
2部グラフとProbe区間グラフにおける木スパナー

A. Brandstädt1, F.F. Dragan2, H.-O. Le1, V.B. Le1, 上原 隆平3

グラフGの全域木 T において，T 上の任意の 2点間の距離がG上の距離の高々t倍で
押さえられるとき，T をグラフGの t-木スパナーと呼ぶ．t-木スパナー問題とは，与
えられたグラフが t-木スパナーを持つかどうかを判定する問題である．本稿ではまず
2部グラフに関して，次の二つの結果を示す．(1)chordal 2部グラフ上に制限しても
この問題が NP困難であること．(2)ATE–free 2部グラフは 3-木スパナーを持ち，そ
れが線形時間で求められること．これらは既知の結果を改善している．次に Probe区
間グラフに関する結果を示す．このグラフクラスは DNAの解析に用いられるモデル
で，グラフ理論的には区間グラフを一般化したものである．本稿では Probe区間グラ
フは 7-木スパナーを持つことと，それが O(m log n)時間で求められることを示す．

Tree Spanners for Bipartite Graphs and Probe Interval Graphs

A. Brandstädt1, F.F. Dragan2, H.-O. Le1, V.B. Le1, and R. Uehara3

A tree t-spanner T in a graph G is a spanning tree of G such that the distance
between every pair of vertices in T is at most t times their distance in G. The tree
t-spanner problem asks whether a graph admits a tree t-spanner, given t. We first
strengthen the known results for bipartite graphs. We prove that the tree t-spanner
problem is NP-complete even for chordal bipartite graphs for t ≥ 5, and every
bipartite ATE–free graph has a tree 3-spanner, which can be found in linear time.
The best known before results were NP-completeness for general bipartite graphs,
and that every convex graph has a tree 3-spanner. We next focus on the tree t-
spanner problem for probe interval graphs and related graph classes. The graph
classes were introduced to deal with the physical mapping of DNA. From a graph
theoretical point of view, the classes are natural generalizations of interval graphs.
We show that these classes are tree 7-spanner admissible, and a tree 7-spanner can
be constructed in O(m log n) time.

Keywords: Chordal bipartite graph, Interval bigraph, NP-completeness, Probe
interval graph, Tree spanner

1 Introduction

A tree t-spanner T in a graph G is a spanning tree
of G such that the distance between every pair of
vertices in T is at most t times their distance in G.
The tree t-spanner problem asks whether a graph
admits a tree t-spanner, given t. The notion is in-
troduced by Cai and Corneil [9, 10], which finds
numerous applications in distributed systems and
communication networks; for example, it was shown
that tree spanners can be used as models for broad-
cast operations [1] (see also [23]). Moreover, tree
spanners were used in the area of biology [2], and
approximating the bandwidth of graphs [27]. We
refer to [24, 26, 6] for more background information
on tree spanners.

The tree t-spanner problem is NP-complete in
general [10] for any t ≥ 4. However, it can be solved
efficiently for some particular graph classes. Espe-
cially, the complexity of the tree t-spanner problem
is well investigated for the class of chordal graphs
and its subclasses. For t ≥ 4 the problem is NP-
complete for chordal graphs [6], strongly chordal
graphs are tree 4-spanner admissible [3] (i.e., every
strongly chordal graph has a tree 4-spanner), and
the following graph classes are tree 3-spanner ad-
missible: interval graphs [18], directed path graphs
[17], split graphs [27] (see also [6] for other known
results).

We first focus on the tree t-spanner problem for
bipartite graphs and its subclasses. The class of
bipartite graphs is wide and important class from

1Institut für Theoretische Informatik, Fachbereich Informatik, Universität Rostock, 18051 Rostock, Germany.
{ab,hoang-oanh.le,le}@informatik.uni-rostock.de

2Dept. of Computer Science, Kent State University, Ohio, USA. dragan@cs.kent.edu
3駒澤大学自然科学教室.uehara@komazawa-u.ac.jp

1

研究会Temp
社団法人 情報処理学会 研究報告IPSJ SIG Technical Report

研究会Temp
2003－AL－90　　(9)

研究会Temp
2003／5／23

研究会Temp
－57－

both practical and theoretical points of view. How-
ever, the known results for the complexity of the
tree t-spanner problem for the bipartite graphs and
its subclasses are few comparing to the chordal
graphs and its subclasses. The NP-completeness is
only known for general bipartite graphs (this re-
sult can be deduced from the construction in [10]),
and the problem can be solved for regular bipar-
tite graphs, and convex graphs as follows; a regular
bipartite graph is tree 3-spanner admissible if and
only if it is complete [18]; and any convex graph is
tree 3-spanner admissible [27]. (The convex graphs
were introduced by Brandstädt, Spinrad, and Stew-
art; see [8] for further details.)

We substantially strengthen the known results
for bipartite graph classes, and reduce the gap.
We show that the tree t-spanner problem is NP-
complete even for chordal bipartite graphs for t ≥
5. The class of chordal bipartite graphs is a bi-
partite analog of chordal graphs and has applica-
tions to nonsymmetric matrices [14, 13]. We also
show that every bipartite asteroidal-triple-edge–free
(ATE–free) graph has a tree 3-spanner, and such a
tree spanner can be found in linear time. The class
of ATE–free graphs was introduced by Müller [22]
to characterize interval bigraphs. The class of inter-
val bigraphs is a bipartite analog of interval graphs
and was introduced by Harary, Kabell, and McMor-
ris [15].

Our results reduce the gap between the upper
and lower bounds of the complexity of the tree t-
spanner problem for bipartite graph classes since
the following proper inclusions are known [22, 7];
convex graphs ⊂ interval bigraphs ⊂ bip. ATE–
free graphs ⊂ chordal bipartite graphs ⊂ bipartite
graphs.

We next focus on the tree t-spanner problem
on probe interval graphs and related graph classes.
The class of probe interval graphs was introduced
by Zhang to deal with the physical mapping of
DNA, which is a problem arising in the sequenc-
ing of DNA (see [28, 21, 20, 29] for background).
A probe interval graph is obtained from an inter-
val graph by designating a subset P of vertices as
probes, and removing the edges between pairs of
vertices in the remaining set N of nonprobes. In
the original paper [28, 29], Zhang introduced two
variations of probe interval graph. An enhanced
probe interval graph is the graph obtained from a
probe interval graph by adding the edges joining
two nonprobes if they are adjacent to two indepen-
dent probes. The class of STS-probe interval graphs
is a subset of the probe interval graphs; in those
graphs all probes are independent.

From the graph theoretical point of view, all
probe interval graphs are weakly chordal [21], and

enhanced probe interval graphs are chordal [28, 29].
In full version of this draft, we show that the class of
STS-probe interval graphs is equivalent to the class
of convex graphs (hence the class is tree 3-spanner
admissible), and the class of the (enhanced) probe
interval graphs is incomparable with the classes of
strongly chordal graphs and rooted directed path
graphs.

Hence, from both viewpoints of graph theory
and biology, the tree t-spanner problem for (en-
hanced) probe interval graphs is worth investigat-
ing. Especially, it is natural to ask that if those
graph classes are tree t-spanner admissible for fixed
integer t. We give the positive answer to that ques-
tion: The classes of probe interval graphs and en-
hanced probe interval graphs are tree 7-spanner ad-
missible. A tree 7-spanner of a (enhanced) probe
interval graph can be constructed in O(m+n log n)
time if it is given with an interval model. Recently,
Johnson and Spinrad showed that the recognition
problem for the class of probe interval graphs can
be solved in O(n2) time if each vertex is given with
information whether it is in P or N [16], and the
time complexity was improved to O(m log n) time
by McConnell and Spinrad [19]. Those recognition
algorithms construct within the same time bounds
also an intersection model of a probe interval graph.
Therefore, using their algorithms, we can construct
a tree 7-spanner for a given (enhanced) probe inter-
val graph G = (P, N, E) in O(m log n) time.

Due to space limitation, some proofs are omit-
ted. Full version of this draft is available at http:
//www.komazawa-u.ac.jp/~uehara/ps/t-span.pdf.

2 Preliminaries

Given a graph G = (V, E) and a subset U ⊆ V ,
the subgraph of G induced by U is the graph (U,F),
where F = {{u, v}|{u, v} ∈ E for u, v ∈ U}, and
denoted by G[U]. For a subset F of E, we some-
times unify the edge set F and its edge induced sub-
graph (U,F) with U = {v|{u, v} ∈ F for some u ∈
V }. A sequence of the vertices v0, v1, · · · , vl is a
path, denoted by (v0, v1, · · · , vl), if {vj , vj+1} ∈ E
for each 0 ≤ j ≤ l − 1. The length of a path is
the number of edges on the path. For two vertices
u and v on G, the distance of the vertices is the
minimum length of the paths joining u and v, and
denoted by dG(u, v). A cycle is a path beginning
and ending with the same vertex.

The disk of radius k centered at v is the set of
all vertices with distance at most k to v,

Dk(v) = {w ∈ V : dG(v, w) ≤ k},

2

研究会Temp
－58－

and the kth neighborhood Nk(v) of v is defined as
the set of all vertices at distance k to v, that is

Nk(v) = {w ∈ V : dG(v, w) = k}.
By N(v) we denote the neighborhood of v, i.e.,
N(v) := N1(v). More generally, for a subset S ⊆ V
let N(S) = ∪v∈SN(v) denote the neighborhood of
S.

Connected acyclic edge set is called a tree. A
tree joining all vertices is called a spanning tree.
A tree t-spanner T in a graph G is a spanning
tree of G such that for each pair u and v in G,
dT (u, v) ≤ t · dG(u, v). We say that G is tree t-
spanner admissible if it contains a tree t-spanner.
The tree t-spanner problem is to determine, for
given graph and positive integer t, if the graph ad-
mits a tree t-spanner. A class C of graphs is said
to be tree t-spanner admissible if every graph in C
is tree t-spanner admissible. On the tree t-spanner
problem, the following result plays an important
role:

Lemma 1 [10] A spanning tree T of G is a tree
t-spanner if and only if for every edge {u, v} of G,
dT (u, v) ≤ t.

A graph G = (V, E) is bipartite if V can be di-
vided into two sets V1 and V2 with V1 ∪ V2 = V
and V1 ∩ V2 = ∅ such that every edge joins a vertex
in V1 and another one in V2. It is well known that
a graph G is bipartite if and only if G contains no
cycle of odd length. Thus, for each positive integer
k, a tree 2k-spanner of a bipartite graph G is also
a tree (2k − 1)-spanner. Hence we will consider a
tree t-spanner for each odd number t for bipartite
graphs in this paper.

We here define graph classes dealt in this paper.
See [7] for further details and references.

A graph (V, E) with V = {v1, v2, · · · , vn} is an
interval graph if there is a set of intervals I =
{I1, I2, · · · , In} such that {vi, vj} ∈ E if and only
if Ii ∩ Ij 6= ∅ for each i and j with 1 ≤ i, j ≤ n. We
call the set I interval representation of the graph.
For each interval I, we denote by R(I) and L(I)
the right and left endpoints of the interval, respec-
tively (hence we have L(I) ≤ R(I)). A bipartite
graph (X, Y,E) with X = {x1, x2, · · · , xn1} and
Y = {y1, y2, · · · , yn2} is an interval bigraph if there
are families of intervals IX = {I1, I2, · · · , In1} and
IY = {J1, J2, · · · , Jn2} such that {xi, yj} ∈ E if and
only if Ii ∩ Jj 6= ∅ for each i and j with 1 ≤ i ≤ n1

and 1 ≤ j ≤ n2. We also call the families of inter-
vals (IX , IY) interval representation of the graph.
We sometimes unify a vertex vi and its correspond-
ing interval Ii; Iv denotes the interval correspond-
ing to the vertex v, and R(v) and L(v) denote R(Iv)
and L(Iv), respectively.

An edge which joins two vertices of a cycle but is
not itself an edge of the cycle is a chord of that cycle.
A graph is chordal if each cycle of length at least 4
has a chord. A graph G is weakly chordal if G and Ḡ
contain no induced cycle Ck with k ≥ 5. A bipartite
graph G is chordal bipartite if each cycle of length
at least 6 has a chord. Let the neighborhood N(e)
of an edge e = {v, w} be the union N(v)∪N(w) of
the neighborhoods of the end-vertices of e. Three
edges of a graph G form an asteroidal triple of edges
(ATE) if for any two of them there is a path from
the vertex set from one to the vertex set of the other
that avoids the neighborhood of the third edge.
Asteroidal-Triple-Edge–free (ATE–free) graphs are
those graphs which do not contain any ATE. This
class of graphs was introduced in [22], where it was
also shown that any interval bigraph is an ATE–free
graph, and any bipartite ATE–free graph is chordal
bipartite.

A graph G = (V, E) is a probe interval graph if
V can be partitioned into subsets P and N (cor-
responding to the probes and nonprobes) and each
v ∈ V can be assigned to an interval Iv such that
{u, v} ∈ E if and only if both Iu ∩ Iv 6= ∅ and at
least one of u and v is in P . In this paper, we as-
sume that P and N are given, and we denote by
G = (P, N, E). Note that N is independent set,
G[P] is interval graph, and G[P∪{v}] is also interval
graph for any v ∈ N . Let G = (P,N, E) be a probe
interval graph. Let E+ be a set of edges {u1, u2}
with u1, u2 ∈ N such that there are two probes v1

and v2 in P such that {v1, u1} ∈ E, {v1, u2} ∈ E,
{v2, u1} ∈ E, {v2, u2} ∈ E, and {v1, v2} 6∈ E. Intu-
itively, nonprobes u1 and u2 are joined by the edge
in E+ if (1) there are two independent probes v1

and v2, and (2) both of v1 and v2 overlap u1 and
u2. In the case, we can know that intervals Iu1

and Iu2 have to overlap without an experiment in
chemistry. Each edge in E+ is called an enhanced
edge, and the resulting graph G+ = (P, N, E ∪E+)
is said to be an enhanced probe interval graph. See
[28, 21, 29] for further details.

3 NP-completeness for Chordal
Bipartite Graphs

S1[a, b] S2[a, b] S3[a, b]

a b a b a b

a′ b′

a′ b′
a′ b′

Figure 1: The graph S`[a, b]

3

研究会Temp
－59－

In this section we show that, for any t ≥ 5, the
tree t-spanner problem is NP-complete for chordal
bipartite graphs. The proof is a reduction from
3SAT, for which the following family of chordal bi-
partite graphs will play an important role.

First, S0[a, b] is an edge {a, b}, and S1[a, b] is one
cycle (a, b, b′, a′, a). Next, for a fixed integer ` > 1,
S`+1[a, b] is obtained from one cycle (a, b, b′, a′, a),
S`[a, a′], S`[b, b′], and S`[a′, b′] by identifying the
corresponding vertices (Figure 1).

We will connect the vertices a and b to the
other graphs, and use S`[a, b] as a subgraph of big-
ger graph. Sometimes, when the context is clear,
we simply write S` for S`[a, b]. In case ` > 0
we write (a, a′, b′, b, a) for the 4-cycle in S`[a, b]
containing the edge {a, b}. Each of the edges
{a, a′}, {a′, b′}, {b, b′} belongs to a unique S`−1,
the corresponding S`−1 in S`[a, b] to
{a, a′}, {a′, b′}, {b, b′}, respectively.

The following observations collect basic facts on
S` used in the reduction later.

Observation 2 For every integer ` ≥ 0, S`[a, b]
has a tree (2` + 1)-spanner
containing the edge {a, b}.

Observation 3 Let H be an arbitrary graph and
let e be an arbitrary edge of H. Let K be an S`[a, b]
disjoint from H. Let G be the graph obtained from
H and K by identifying the edges e and {a, b}.
Suppose that T is a tree t-spanner in G, t > 2`,
such that the (a, b)-path in T belongs to H. Then
dT (a, b) ≤ t− 2`.

Observation 3 indicates a way to force an edge
{x, y} to be a tree edge: Choosing ` = b t−1

2 c shows
that {a, b} must be an edge of T .

We now describe the reduction. Let k ≥ 2 be
an integer, and let F be a 3SAT formula with m
clauses Cj for 1 ≤ j ≤ m, over n variables xi for
1 ≤ i ≤ n.

Definition 4 In a graph G, an edge {a, b} is said
to be forced by an S` if {a, b} appears in some
S`[a, b] (as induced subgraph in G) such that {a, b}
disconnects S`[a, b] from the rest. We require that
each two S`[a, b] and S`′ [c, d] have at most 2 vertices
in {a, b, c, d} in common. An edge {a, b} is said to
be strongly forced if it is forced by two Sk[a, b].

By Observation 3, if G has a tree (2k + 1)-
spanner T every strongly forced edge must belong
to T .

For each variable xi create the gadget G(xi)
as follows: Take 2m + 4 vertices x1

i , . . . , x
m
i ,

xi
1, . . . , xi

m, pi, qi, ri, si, and add the edges
{xj

i , xi
j′} for 1 ≤ j, j′ ≤ m, {qi, x

j
i} for 1 ≤

j ≤ m, {ri, x
j
i} for 1 ≤ j ≤ m, {pi, xi

j} for
1 ≤ j ≤ m, {si, xi

j} for 1 ≤ j ≤ m, and
{pi, ri}, {ri, si}, {si, qi}. Furthermore, each of the
edges {pi, ri}, {ri, si}, {si, qi}, and {xj

i , xi
j} with

1 ≤ j ≤ m, is a strongly forced edge, and force each
edge {a, b} ∈ {{qi, x

j
i} : 1 ≤ j ≤ m} ∪ {{ri, x

j
i} :

1 ≤ j ≤ m} ∪ {{pi, xi
j} : 1 ≤ j ≤ m} ∪ {{si, xi

j} :
1 ≤ j ≤ m} ∪ {{xj

i , xi
j′} : 1 ≤ j, j′ ≤ m, j 6= j′} by

an Sk−1[a, b]. Thus, the subgraph in G(xi) induced
by the two independent sets {x1

i , . . . , x
m
i } ∪ {pi, si}

and {xi
1, . . . , xi

m} ∪ {qi, ri} plus the edge {pi, qi}
is a complete bipartite graph. See Figure 2 (the Sk

and Sk−1 are omitted, and thick edges are strongly
forced).

The vertex xj
i (xi

j , respectively) will be con-
nected to the clause gadget of clause Cj if xi (xi,
respectively) is a literal in Cj . All edges {ri, x

j
i}

(1 ≤ j ≤ m) or else all edges {si, xi
j} (1 ≤ j ≤ m)

will belong to any tree (2k + 1)-spanner (if any) of
the graph G which we are going to describe.

Definition 5 A clause is positive (negative, re-
spectively) if it contains only variables (negation of
variables). A definite clause is one that is neither
positive nor negative.

For each clause Cj create the clause gadget
G(Cj) as follows. If Cj is a definite clause, G(Cj)
is a strongly forced edge {c+

j , c−j }. If Cj is a
positive or a negative clause, G(Cj) is a 4-cycle
(c+

j , d+
j , d−j , c−j , c+

j) where {c+
j , d+

j }, {d+
j , d−j }, and

{d−j , c−j } are strongly forced edges. See Figure 3.
Finally, the graph G = G(F) is obtained from all

G(vi) and G(Cj) by identifying all vertices pi, qi, ri

and si to a single vertex p, q, r, and s, respectively
(thus, {p, r}, {r, s} and {s, q} are edges in G), and
adding the following additional edges: (1) Con-
nect every xj

i with every xi′
j′ (i 6= i′). (Thus,

the subgraph induced by the two independent sets
{xj

i : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {p, s}, and
{xi

j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {q, r} plus the
edge {p, q} is a complete bipartite graph.) (2) For
every definite clause Cj : If xi is in Cj then con-
nect xj

i with c+
j and force the edge {xj

i , c
+
j } by an

Sk−2[x
j
i , c

+
j]. If xi is in Cj then connect xi

j with
c−j and force the edge {xi

j , c−j } by an Sk−2[xi
j , c−j].

(3) For every positive clause Cj : If xi is in Cj then
connect xj

i with c+
j and force the edge {xj

i , c
+
j } by

an Sk−2[x
j
i , c

+
j]. Connect c−j with r and force the

edge {c−j , r} by an Sk−2[c−j , r]. (4) For every nega-
tive clause Cj : If xi is in Cj then connect xi

j with
c−j and force the edge {xi

j , c−j } by an Sk−2[xi
j , c−j].

Connect c+
j with s and force the edge {c+

j , s} by an
Sk−2[c+

j , s]. The description of the graph G = G(F)

4

研究会Temp
－60－

qi ri xi
1 x1

2 x1
m

pi si x1
i x2

1 xm
1

Figure 2: The gadget G(xi)

c+j c−j
c+j c−j

d+
j d−j

Sk Sk
Sk

Figure 3: The G(Cj) (definite:
left, non-definite: right)

q r

p s

d+
1 d−1

c−2

x1
1 x1

2

x4
2

x2
2

x1
3 x1

4

x3
2x1

2 x2
1

c+
2

c+
1 c−1

Figure 4: The reduction given C1 = (x1, x2, x3) and C2 = (x1, x2, x4)

is complete. Clearly, G can be constructed in poly-
nomial time. See Figure 4 for an example.

Lemma 6 G is chordal bipartite.

Lemma 7 Suppose G admits a tree (2k + 1)-
spanner. Then F is satisfiable.

Proof.(Outline) Let T be a tree (2k + 1)-spanner
of G. By construction of G and Observa-
tion 3, the following edges of G belong to T : (1)
{p, r}, {r, s}, {s, q}, and {xj

i , xi
j} for 1 ≤ i ≤ n, 1 ≤

j ≤ m, (2) {c+
j , c−j } for 1 ≤ j ≤ m, where Cj is a

definite clause, and (3) {c+
j , d+

j }, {d+
j , d−j }, {d−j , c−j }

for 1 ≤ j ≤ m, where Cj is a positive or a neg-
ative clause. Then we have the following three
claims: (1) For every i and j, {q, xj

i} 6∈ E(T) and
{p, xi

j} 6∈ E(T). (2) For every i and j, exactly one
of {r, xj

i} and {s, xi
j} belongs to T . (3) For each i,

either all edges {r, xj
i} with 1 ≤ j ≤ m, belong to

T , or all edges {s, xi
j} with 1 ≤ j ≤ m, belong to

T .
Now, define a truth assignment f for variables

xi, 1 ≤ i ≤ n, as follows:

f(xi) =
{

true if, for some j, {r, xj
i} ∈ E(T)

false otherwise

By (3), f is well-defined. We are going to show that
f(F) = true.

First, consider a positive clause Cj =
(xi1 , xi2 , xi3) and assume to the contrary that
f(xi1) = f(xi2) = f(xi3) = false. That is,
{r, xj

i1
}, {r, xj

i2
} and {r, xj

i3
} do not belong to T .

By (2), {s, xi1
j}, {s, xi2

j} and {s, xi3
j} are

edges of T .
Now, since T is a tree, exactly one of the

edges {c+
j , xj

i1
}, {c+

j , xj
i2
}, {c+

j , xj
i3
}, and {c−j , r}

belongs to T . If {c−j , r} ∈ E(T) then
(c+

j , d+
j , d−j , c−j , r, s, xi1

j , xj
i1

) is the (c+
j , xj

i1
)-path in

T , hence dT (c+
j , xj

i1
) = 7. But by Observation 3,

dT (c+
j , xj

i1
) ≤ (2k + 1)− 2(k − 2) = 5, a contradic-

tion. If {c+
j , xj

i} ∈ E(T) for one i ∈ {i1, i2, i3} then
(c−j , d−j , d+

j , c+
j , xj

i , xi
j , s, r) is the (c−j , r)-path in T ,

hence dT (c−j , r) = 7, contradicting Observation 3
again.

Thus, all positive and, similarly, all negative
clauses Cj are satisfied by the assignment f .

Next, consider a definite clause Cj =
(xi1 , xi2 , xi3) (the other cases of a definite clause
can be seen similarly). Recall that c+

j is adjacent
to xj

i1
, xj

i2
and c−j is adjacent to xi3

j . Assume to
the contrary that f(Cj) = false. That is, {r, xj

i1
}

and {r, xj
i2
} do not belong to T and {r, xj

i3
} belongs

to T .
By (2), {s, xi1

j}, {s, xi2
j} are edges of T and

{s, xi3
j} 6∈ E(T). Recall that the edge {c+

j , c−j } is
an edge of T .

Now, since T is a tree, exactly one of
the edges {c+

j , xj
i1
}, {c+

j , xj
i2
}, and {c−j , xi3

j} be-
longs to T . If {c−j , xi3

j} ∈ E(T) then
(c+

j , c−j , xi3
j , xj

i3
, r, s, xi1

j , xj
i1

) is the (c+
j , xj

i1
)-path

in T , hence dT (c+
j , xj

i1
) = 7, contradicting

Observation 3. If one of {c+
j , xj

i1
}, {c+

j , xj
i2
}

belongs to T , {c+
j , xj

i1
} ∈ E(T), say, then

(c−j , c+
j , xj

i1
, xi1

j , s, r, xj
i3

, xi3
j) is the (c−j , xi3

j)-path
in T , hence dT (c−j , xi3

j) = 7, contradicting Obser-
vation 3 again. Thus each clause Cj of F is satisfied
by the assignment f , proving Lemma 7.

Lemma 8 Suppose F is satisfiable. Then G admits
a tree (2k + 1)-spanner.

5

研究会Temp
－61－

Theorem 9 For every fixed k ≥ 2, the Tree (2k +
1)-Spanner problem is NP-complete for chordal bi-
partite graphs.

4 Tree 3-Spanners for Bipar-
tite ATE-free Graphs

In this section we show that any bipartite
Asteroidal-Triple-Edge–free graph admits a tree 3-
spanner.

We say that a vertex u of a graph G has a max-
imum neighbor if there is a vertex w in G such that
N(N(u)) = N(w). We will need the following result
from [5].

Lemma 10 [5] Any chordal bipartite graph G has
a vertex with a maximum neighbor.

It is easy to deduce from results of [4], [5] and
[11] that a vertex with a maximum neighbor of a
chordal bipartite graph can be found in linear time
by the following procedure.

PROCEDURE 1. Find a vertex with a maxi-
mum neighbor
Input: A chordal bipartite graph G = (X ∪ Y, E).
Output: A vertex with a maximum neighbor.
Method:

initially all vertices v ∈ X ∪ Y are unmarked;
repeat

among unmarked vertices of X select
a vertex x such that N(x) contains
the maximum number of marked vertices;

mark x and all its unmarked neighbors;
until all vertices in Y are marked;
output the vertex of Y marked last.

Now let G = (V,E) be a connected bipartite ATE–
free graph and u be a vertex of G which has a max-
imum neighbor (recall that G is chordal bipartite
and therefore such a vertex u exists).

Lemma 11 Let S be a connected component of a
subgraph of G induced by set V \Dk−1(u) (k ≥ 1).
Then, there is a vertex w ∈ Nk−1(u) such that
N(w) ⊃ S ∩Nk(u).

This lemma suggests the following algorithm for
constructing a spanning tree of G.

PROCEDURE 2. Tree 3-spanners for bipartite
ATE–free graphs
Input: A bipartite ATE–free graph G = (V, E) and a

vertex u of G with a maximum neighbor.
Output: A spanning tree T = (V, E′) of G (rooted at

u).
Method:

set E′ := ∅;
set q := max{dG(u, v) : v ∈ V };
let sq

i , i ∈ {1, . . . , pq} be the vertices of Nq(u);

for every i ∈ {1, . . . , pq} do
pick a neighbor w of sq

i in Nq−1(u);
add edge {sq

i , w} to E′;
for k := q − 1 downto 1 do

compute the connected components

Sk
1 , . . . , Sk

pk
of G[Nk(u) ∪ {sk+1

i , i ∈ {1, . . . , pk+1}}];
for every i ∈ {1, . . . , pk} do

set S := Sk
i ∩Nk(u);

pick a vertex w in Nk−1(u) such that N(w) ⊃ S;
for each v ∈ S add the edge {v, w} to E′;
shrink component Sk

i to a vertex sk
i and make sk

i

adjacent in G to all vertices from

N(Sk
i) ∩Nk−1(u).

It is easy to see that the graph T = (V, E′) con-
structed by this procedure is a spanning tree of G
and its construction takes only linear time. More-
over, T is a shortest path tree of G rooted at u since
for any vertex x ∈ V , dG(x, u) = dT (x, u) holds.

Theorem 12 Let T = (V,E′) be a spanning tree
of a bipartite ATE–free graph G = (V,E) output by
PROCEDURE 2. Then, for any x, y ∈ V , we have
dT (x, y) ≤ 3 · dG(x, y) and dT (x, y) ≤ dG(x, y) + 2.

Since any interval bigraph is a bipartite ATE–
free graph, we have the following corollary.

Corollary 13 Any interval bigraph G = (V, E)
admits a spanning tree T such that dT (x, y) ≤
3 · dG(x, y) and dT (x, y) ≤ dG(x, y) + 2 hold for
any x, y ∈ V . Moreover, such a tree T can be con-
structed in linear time.

5 Tree 7-Spanners for (En-
hanced) Probe Interval
Graphs

In this section we show that any (enhanced) probe
interval graph admits a tree 7-spanner.

Let G = (P,N,E) be a connected probe inter-
val graph. We assume that an interval represen-
tation of G is given (if not, an interval model for
G can be constructed by a method described in
[19] in O(m log n) time, where n = |P | + |N | and
m = |E|). Let I = {Ix : x ∈ P} be the intervals
in the interval model representing the probes and
J = {Jy : y ∈ N} be the intervals representing the
nonprobes.

First we discuss two simple special cases. If
N = ∅ then clearly G = (P, E) is an interval graph.
It is known (see [25]) that for any interval graph
G and its arbitrary vertex u there is a shortest
path spanning tree T of G rooted at u such that
dT (x, y) ≤ dG(x, y) + 2 holds for any x, y. In fact,
a procedure similar to PROCEDURE 2 produces
such a spanner in linear time for any interval graph

6

研究会Temp
－62－

G and any start vertex u. Evidently, T is a tree
3-spanner of G.

To describe other special case, we will need the
following notion. A connected probe interval graph
G = (P, N, E) is superconnected if for any two in-
tersecting intervals Iv, Iw ∈ I there is always an
interval Jy ∈ J such that Iv ∩ Iw ∩ Jy 6= ∅. For
a superconnected probe interval graph G, a tree 4-
spanner can be constructed easily. First we ignore
all edges in G[P] to get an interval bigraph G′ =
(X = P, Y = N, E′) and then run PROCEDURE
2 on G′. We claim that a spanning tree T of G′,
produced by that procedure, is a tree 4-spanner of
G. Indeed, for any edge {x, y} of G such that x ∈ P
and y ∈ N , dT (x, y) ≤ 3 holds by Corollary 13; it
is an edge of G′, too. Now consider an edge {v, w}
of G with v, w ∈ P . Since G is superconnected,
there is a vertex y ∈ N such that Iv ∩ Iw ∩ Jy 6= ∅,
i.e., dG′(v, w) = 2. Then, by Corollary 13, we have
dT (v, w) ≤ dG′(v, w)+2 = 2+2 = 4. Consequently,
T is a tree 4-spanner of G.

To get a tree 7-spanner for an arbitrary con-
nected probe interval graph G = (P,N,E), we will
use the following strategy. First we decompose the
graph G into subgraphs G0, G1, . . . , Gk such that Gi

and Gj (i 6= j) share at most one common vertex
and each Gi is either an interval graph or a super-
connected probe interval graph. Then iteratively,
given a tree 7-spanner T i for G0 ∪ G1 ∪ . . . ∪ Gi

(i < k) and a tree t-spanner Ti+1 (t ≤ 4) of Gi+1,
we will extend T i to a tree 7-spanner T i+1 for
G0∪G1∪. . .∪Gi∪Gi+1 by either making all vertices
of Gi+1 adjacent in T i+1 to a common neighbor in
G0 ∪G1 ∪ . . .∪Gi (if it exists) or by gluing trees T i

and Ti+1 at a common vertex (see Figure 5 for an
illustration). The details are omitted, and can be
found in full version of this draft.

G1G0 G3G2 G4

L(S0) R(S0)

probes

nonprobes

S0 S1

u0

u1 v
u2 u3

w

u4

Figure 5: Segments and a decomposition of a probe
interval graph

6 Concluding Remarks

In the paper, we have shown that the tree t-spanner
problem is NP-complete even for chordal bipartite
graphs for k ≥ 5. The complexity of the tree 3-
spanner problem is still open. We have also shown

that every (enhanced) probe interval graph has a
tree 7-spanner. However, it is also open whether
the graph classes are tree t-spanner admissible for
smaller t.

References

[1] B. Awerbuch, A. Baratz, and D. Peleg. Ef-
ficient broadcast and light-weighted spanners.
manuscript, 1992.

[2] H.-J. Bandelt and A. Dress. Reconstructing
the Shape of a Tree from Observed Dissimilar-
ity Data. Advances in Appl. Math., 7:309–343,
1986.

[3] A. Brandstädt, V. Chepoi, and F. Dragan. Dis-
tance Approximating Trees for Chordal and
Dually Chordal Graphs. J. of Alg., 30(1):166–
184, 1999.

[4] A. Brandstädt, V.D. Chepoi, and F.F. Dra-
gan. The Algorithmic Use of Hypertree Struc-
ture and Maximum Neighbourhood Orderings.
Disc. Appl. Math., 82:43–77, 1998.

[5] A. Brandstädt, F. Dragan, V. Chepoi, and
V. Voloshin. Dually Chordal Graphs. SIAM
J. Disc. Math., 11(3):437–455, 1998.

[6] A. Brandstädt, F.F. Dragan, H.-O. Le, and
V.B. Le. Tree Spanners on Chordal Graphs:
Complexity, Algorithms, Open Problems. In
ISAAC 2002, pages 163–174. LNCS Vol. 2518,
Springer-Verlag, 2002.

[7] A. Brandstädt, V.B. Le, and J.P. Spinrad.
Graph Classes: A Survey. SIAM, 1999.

[8] A. Brandstädt, J. Spinrad, and L. Stewart. Bi-
partite Permutation Graphs are Bipartite Tol-
erance Graphs. Congr. Numer., 58:165–174,
1987.

[9] L. Cai and D.G. Corneil. Tree Spanners: an
Overview. Congr. Numer., 88:65–76, 1992.

[10] L. Cai and D.G. Corneil. Tree Spanners. SIAM
J. Disc. Math., 8(3):359–387, 1995.

[11] F.F. Dragan and V.I. Voloshin. Incidence
Graphs of Biacyclic Hypergraphs. Disc. Appl.
Math., 68:259–266, 1996.

[12] M. Farber. Characterization of Strongly
Chordal Graphs. Disc. Math., 43:173–189,
1983.

[13] M.C. Golumbic. Algorithmic Graph Theory
and Perfect Graphs. Academic Press, 1980.

7

研究会Temp
－63－

[14] M.C. Golumbic and C.F. Goss. Perfect Elim-
ination and Chordal Bipartite Graphs. J. of
Graph Theory, 2:155–163, 1978.

[15] F. Harary, J.A. Kabell, and F.R. McMorris. Bi-
partite intersection graphs. Comment. Math.
Univ. Carolin., 23:739–745, 1982.

[16] J.L. Johnson and J.P. Spinrad. A Polynomial
Time Recognition Algorithm for Probe Interval
Graphs. In 12th SODA, pages 477–486. ACM,
2001.

[17] H.-O. Le and V.B Le. Optimal Tree 3-Spanners
in Directed Path Graphs. Networks, 34:81–87,
1999.

[18] M.S. Madanlal, G. Venkatesan, and C. P. Ran-
gan. Tree 3-Spanners on Interval, Permutation
and Regular Bipartite Graphs. Inf. Proc. Let.,
59:97–102, 1996.

[19] R.M. McConnell and J.P. Spinrad. Construc-
tion of Probe Interval Models. In 13th SODA,
pages 866–875. ACM, 2002.

[20] T.A. McKee and F.R. McMorris. Topics in In-
tersection Graph Theory. SIAM, 1999.

[21] F.R. McMorris, C. Wang, and P. Zhang. On
Probe Interval Graphs. Disc. Appl. Math.,
88:315–324, 1998.

[22] H. Müller. Recognizing Interval Digraphs
and Interval Bigraphs in Polynomial
Time. Disc. Appl. Math., 78:189–205,
1997. Erratum is available at http://
www.comp.leeds.ac.uk/hm/pub/node1.html.

[23] D. Peleg. Distributed Computing: A Locally-
Sensitive Approach. Monographs on Discrete
Mathematics and Applications. SIAM, 2000.

[24] D. Peleg and A.A. Schäffer. Graph Spanners.
J. of Graph Theory, 13(1):99–116, 1989.

[25] E. Prisner. Distance approximating spanning
trees. In STACS’97, pages 499–510. LNCS
Vol. 1200, Springer-Verlag, 1997.

[26] J. Soares. Graph Spanners: a Survey. Congr.
Numer., 89(225–238):225–238, 1992.

[27] G. Venkatesan, U. Rotics, M.S. Madanlal, J.A.
Makowsy, and C.P. Rangan. Restrictions of
Minimum Spanner Problems. Inf. and Comp.,
136:143–164, 1997.

[28] P. Zhang. Prove Interval Graphs and Its
Applications to Physical Mapping of DNA.
manuscript, 1994.

[29] P. Zhang. United States Patent. Method
of Mapping DNA Fragments. http:
//www.cc.columbia.edu/cu/cie/techlists
/patents/5667970.htm, July 3 2000.

8

研究会Temp
－64－

