, we obtain
a formula for ¢ from any one of f by exchanging vV
and A as well as the constants 0 and 1. For example,
if fis given by ¢ = 129 V T (T3 V 24), then fd
is represented by ¢ = (1 V x2)(Z1 V Taza).  For
a monotone function f, let ¢ = A cc(V,, e, i) be
the prime CNF of f¢. Then by De Morgan’s law, f
has the (unique) prime DNF p = V (A, ¢, %i)s
in the previous example, p = z1x2 V z2x324. Thus,
we will regard DUALIZATION also as the problem of
computing the prime DNF of f from the prime CNF
of f.

3 Ordered Transversal Generation
In what follows, let f be a monotone function and

¢ = Na 0))
=1

its prime CNF, where we assume without loss of gen-
erality that all variables z; (j = 1,2,...n) appear in
@. Let p; (i =0,1,...,n) be the CNF obtained from
« by fixing variables x; = 1 forall j with j > 4 + 1.
By definition, we have g = 1 (truth) and @, = .
For example, consider ¢ = (z1 V z2)(z1 V 23)(x2 V
z3 V z4)(x1 V 24). Then we have o = ¢1 = 1,
wa = (z1Vx2), p3 = (£1Vx2)(z1Vzs), and pg = .
Similarly, for the prime DNF |

W = VteP[(f)t ’ 03]

of f, we denote by 1; the DNF obtained from % by
fixing variablesx; = 1 forall j with j > i+1. Clearly,
we have ¢, =1, i.e., ¢; and 1); represent the same
function denoted by f;.

Proposition 3.1 Let ¢ and 1 be any CNF and DNF
for f, respectively. Then, for alli > 0,



(@) \losl < llell and @il < |o|, and
(b) |lvi]l < WH and [1p;] <[4,

Denote by A (i =1,2,...,n) the CNF consisting of
all the clauses in ¢; but not in ¢;_;. For the above
example, we have Al = 1, A? = (z; V), A3 =
(z1Vx3), and A* = (22 V 23V 24)(2 V 24). Note

that ; = ;1 A A; hence, foralli = 1,2,...,n we
have o -
Yi = Y AA =\ (EAAY.
tEPI(fi—1)

Let A'[t], for i = 1,...,n denote the CNF consisting
of all the clauses ¢ such that ¢ contains no literal in ti1
and ¢ V z; appears in A®. For example, if t = zo23%4
and A? = (22 Vz3 V 24)(21 V 24), then AYft] = ;.
It follows from (3) that forall : = 1,2,...,n

Y = \/

tEPI(fi-1)

((t/\Ai[t]) v (tAz). “

Lemma 3.2 For every termt € PI(f;_1), let g; ¢ be

the function represented by A'[t]. Then |PI(g; )| <
il < [

We now describe our algorithm DUALIZE for gener-
ating PI(f). Itis inspired by a similar graph algorithm
of Johnson, Yannakakis, and Papadimitriou [30] and
can be regarded as a generalization.

Algorithm DUALIZE
Input: The prime CNF ¢ of a monotone function f.
Output: The prime DNF 4 of f, i.e., all prime impli-
cants of f. t

Step 1: Compute the smallest prime implicant. ¢,
of fand set Q := {tmin };
Step 2: while Q # 0 do
‘ Remove the smallest ¢ from Q-and output ¢;
for each i with z; '€ V(t) and A%[t] # 1 do
Compute the prime DNF py; ;) of the
function represented by At[t];
for each term ' in p(; ;) do
ift;—1 At is a prime implicant of f;
then Compute the smallest prime
implicant t* of f such that ¢}
= tl 1At :
—Quir}
end{lf} end{for} end{for}
end{while}

Here, we say that term s is smaller than term t if

Ez,ev(s)Q RPN seviy 2775 e, as vector, s
is lexicographically smaller than ¢.

Theorem 3.3 Algorithm DUALIZE correctly outputs
allt € PI(f) inincreasing order.

Remark 3.1 (1) The decomposition rule (4) was al-
ready used in [32). v

(2) In step 1, we could generate any prime implicant
t of f, and choose then a lexicographic term ordering
inherited from a dynamically generated variable order-
ing. Instep 2, it is sufficient that any monotone DNF
7(¢,5) of the function represented by A*[t] is computed,
rather than its prime DNF p(, ;y. This might make the
algorithm faster.

Let us consider the time complexity of algorithm
DUALIZE. We store (Q as a binary tree, where each
leaf represents a term ¢ and the left (resp., right) son of
anode at depth j — 1 > 0, where the root has depth 0,
encodes x; € V(t) (resp., z; ¢ V(¢)). In Step 1, we
can compute t,q, in O([|¢]|) time and initialize Q in
O(n) time.

As for Step 2, let Ty ;) be the time required to com-
pute the prime DNF p(; ;) from A'ft]. By analyzing
its substeps, we can see that each iteration of Step 2
requires inev(t)(T(t,i) + 1ol O(flell)) time.

Indeed, we can update @ (i.e., remove the smallest
term and add ¢*) in O(n) time. For each t and i, we
can construct A’[t] in O(]|¢||) time. Moreover, we can
check whether ¢;.., At’ is a prime implicant of f; and
if so, we can compute the smallest prime implicant ¢*
of f such that t7 = ¢;_; At/ in O(||p||) time; note
that ¢* is the smallest prime implicant of the function
obtained from f by fixing x; = 1ifz; € V(t; At))
and Oif x; g V(t; At') forj <.

Hence, we have the following result.

Theorem 3.4 The output delay of Algorithm DUAL-
I1ZE is bounded by

max (30 (T +lowol -0Ulel) )

tePI(f) wEV ()

time, and DUALIZE needs in total time

S @ +los)- ouwu» ©)

tePI(f) zi€V (1)



Corollary 3.5 LetT = max{T ;) |t € PI(f),z; €
V(t) }. Then, if T is bounded by a

(i) polynomial in n and |||, then DUALIZE is an
O(n||le||T) polynomial delay algorithm;

(ii) polynomial inn, |||, and |||, then DUALIZE is
an O(n-||-(T+||-||||)) polynomial total-time
algorithm; moreover, DUALIZATION is solvable.
in incremental polynomial time.

Note that using results from [2], we can construct
from DUALIZE an incremental polynomial time algo-
rithm: for DUALIZATION, ‘which however might not
output PI(f) in increasing order.

Although we skip the details due to the space limi-
tation, we identify sufficient conditions for the bound-
edness of T' and fruitfully apply them to solve open
problems and improve previous results (see Introduc-
tion).

4  Limited Nondeterminism

In the previous section, we have discussed polyno-
mial cases of monotone dualization. In this section, we
now turn to the issue of the precise complexity of this
problem. For this purpose, we consider the decision
problem DUAL, i.e., decide whether given monotone
prime CNFs ¢ and 1 represent dual Boolean func-
tions, instead of the search problem DUALIZATION.

It appears that problem DUAL can be solved with
limited nondeterminism, i.e., with poly-log many
guessed bits by ‘a polynomial-time non-deterministic
Turing machine. This result might bring new insight
towards settling the complexity of the problem.

We adopt Kintala and Fischer’s terminology [31]
and write g(n)-P for the class of sets accepted by a
nondeterministic Turing machine in polynomial time
making at most g(n) nondeterministic steps on every
input of length n. For every integer £ > 1, define
BP =, (e log® n)-P. The P Hierarchy consists of
the classes k

P=pBPCRHPC - C|JBP=pP
k

and lies between P and NP. The ;P classes appear
to be rather robust; they are closed under polynomial
time and logspace many-one reductions and have com-
plete problems (cf. [22]). The complement class of
B P is denoted by co-¢P.

Theorem 4.1 Deciding whether monotone CNFs ¢
and 1 are non-dual is feasible in polynomial time
with O(x(n) log n) nondeterministic steps, where n =

lol + |l

While our independently developed methods are
different from those in [1], the previous result is also
obtained from Beigel and Fu’s Theorem 11 in [1] by
combining {16]. They show how to convert certain re-
cursive algorithms that use disjunctive self-reductions
and have runtime bounded by f(n) into polynomial al-
gorithms using log f(n) nondeterministic steps (cf. [1,
Chapter 5]). However, this yields a somewhat more
complicat,ed nondeterministic algorithm.

5 Conclusion

We have presented several new cases of the mono-
tone dualization problem which are solvable in output-
polynomial time. These cases generalize some previ-
ously known output-polynomial cases. Furthermore,
we have shown by rather simple means that non-dual
monotone pairs (i, 1) can be recognized, using a non-
deterministic variant of Fredman and Khachiyan’s al-
gorithm B [16], in polynomial time with O(log? n)
many bit guesses, which places problem DUAL in the
class co-(2P. In fact, a refined analysis revealed that
this is feasible in polynomial time with O(x(n)-logn)
many bit guesses.

While our results document progress on DUAL and
DUALIZATION and reveal novel properties of these
problems, the question whether dualization of mono-
tone pairs (, ) is feasible in polynomial time re-
mains open. It would be interesting to see whether
the amount of guessed bits can be further significally
decreased, e.g., to O(loglog v - log v) many bits.

References

[1] R. Beigel and B. Fu. Molecular computing,
bounded nondeterminism, and efficient recur-
sion. Algorithmica, 25: 222-238, 1999.

[2] C.Biochand T. Ibaraki. Complexity of identifi-
cation and dualization of positive Boolean func-
tions. Information and Computation, 123:50—
63, 1995.

[3] E. Boros, K. Elbassioni, V. Gurvich, and
L. Khachiyan. An efficient incremental algo-
rithm for generating all maximal independent
sets in hypergraphs of bounded dimension. Par-
allel Processing Letters, 10(4):253-266, 2000.



[4]

{51

fo]

(71

[8]

(91

[10]

[11]

[12]

(13]

[14]

E. Boros, K. Elbassioni, V. Gurvich,
L. Khachiyan and K. Makino. On gen-
erating all minimal integer solutions for a
monotone system of linear inequalities. In:
Proc. 28th International Colloquium on Au-
tomata, Languages and Programming (ICALP),
pp. 22-103, Springer LNCS 2076, 2001.

E. Boros, V. Gurvich, L. Khachiyan and K.
Makino. Dual-bounded generating problems:
Partial and multiple transversals of a Hyper-
graph. SIAM Journal on Computing, 30:2036—
2050, 2001.

E. Boros, V. Gurvich, L. Khachiyan and
K. Makino. On the complexity of generating
maximal frequent and minimal infrequent sets.
In: Proc. 19th International Symposium on ret-
ical Aspects of Computer Science (STACS), pp.
133-141, Springer LNCS 2285, 2002.

E. Boros, V. Gurvich, and P. L. Hammer. Dual
subimplicants of positive Boolean functions.
Optimization Methods and Software, 10:147—
156, 1998.

E. Boros, P. L. Hammer, T. Ibaraki and
K. Kawakami, Polynomial time recognition of
2-monotonic positive Boolean functions given
by an oracle, SIAM Journal on Computing, 26
(1997) 93-109.

Y. Crama. Dualization of regular Boolean func-
tions. Discrete Applied Mathematics, 16:79-85,
1987.

C. Domingo. Private communication.

C. Domingo, N. Mishra and L. Pitt. Effi-
cient read-restricted monotone CNF/DNF du-
alization by learning with membership queries.
Machine Learning, 37:89-110, 1999.

C. Chekuri and A. Rajaraman. Conjunctive
query containment revisited. In: Proc. 6th
International Conference on Database Theory
(ICDT), Delphi, Greece, Springer LNCS 1186,
pp. 56-70, 1997.

T. Eiter. Exact transversal hypergraphs and ap-
plication to Boolean u-functions. Journal of
Symbolic Computation, 17:215-225, 1994.

T. Eiter and G. Gottlob.  Identifying the
minimal transversals of a hypergraph and re-
lated problems. SIAM Journal on Computing,
24(6):1278-1304, December 1995.

[15]

[16]

[17]

[18]

[19]

{20]

[21]

[22]

[23]

[24)

[25]

[26]

R. Fagin. Degrees of acyclicity for hypergraphs
and relational database schemes. Journal of the
ACM, 30:514-550, 1983.

M. Fredman and L. Khachiyan. On the com-
plexity of dualization of monotone disjunctive
normal forms. Journal of Algorithms, 21:618—
628, 1996.

H. Garcia-Molina and D. Barbara. How to as-
sign votes in a distributed system. Journal of
the ACM, 32(4):841-860, 1985.

D.R. Gaur.  Satisfiability and self-duality of
monotone Boolean functions. Ph.D. thesis,
School of Computing Science, Simon Fraser
University, January 1999.

D.R. Gaur and R. Krishnamurti. Self-duality of
bounded monotone Boolean functions and re-
lated problems. In: Proc. 11th International
Conference on Algorithmic Learning Theory
(ALT), pp. 209-223, Springer LNCS 1968,
2000.

G. Gogic, C. Papadimitriou, and M. Sideri. In-
cremental recompilation of knowledge. Jour-
nal of Artificial Intelligence Research, 8:23-37,
1998.

D. Gunopulos, R. Khardon, H. Mannila,
and H. Toivonen. Data mining, hypergraph
transversals, and machine learning. Proc. 16th
ACM Symp. on Principles of Database Systems
(PODS), pp. 209-216, 1997.

J. Goldsmith, M. Levy, and M. Mundhenk.
Limited nondeterminism. SIGACT News,
27(2):20-29, 1996.

G. Gottlob, N. Leone, and F. Scarcello. Hy-
pertree decompositions and tractable queries.
In: Proc. 18th ACM Symp. on Principles of
Database Systems (PODS), pp. 21-32, 1999.
Full paper to appear in Journal of Computer and
System Sciences.

M. Graham. On the universal relation. Tech-
nical Report, University of Toronto, Canada,
September 1979.

V. Gurvich. Nash-solvability of games in

pure strategies. USSR Comput. Math and Math.
Phys., 15(2):357-371, 1975.
T. Ibaraki and T. Kameda. A theory of coteries:
Mutual exclusion in distributed systems. IEEE
Transactions on Parallel and Distributed Sys-
tems, 4(7):779-794, 1993.



[27]

(28]

[29]

£30]

[31]

[32]

[33]

[34]

[35]

(36]

(371

D. Kavvadias, C. H. Papadimitriou, and
M. Sideri, On Horn envelopes and hypergraph
transversals. In: Proc. 4th International Sympo-
sium on Algorithms.and Computation (ISAAC),
pp- 399-405, Springer LNCS 762, 1993.

R. Khardon. Translating between Horn repre-
sentations and their characteristic models. Jour-
nal of Artificial Intelligence Research, 3:349-
372, 199s.

D. S. Johnson. Open and closed problems
in NP-completeness. Lecture given at the In-
ternational School of Mathematics “G. Stam-
pacchia”: Summer School “NP-Completeness:
The First 20 Years”, Erice (Sicily) , Italy, June
20-27, 1991.

D. S. Johnson, M. Yannakakis, and C. H. Pa-
padimitriou. On generating all maximal inde-
pendent sets. Information Processing Letters,
27:119-123, 1988.

CMR. Kintala and P. Fischer.  Refining
nondeterminism in relativized polynomial-time
bounded computations. SIAM Journal on Com-
puting, 9:46-53, 1980.

E. Lawler, J. Lenstra, and A. Rinnooy Kan.
Generating all maximal -independent sets:
NP-hardness and polynomial-time algorithms.
SIAM Journal on Computing, 9:558-565, 1980.
L. Lovéasz. Combinatorial optimization: Some
problems and trends. DIMACS Technical
Report 92-53, RUTCOR, Rutgers: University,
1992.

K. Makino and T. Ibaraki. The maximum
latency and identification of positive Boolean
functions. SIAM Journal on Computing,
26:1363-1383, 1997.

K. Makino and T. Ibaraki, A fast and sim-
ple algorithm for identifying 2-monotonic pos-
itive Boolean functions. Journal of Algorithms,
26:291-305, 1998.

K. Makino. Efficient dualization of O(logn)-
term monotone disjunctive normal forms. Tech-
nical Report 00-07, Discrete Mathematics and
Systems Science, Osaka University, 2000; to
appear in Discrete Applied Mathematics.

H. Mannila and K.-J. Réaihi.  Design by ex-
ample: An application of Armstrong relations.
Journal of Computer- and System Sciences,
22(2):126-141, 1986. ‘

(38]

{39]

[40]

(41]
1421
{43]
[44]

[45]

[46]

[47]

(48]

[49]

[50]

N. Mishra and L. Pitt. Generating all maxi-
mal independent sets of bounded-degree hyper-
graphs. In: Proc. Tenth Annual Conference on
Computational Learning Theory (COLT), pp.

211-217, 1997.
Ch. H. Papadimitriou. NP-completeness: A ret-
rospective, In: Proc. 24th International Collo-
quium on Automata, Languages and Program-
ming (ICALP), pp.2—-6, Springer LNCS 1256,
1997.

U. N. Peled and B. Simeone. An O(nm)-time
algorithm for computing the dual of a regular
Boolean function. Discrete Applied Mathemat-
ics 49:309-323, 1994.

K. G. Ramamurthy. Coherent Structures and
Simple Games. Kluwer Academic Publishers,

1990.
R. C. Read, Every one a winner, or how to

avoid isomorphism when cataloging combina-
torial configurations. Annals of Discrete Math-
ematics 2:107-120, 1978.

R. Reiter. A theory of diagnosis from first prin-
ciples. Artificial Intelligence, 32:57-95, 1987.
N. Robertson and P. Seymour. Graph minors 1I:
Algorithmic aspects of tree-width. Journal of
Algorithms, 7:309-322, 1986.

K. Takata. On the sequential method for list-
ing minimal hitting sets. In Proceedings Work-
shop on Discrete Mathematics and Data Min-
ing, 2nd SIAM International Conference on
Data Mining, April 11-13, Arlington, Virginia,
USA, 2002.

H. Tamaki. Space-efficient enumeration of min-
imal transversals of a hypergraph. IPSJ-AL
75:29-36, 2000.

R. E. Tarjan and M. Yannakakis. Simple lin-
ear time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs. SIAM Journal on
Computing, 13:566-579, 1984.

V. D. Thi. Minimal keys and antikeys. Acta
Cybernetica, 7(4):361-371, 1986.

B. Toft. Colouring, Stable sets and perfect
graphs. Handbook of Combinatorics, Vol. 1
Chapter 4. Elsevier, 1995. .

C. T. Yu and M. Ozsoyoglu. An algorithm for
tree-query membership of a distributed query.
Proceedings IEEE COMPSAC, pp. 306-312,
1979. -



