
酵素反応式からの構造変換規則の抽出アルゴリズム
阿久津 達也

酵素反応式などの化学反応式における入出力関係から、どの部分構造がどの部分構造に移ったか
を推定する問題は、薬剤設計、トレーサー実験のシミュレーション、代謝パスウェイデータベー
スのデータチェックなどに応用できる可能性がある。従来、この問題に対しては最大共通部分グラ
フ検出アルゴリズムによる手法が用いられてきたが、本研究ではグラフ分割とグラフ同型性判定
に基づく新しい方法を提案する。本稿では、この問題が一般には NP 困難であるが、多くの実用
規模の問題のクラスに対し多項式時間アルゴリズムがあることを示す。また、理論的正当性はな
いが実用的なアルゴリズムを、計算機実験による結果とともに示す。

Efficient Extraction of Mapping Rules of Atoms

from Enzymatic Reaction Data

Tatsuya Akutsu 1

Extraction of mapping rules of atoms from enzymatic reactions is useful for drug design,
simulation of tracer experiments and consistency checking of pathway databases. Most of pre-
vious methods for this problem are based on maximal common subgraph algorithms. In this
article, we propose a novel approach based on graph partition and graph isomorphism. We show
that this problem is NP-hard in general, but can be solved in polynomial time for wide classes
of enzymatic reactions. We also present practical polynomial time algorithms. The results of
computational experiments suggest that practical algorithms are useful in many cases.

1 Introduction

Knowledge discovery from biological pathway databases is becoming an important topic in Bioin-
formatics because understanding of chemical/metabolic mechanisms in living organisms is im-
portant for understanding of functions of genes. Several databases on biological pathways are
being developed such as KEGG/LIGAND [9] and BioCyc/EcoCyc [7], and a number of enzy-
matic reaction data are stored in these databases. But, limited facilities are provided for analysis
of enzymatic reactions and biological pathways in KEGG and BioCyc. Therefore, more useful
tools for analysis of enzymatic reactions and biological pathways should be developed.

Various kinds of problems can be considered for analysis of enzymatic reactions and biological
pathways. Among them, similar compound search is well studied [12]. Most of these studies are
based on substructure search or maximal/maximum common substructure search. Since these
problems are NP-hard in general, most of the proposed algorithms are heuristic.

In this article, we do not consider substructure search or maximal common substructure
search. Instead, we focus on the following problem [4]: given an enzymatic reaction, identify
which atom in an input compound is transfered to which atom in an output compound. We call
this problem as extraction of enzymatic mapping rules. Extraction of enzymatic mapping rules

1 京都大学 化学研究所 バイオインフォマティクスセンター
Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Gokasho, Uji, Kyoto-Fu 611-0011, Japan. takutsu@kuicr.kyoto-u.ac.jp

-1-

研究会Temp
ア　ル　ゴ　リ　ズ　ム

研究会Temp
（２００３． １． ２０）

研究会Temp
88－５

研究会Temp
－27－

has various applications such as drug design, simulation of tracer experiments, and consistency
checking of pathway databases [4].

Most of previous studies on extraction of enzymatic mapping rules employ a maximal (or
maximum) common subgraph based approach [4, 12]. But, such an approach has the following
drawbacks.
• There is no guarantee that the correct mappings are always found. As shown by Arita [4],

the maximum common subgraph approach sometimes fails to find correct mappings.
• The maximum common subgraph problem is NP-hard even for planar graphs of bounded

degree 3. Approximation is also known to be very hard [6].
• It is difficult to find mapping rules consistent with multiple reaction formulas.

Therefore, we propose another approach based on graph partition and unique naming algorithms
(≈ graph isomorphism algorithms) [8, 11], and develop theoretical algorithms and practical
algorithms. Our approach has the following advantages.

• Theoretical algorithms, which use elaborated graph isomorphism algorithms [8, 10], work
in polynomial time for reasonably wide class of enzymatic reactions.
• Practical algorithms, which use a practical graph isomorphism algorithm [11], are easy to

implement and are fast enough.
• The proposed algorithms can be modified for coping with multiple enzymatic reactions.
• The proposed algorithms can be modified for outputting all possible mapping rules con-

sistent with given reactions (see Fig. 1). Therefore, the algorithms do not miss correct
mappings (under chemically reasonable assumptions).

Though the algorithms in this article have some drawbacks (e.g., reaction rules that modify ring
structures can not be handled), these drawbacks are not crucial and shall be overcome.

2 Basic Framework

We first define a chemical graph. A chemical graph is an undirected connected graph of bounded
degree D (usually D ≤ 6), where each node v has a label atom(v) and each edge e may have
a label bond(e) (it is sometimes better to ignore bond(e)). In this article, we do not consider
multiedges and thus information about chemical bonds should be stored in bond(e) if it is
required. Since chemical graphs are of bounded degree, the number of edges is O(n).

A chemical reaction formula has the form of I1 + I2 + . . . + Ip ←→ O1 + O2 + . . . + Oq,
where I1, . . . , Ip and O1, . . . , Oq are chemical graphs and the multiset of atoms in I1, . . . , Ip

must be equal to the multiset of atoms in O1, . . . , Oq (i.e., the law of conservation must be
satisfied). For convenience of explanation, we call I1, . . . , Ip input compounds and O1, . . . , Oq

output compounds. We define a chemical cut of size C as a partition of a graph G into connected
components obtained by removing at most C edges, where the following condition must be
satisfied. Let Ṽ be the multiset of the connected components. There is an edge {ci, cj} ∈ Ẽ iff.
there is a removed edge between ci and cj. Then, a graph G̃(Ṽ , Ẽ) must be a star. We use Ĝ
to denote Ṽ .

Problem 1. (see Fig. 1)
Given a chemical reaction formula I1 + . . . + Ip ←→ O1 + . . . + Oq and an integer C, find a
chemical cut of size C for each of I1, . . . , Ip and O1, . . . , Oq such that the multiset of connected
components Î1 ∪ . . .∪ Îp is equal to the multiset of connected components Ô1 ∪ . . .∪ Ôq, where
we identify isomorphic components as the same element (i.e., x = y if x ∈ Î1 ∪ . . . ∪ Îp and
y ∈ Ô1 ∪ . . .∪ Ôq are isomorphic).

-2-

研究会Temp
－28－

HO

NH2

O

O

OH
HO

O

O

OH

O

HO

O

O

OH

O NH2

HO

O

OH

O

A1 B1(), A2 B2(), A3 B3(),

Figure 1: Example of a reaction catalyzed by Transaminase, where this reaction has the form of
X-A + Y -B ←→ X-B + Y -A (’-’ corresponds to a cut). In this case, there are three possible
pairs for (A, B), where (A1, B1) is the most plausible. It should be noted that hydrogen atoms
and types of bonds are ignored in this case. Algorithm 3c in Section 5 outputs all three pairs.

In Problem 1, which edges are removed is not taken into account. But, in some cases, it is better
to mind which edges are removed. Thus, we consider a variant (Problem 1A) of Problem 1 by
modifying the cut operation as follows: we replace an edge e = {vi, vj} by two edges e′ = {vi, v

′}
and e′′ = {vj, v

′′} whenever we remove an edge e, where v′ and v′′ are newly created vertices
(per edge) and all of v ′ and v′′ have a special label showing that these are newly created vertices
(i.e., atom(v ′) = atom(v′′) = new).

Problem 1 can be modified for the case that multiple reaction formulas are given, where we
assume that the reaction center is preserved. We use G̃c to denote the center of the star G̃ (if it
is ambiguous, either one can be the center), where the center corresponds to the reaction center.

Problem 2.
Given K chemical reaction formulas Ii,1+Ii,2+ . . .+Ii,p ←→ Oi,1+Oi,2+ . . .+Oi,q (i = 1, . . . , K)
and an integer C, find a chemical cut of size C for each of Ii,1, . . . , Ii,p and Oi,1, . . . , Oi,q such
that (i) Each reaction formula satisfies the condition of Problem 1, (ii) For all i �= j and for all
h, Ĩc

i,h (resp. Õc
i,h) is isomorphic to Ĩc

j,h (resp. Õc
j,h).

Problem 2 can be modified for the case of maximizing the number of chemical formulas
satisfying the conditions of (i)-(ii). This case is denoted by Problem 3. Problem 2A and
Problem 3A are defined in the same way as in Problem 1A.

Proposition 1. Problem 1 and Problem 1A can be solved in polynomial time if C, p, q are
constants.
(Proof) For all combinations (Î1, . . . , Îp,Ô1, . . . , Ôq) obtained by chemical cuts of size C, we
examine whether Î1 ∪ . . .∪ Îp is equal to Ô1 ∪ . . .∪ Ôq, where we identify isomorphic graphs as
the same element. Since D is a constant and isomorphism of graphs of bounded degree can be
tested in polynomial time [8, 10], comparison of two multisets can be done in polynomial time.
Since the number of combinations is O((nC)(p+q)), the algorithm works in polynomial time. �

Proposition 2. Problem 2, Problem 2A, Problem 3 and Problem 3A can be solved in polynomial
time if C, p, q are constants.

3 Theoretical Results

3.1 NP-hardness Results

The algorithms in Section 2 use exhaustive search procedures. Moreover, all algorithms presented
in this article are more or less based on exhaustive search. It is reasonable to ask whether or
not exhaustive search is inevitable. The following theorems suggest that the answer is YES.

-3-

研究会Temp
－29－

α α

1

A

a

α α

1

A

c

α α

2

A

b

α α

2

B

c

α α

3

C

b

β

β

β

β

β

β
β

β

β

β

β

β

α α

2

C

a

α α

A

β β

A

α α

B

α α

C

β β

C

β β

A β

1

β

2

β

3

β

a

β

b

β

c

α

1

α

2

α

2

α

a

α

b

α

c

Figure 2: Reduction from 3DM to Problem 1(A), where X = {A, B, C}, Y = {1, 2, 3}, Z =
{a, b, c} and M = {{A, 1, a}, {A, 1, c}, {A, 2, b}, {B, 2, c}, {C, 2, a}, {C, 3, b}}.

However, NP-hardness results do not imply that efficient or practical algorithms can not be
developed because p, q, C are usually very small.

Theorem 1. Problem 1 and Problem 1A are NP-complete for fixed C.
(Proof) We show a polynomial time reduction from 3DM (3-dimensional matching) for the case
of C = 2. The other parts can be proved easily. Let X, Y, Z be mutually disjoint sets of size m.
Let M = {{xit, yjt , zkt} | t = 1, . . . , n} be an instance of 3DM, where xit , yjt , zkt are elements
of X, Y, Z, respectively. Recall that 3DM is to find a subset M ′ ⊆ M of size m such that
⋃

s∈M ′ s = X ∪ Y ∪ Z.
Input compounds are constructed in the following way (see Fig. 2). Though we assume that

we can use O(n) labels here, this assumption can be removed. In the following, α and β denote
nodes with labels α and β, respectively. From each element {xit, yjt , zkt} of M , we construct an
undirected tree defined by the edge set {{xit , α}, {xit, α

′}, {α, yjt}, {α′, zkt}}, where α′ is a node
having label α (we use two symbols α and α′ for denoting two distinct nodes with label α). We
also construct n trees, each of which is defined by the edge set {{β, β}}.

Output compounds are constructed in the following way (see Fig. 2). For each element
xi ∈ X (i = 1, . . . , m), we construct a tree defined by the edge set {{xi, α}, {xi, α

′}}. Let #x be
the number of appearance of an element x in M . For each element xi ∈ X , we also construct
#xi − 1 identical trees, each of which is defined by the edge set {{xi, β}, {xi, β

′}}. For each
element w ∈ Y ∪ Z, we construct a tree defined by the edge set {{β, w}}. For each element
w ∈ Y ∪Z, we construct #w−1 identical trees, each of which is defined by the edge set {{α, w}}.

It is straight-forward to see the correctness of the reduction. �

Theorem 2. Problem 1 and Problem 1A are NP-complete even for p = q = 2.

3.2 Efficient Algorithms for a Special Case

In this subsection, we present efficient algorithms for a special case of Problem 1A and Problem
2A in which p = q = 2, C = 1 and all compounds have tree structures. Though it is a special
case, the techniques introduced in this subsection can be applied to other cases.

First we consider Problem 1A. Since we consider the case of p = q = 2 and C = 1, we focus
on reactions of the form: X-A + Y -B ←→ X-B + Y -A, that A, B, X, Y are rooted trees.
We ignore the case that some of A, B, X, Y are empty for the sake of simplicity.

In order to identify X, Y, A, B from a given reaction, we use a unique naming function [11]
(≈ a normal form [8]). Suppose that a set of (directed or undirected) graphs G = {G1, . . . , Gt} is
given. Then, a function id(Gi) from G to [1, 2, . . . , γt] (γ is a constant) is called a unique naming
function if id(Gi) = id(Gj) holds iff. Gi is isomorphic to Gj. We identify the graph with
its unique name (i.e., isomorphic graphs are identified as the same object). But, we distinguish
X, Y, A, B (i.e., these are not identified even if these are isomorphic). Assuming a unique naming
function, we have Algorithm 1.

-4-

研究会Temp
－30－

AX BY BX AY A

Y

B

X

Figure 3: Relationship between a reaction and a directed cycle of length 4.

Algorithm 1

1. For all partitions (X i, Ai) of I1, compute unique names of Xi and Ai.

2. For all partitions (Yj, Bj) of I2, compute unique names of Yj and Bj .

3. For all partitions (Xk, Bk) of O1, compute unique names of Xk and Bk.

4. For all partitions (Yh, Ah) of O2, compute unique names of Yh and Ah.

5. Construct a directed graph G(V, E) defined by the vertex set V = {Xi, Ai, Yj, Bj,
Xk, Bk, Yh, Ah|i = 1, . . . , |I1| − 1, . . . , h = 1, . . . , |O2| − 1} and the edge set
E = {(Ai, Xi), (Xk, Bk), (Bj, Yj), (Yh, Ah)}.

6. Examine whether or not there exists a directed cycle of length 4 in G(V, E).

Theorem 3. Algorithm 1 correctly finds chemical cuts of size 1 in O(n2) time.
(Proof) Since the correctness is almost trivial (see Fig. 3), we prove that it works in O(n 2) time.

First note that the number of partitions is O(n) and thus the number of rooted subtrees
appearing in the algorithm is O(n). For each rooted subtree, we need to compute a unique name.
A linear time algorithm is known for testing isomorphism of two trees [1]. Slightly modifying the
algorithm, we can obtain a unique naming function for all rooted subtrees appearing in Algorithm
1. The total time required to compute unique names for all subtrees is O(n). Therefore, the
time required for Steps 1-4 is O(n).

Since the number of partitions and the number of subtrees are O(n), the size of G(V, E) is
O(n). Thus, the time required for Step 5 is O(n).

In order to find a cycle of length 4, we employ DFS (depth first search) from each vertex Ai.
Since DFS takes O(n) time per Ai and there are O(n) vertices, Step 6 takes O(n2) time. �

Finding given length cycles is a well-studied graph theoretic problem. Alon et al. developed an
O(n1.5) time algorithm for finding a directed cycle of length 4 in a directed graph of size n [3].

Corollary 1. Using an efficient cycle finding algorithm [3], Algorithm 1 correctly finds chemical
cuts of size 1 in O(n1.5) time.

Algorithm 1A can be modified for enumerating all pairs of (A, B). But, O(n 2) time would be
required in such a case.

Next, we consider the case of K = 2 of Problem 2A. We should identify a pair of rooted sub-
trees (A, B) from two reactions: X-A + Y -B ↔ X-B + Y -A, X ′-A + Y ′-B ↔ X ′-B + Y ′-A.
We construct a directed graph as in Algorithm 1 from both reactions, where X, Y, X ′, Y ′ must
have mutually distinct unique names. Then, we find a subgraph isomorphic to the graph H
shown in Fig. 4. Algorithm 2 finds such a subgraph in o(n2) time, where a vertex is called a
high degree vertex if its degree is at least ∆. Algorithm 2 is based on the cycle finding algorithm
developed by Alon et al. [3] though a new idea is introduced here.

-5-

研究会Temp
－31－

A

Y

B

X X’

Y’

H

AX BX AYBY

BX’ AY’BY’AX’

G’cycle of length 4 in

A Bi j

X k Yh,< >

X’k Y’h,< >

G’G

X k Yh,< >

A i

X k

Yh

A i

Figure 4: Explanation of Algorithm 2.

Algorithm 2

1. Construct a directed graph G(V, E) using a similar procedure as in Algorithm 1.

2. For each high degree vertex Ai, examine whether or not there exist four paths
Ai → Xp → Bj, Ai ← Yq ← Bj , Ai → X ′

r → Bj, and Ai ← Y ′
s ← Bj. If such

paths exist, output cuts corresponding to (Ai, Bj).

3. For each high degree vertex Bj, execute a similar procedure as Step 2.

4. Remove all high degree vertices Ai, Bj from the graph.

5. Let E ′ = {(Ai, 〈Xk, Yh〉)| there exists a path Yh → Ai → Xk} ∪ {(〈Xk, Yh〉, Bj)|
there exists a path Xk → Bj → Yh}. Construct E ′′ be in the same way using
X ′

k, Y
′
h except that the directions of edges are reversed. Let G′ be a directed

graph defined by the edge set E′ ∪E ′′.
6. Find a cycle of length 4 in G′.

Lemma 1. Algorithm 2 correctly finds chemical cuts of size 1 in O(n2− 1
5) time.

(Proof) Since the correctness is almost trivial (see Fig. 4), we analyze the time complexity.
Step 1 and Step 4 take O(n) time. Step 2 and Step 3 take O(n2/∆) time, where we omit

details here. Since G′ have O(n∆) vertices and O(n∆) edges, Step 5 and Step 6 take O(n∆)
time and O((n∆)1.5) time, respectively. Solving (n∆)1.5 = n2/∆, we have ∆ = n1/5. Therefore,
Algorithm 2 works in O(n2− 1

5) time. �

Using Algorithm 2 repeatedly, we have the following [2].

Theorem 4. Let K be a constant and the power of 2 (K = 2L). Then, we can solve the special

case of Problem 2A in O(n
2− 1

3
2 ·Klog 3+ 1

2) time.

4 Practical Algorithms

We can develop practical algorithms by replacing unique naming algorithms with the Morgan
algorithm [11]. The Morgan algorithm iteratively computes an integer label i G(v) for each node
v in G such that two vertices v and v ′ have the same integer label iff. there exists an isomorphic
mapping from G to G that maps v to v ′. Though this property is not strictly satisfied, it holds
for almost all chemical structures. The Morgan algorithm works in O(n 2) time for a chemical
structure of size n. In order to obtain the unique name of G, we simply use the maximum of iG(v)
among all vertices v in G. Using (a variant of) the Morgan algorithm, we develop Algorithm 3
for a special case of p = q = 2, C = 1 of Problem 1 (or Problem 1A), where compounds are not
limited to trees.

-6-

研究会Temp
－32－

Algorithm 3

1. For all partitions (X i, Ai) of I1, for all partitions (Yj, Bj) of I2, for all partitions
(Xk, Bk) of O1, and for all partitions (Yh, Ah) of O2, compute the Morgan names
of Xi, Ai, Yj, Bj, Xk, Bk, Yh, Ah.

2. For each Ai, examine whether there exists Ah having the same Morgan name. If
so, create an object Ai having the Morgan name as a label.

3. Execute a similar procedure for Bj .

4. For all pairs of objects (A i, Bj), let M [Ai, Bj] = 0.

5. For all pairs (X i, Xk) having the same Morgan name, let M [Ai, Bk] = 1.

6. For all pairs (Yj , Yh) having the same Morgan name, let M [Ah, Bj] = 2 if
M [Ah, Bj] = 1.

7. Output (Ai, Bj) such that M [Ai, Bj] = 2.

It should be noted that Algorithm 3 outputs (Ai, Bj). But, it is not difficult to obtain a mapping
rule or a chemical cut from (Ai, Bj) though one (Ai, Bj) may corresponds to multiple mapping
rules or chemical cuts.

It is easy to see that Algorithm 3 works in O(n3) time. Though the correctness of Algorithm
3 is not guaranteed, it correctly works for almost all cases under the condition that p = q = 2
and C = 1. Algorithm 3 does not search cycles of length 4. Instead, it uses a two-dimensional
matrix. As shown in Section 5, only a small number of objects (A i and Bj) are created in most
practical cases. Thus, Steps 4-7 can be completed very quickly.

Algorithm 3 can be modified for the other p, q, C, where we omit details here.

5 Computational Experiments

We performed computational experiments on Algorithm 3 using enzymatic reaction data in the
KEGG/LIGAND database, release 20.0 (http://www.genome.ad.jp/ligand/) [9]. This version
contains 5238 enzymatic reactions. But, Algorithm 3 cannot handle all reactions because Algo-
rithm 3 accepts reactions with p = q = 2. Thus, we used 2346 reactions satisfying this condition.
We used a standard PC with an Intel Pentium-4 2.2GHz CPU and 2GB main memory.

We examined three variants of Algorithm 3.
Algorithm 3a. All hydrogen atoms are reconstructed from reactions because hydrogen atoms

are omitted in the LIGAND database. Types of bonds are taken into account. Removed
edges are also taken into account (this case corresponds to Problem 1A).

Algorithm 3b. Hydrogen atoms and types of bonds are ignored. But, removed edges are taken
into account (this case corresponds to Problem 1A too).

Algorithm 3c. Hydrogen atoms and types of bonds are ignored. Removed edges are not taken
into account (this case corresponds to Problem 1).

Ignoring hydrogen atoms might be reasonable from a chemical point of view [4] because some
hydrogen atoms (and some oxygen atoms) might come from solvent.

The results are summarized in Table 1. For each algorithm, the total CPU time for 2346
reactions, the number of successful reactions (i.e., the number of reactions for which at least one
pair (A, B) is output), the average number of output pairs (A, B) per reaction, and the average
number of the created objects (see Algorithm 3) per reaction are shown. From the table, it is
seen that all algorithms are fast enough. Each algorithm took less than 0.1 sec. per reaction
on the average. It is also seen that both the number of output pairs and the number of created

-7-

研究会Temp
－33－

objects are small for all algorithms. Table 1 suggests that Algorithm 3c is better than Algorithm
3a and Algorithm 3b. It is reasonable since Algorithm 3c is more flexible than Algorithm 3a
and Algorithm 3b. For other details of computational experiments, see [2].

Table 1: Result of computational experiment on Algorithm 3.

Total CPU #Successful #(A, B) #Created objects
time reactions per reaction per reaction

Algorithm 3a 150.4 sec. 1104 2.50 8.35
Algorithm 3b 68.0 sec. 1071 2.18 8.45
Algorithm 3c 66.7 sec. 1912 2.15 8.82

6 Acknowledgements

The author is grateful to Masanori Arita in Computational Biology Research Center for stim-
ulating discussions. The author would like to thank Yasushi Okuno and Masahiro Hattori in
Kyoto University for helpful discussions. This work was supported in part by Grants-in-Aid
“Genome Information Science” and #13680394 from MEXT of Japan.

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

[2] T. Akutsu, Efficient extraction of mapping rules of atoms from enzymatic reaction data,
7th Int. Conf. Computational Molecular Biology (RECOMB 2003, to appear).

[3] N. Alon, R. Yuster and U. Zwick, Finding and counting given length cycles, Proc. 2nd
European Symp. Algorithms, 354–364, 1994.

[4] M. Arita, Automated Metabolic Reconstruction: Theory and Experiments, Ph. D Thesis,
University of Tokyo, 2000.

[5] D. Eppstein, Subgraph isomorphism in planar graphs and related problem, J. Graph
Algorithms and Applications, 3:1–27, 1999.

[6] V. Kann, On the approximability of the maximum common subgraph problem, Lecture
Notes in Computer Science, 577:377–388, 1992.

[7] P. D. Karp et al., The EcoCyc database, Nucleic Acids Res., 30:56–58, 2002.
[8] M. Fürer, W. Schnyder and E. Specker, Normal forms for trivalent graphs and graphs of

bounded valence, Proc. 15th. ACM Symp. Theory of Computing, 161–170, 1983.
[9] S. Goto et al., LIGAND: database of chemical compounds and reactions in biological

pathways, Nucleic Acids Res., 30:402–404, 2002.
[10] E. M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time,

Proc. 21st. IEEE Symp. Foundations of Computer Science, 42–49, 1980.
[11] H. L. Morgan, The generation of a unique machine description for chemical structures - A

technique developed at chemical abstracts service, J. Chemical Documentation, 5:107–113,
1965.

[12] T. Wang and J. Zhou, EMCSS: a new method for maximal common substructure search,
J. Chemical Information and Computer Sciences, 37:828–834, 1997.

-8-

研究会Temp
－34－

