
Timed Atomic Broadcast Resiliet to Multiple Timing Faults

Taisuke IZUMI Akinori SAITOH Toshimitsu MASUZAWA
Graduate School of Information Science and Technology, Osaka University

1-3 Machikaneyama, Toyonaka, 560-8531, Japan
E-mail:ft-izumi, saitoh, masuzawag@ist.osaka-u.ac.jp

Abstract �-Timed Atomic Broadcast is the
broadcast ensuring that all correct processes deliver
the same messages in the same order, and that de-
livery latency of any message broadcast by any cor-
rect process is some predetermined time � or less.
This paper proposes a �-timed atomic broadcast
algorithm in a partially synchronous system where
communication delay is bounded (in the range of
[d� u; d] where d and u are known constants). The
proposed algorithm can tolerate fc crash faults and
d(n�fc)=2e�1 timing-faults, where n is the number
of processes in the system. Moreover, the algorithm
has a distinct advantage of guaranteeing that timing-
faulty processes also delivers the same messages in
the same order as the correct processes.
We also investigate the maximum number of

faulty processes that can be tolerated. We show that
no timed atomic broadcast algorithm can tolerate fc
crash faults and ft timing faults, if d(n�fc)e=2 � ft
holds. The impossibility result implies that the pro-
posed algorithm achieves the maximum resilience to
both crash and timing faults.

1 Introduction

Atomic broadcast[8] is a fundamental and e�ective
communication primitive for designing fault-tolerant
distributed systems. It ensures that all correct pro-
cesses deliver the same messages in the same order.
The atomic broadcast is widely used for preserving
consistency of replicated data in many applications:
distributed databases[12], shared objects[1, 9, 10],
and so on. As corollary of the impossibility result on
the consensus problem [6], it is proved that no deter-
ministic algorithm can realize the atomic broadcast
in an asynchronous message-passing system subject
to only a single crash fault[4, 6]. Thus, several
atomic broadcast algorithms have been proposed on
the assumption of some synchrony[3, 7] or unreliable
failure detection[2].
Partial synchrony is one of the most commonly

used assumptions for designing atomic broadcast
algorithms[5]. It assumes that communication delay
between any pair of processes is bounded by some
constant. The assumption of partial synchrony also
arouses an interest in the possibility of timed atomic
broadcast, where delivery latency of any broadcast
message is bounded by some predetermined time

� (�-timeliness). Since message delivery latency
strongly a�ects performance of applications based
on the atomic broadcast, the timed atomic broad-
cast is very important.

However, as seen in most works on e�ciency anal-
ysis of real distributed systems, it is natural to model
communication delay as a probabilistic variable. In
other words, it is actually inevitable, even though
with low probability, that some messages experience
communication delay larger than the upper bound
in the partially synchronous model. The overde-
lay may prevent algorithms designed in the partially
synchronous model from working correctly in real
distributed systems. Even when the algorithms work
regardless of the overdelay, the overdelay may cause
a signi�cant slowdown of the entire system and the
timeliness of the timed atomic broadcast may be vi-
olated. Therefore, robustness for such overdelay is
strongly desired in atomic broadcast algorithms.

In this paper, we consider timing faults of pro-
cesses that cause overdelay on messages sent by the
faulty processes, and investigate the possibility of
the timed atomic broadcast in the partially syn-
chronous model with the timing faults.

Cristian et al.[3] proposed an atomic broadcast al-
gorithm resilient to timing faults in partially syn-
chronous model with arbitrary topology. The algo-
rithm guarantees that correct processes deliver the
same messages in the same order if all correct pro-
cesses are connected without going through faulty
processes. However it guarantees nothing for mes-
sages delivered in the timing-faulty processes: the
timing-faulty processes may deliver di�erent mes-
sages or deliver messages in di�erent order from the
correct processes. Since the overdelay of messages
are often caused by transient overload of processes or
the network, the timing fault should be considered as
a transient fault. This implies that the timing-faulty
processes recover from the faults and rejoin the ap-
plication (possibly without detecting the faults). To
ensure consistent recovery from the timing faults,
the timing-faulty processes should deliver the same
messages in the same order.

In this paper, we propose a novel timed atomic
broadcast algorithm in the partially synchronous
model with crash and timing faults. The algorithm
uses the reliable broadcast as a communication prim-
itive, and ensures the atomic broadcast property for
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all non-crashed processes including the timing-faulty
processes. The algorithm can tolerate fc crash faults
and d(n � fc)=2e � 1 timing faults, where n is the
number of processes. Moreover, the algorithm guar-
antees constant delivery latency of messages if the
broadcasters are correct.
We also consider the upper bound on the number

of faulty processes that timed atomic broadcast al-
gorithms can tolerate. We show that no algorithm
can tolerate fc crash faults and ft timing faults if
d(n � fc)e=2 � ft holds. The impossibility result
implies that our timed atomic broadcast algorithm
achieves the maximum resilience to both crash faults
and timing faults.
The paper is organized as follows. After intro-

ducing the model and de�nition of the timed atomic
broadcast in Section 2, we propose the timed atomic
broadcast algorithm in Section 3. We show the im-
possibility result in Section 4. Finally, we conclude
this paper in Section 5.

2 Preliminaries

2.1 Distributed System

We adopt a model of a distributed system based on
I/O automata[11] where sites, channels and a dis-
tributed system itself are modeled as I/O automata.
For lack of space, this paper omits details of the
model. We consider a partially synchronous dis-
tributed message-passing system consisting of n pro-
cesses. Any pair of processes can communicate each
other by exchanging messages through the channel.
All channels are FIFO and reliable: each channel
correctly transfers messages in the order they are
sent. The system is partially synchronous, that is,
all the messages sent by non-timing-faulty processes
have communication delays in the range of [d�u; d]
where d and u (0 � u � d) are some constants
every process knows a priori. In addition, we as-
sume that each process has a timer and can set the
timer to raise an alarm after the preset time inter-
val. Processes are subject to crash and timing faults.
These faults are modeled as particular states of pro-
cesses. Actually, a state of a process is de�ned as
the pair of (s; f), where s is the system state, and f
is the fault state. The fault state can be \correct",
\crashed" or \timing-faulty". While it is \correct",
the process works correctly and messages sent by the
process have communication delays in the range of
[d � u; d]. When a process crashes, it changes its
own fault state to \crashed", and ceases to oper-
ate. Once the fault state is changed to \crashed",
it remains \crashed" forever. A process with the
fault state of \timing-faulty" works correctly, but
messages sent by the process may have communica-

tion delay greater than d. Without loss of general-
ity, we can assume that the fault state of a timing-
faulty process is always \timing-faulty" from the be-
ginning, because messages sent by the timing-faulty
process can have communication delays in the range
of [d � u; d]. Notice that we introduce the faulty
state only to represent the system con�guration, and
thus, we assume processes are unaware of their fault
states: the same state transition can occur, whether
its fault state is \correct" or \timing-faulty". There
are upper bounds fc on the number of processes that
can crash and ft on the number of processes that can
be timing-faulty. In this paper, we make the follow-
ing assumption on the number of faulty processes:

Assumption 1 ft � d(n� fc)=2e � 1

A system con�guration is represented by all pro-
cesses' states, all channels' states (i.e. messages
under transmission on the channels) and a set of
alarms which have been set but have not gone
o�. An execution of a distributed system is an
alternative sequence of con�gurations and events
E = c0; e1; c1; e2; c2 � � � such that occurrence of
event ei changes the con�guration from ci�1 to ci.
Since we assume partial synchrony, we deal with
a timed execution E = c0; (e1; t1); c1; (e2; t2); � � � ;
ck; (ek+1; tk+1); � � � where each event ei is associated
with global time ti when the event occurs. The timed
execution we consider satis�es the following condi-
tions. (1) The times assigned to events are non-
decreasing, that is tk�1 � tk holds for any k. (2) If
(e; t) is an event sending a message M from a non-
timing-faulty process pi to a process pj , then there
exists an event (e0; t0) receivingM at process pj such
that t + d � u � t0 � t + d, or pj crashes by t + d.
(3) If (e; t) is an event sending a message M from
a timing-faulty process pi to a process pj , there ex-
ists event (e0; t0) receivingM at process pj such that
t+d�u � t0, or pj eventually crashes. (4) If (e; t) is
pi's event setting its timer to � , then there exists pi's
alarm event (e0; t+ �), or pi crashes by t+ � . (5) If
an internal or send event e is applicable at ck, then
there exists an event (e; t) such that t = tk (where
tk is the time assigned to the event ek that changes
the con�guration to ck).

The condition (2) and (3) implies that all mes-
sages are eventually received unless their destination
processes crash. The condition (2) also implies that
the delivery latency of messages sent by non-timing-
faulty processes are in the range of [d � u; d]. The
condition (5) implies that processing times of local
computations are negligible, that is, several internal
and send events can be executed in an instant.
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2.2 Uniform FIFO Reliable Broad-
cast

Processes can use uniform FIFO reliable broadcast
as a communication primitive. The uniform reliable
broadcast guarantees that all non-crashed (may be
timing-faulty) processes deliver a message if and only
if the message is broadcast by a process. Formally,
we de�ne the uniform FIFO reliable broadcast in
partially synchronous environment to be the broad-
cast satisfying the following speci�cations:

Nonfaulty Liveness : If a non-timing-faulty process
broadcasts a message m at t, then each process
delivers m at t0 such that t+ d� u � t0 � d, or
is crashed at t+ d.

Faulty Liveness : If a timing-faulty process broad-
casts a message m, then each process eventu-
ally delivers m at t0 such that t+ d� u � t0, or
becomes crashed eventually.

Uniform Integrity : For any message m, every pro-
cess delivers m at most once, only if some pro-
cess broadcasts m.

Uniform FIFO Order : If a process broadcasts a
message m before it broadcasts a message m0,
then no process delivers m0 before m.

2.3 �-Timed Atomic Broadcast

Atomic broadcast is the broadcast ensuring that all
non-crashed processes delver the same set of mes-
sages in the same order, which includes all messages
broadcast by processes and no spurious messages.
We de�ne the �-timed atomic broadcast to be the
atomic broadcast with an additional property, �-
timeliness. The �-timeliness guarantees that deliv-
ery latency is bounded by some constant �. For-
mally, The timed atomic broadcast is the broadcast
satisfying the following speci�cations:

Nonfaulty �-Liveness : If a non-timing-faulty pro-
cess broadcasts a message m at t, then each
process delivers m by t + � or is crashed at
t+�.

Faulty Liveness : If a timing-faulty process broad-
casts a message m at t and, then each process
eventually delivers m, or becomes crashed even-
tually.

Uniform Integrity : For any message m, every pro-
cess delivers m at most once, only if some pro-
cess broadcasts m.

Uniform Total Order : If processes pi and pj both
deliver messages m and m0 then pi delivers m
before m0 if and only if pj delivers m before m0.

To distinguish the messages to be broadcast by
the �-timed atomic broadcast algorithm from the
messages the algorithm, we call the messages to be
broadcast \ABcast message".

3 �-timed Atomic Broadcast

Algorithm

3.1 Overview

In this section, we present the �-timed atomic
broadcast algorithm using the uniform FIFO reliable
broadcast. The algorithm provides two interfaces,
TABcasti(m) and TADeliveri(m), to an upper ap-
plication layer. The event TABcasti(m) is invoked
by the upper application to broadcast an ABcast
message m by the �-timed atomic broadcast, and
TADeliveri(m) is invoked by the �-timed atomic
broadcast algorithm to deliver an ABcast message
m.
In general, there is three main di�culties in im-

plementing the �-timed atomic broadcast: reliable
delivery (all processes deliver the same set of AB-
cast messages), totally-ordered delivery (all pro-
cesses deliver the messages in the same order) and
�-timeliness. Since we assume that processes can
use the uniform FIFO reliable broadcast, it is easy
to achieve the reliable delivery. Thus, the remain-
ing problems to be resolved are the totally-ordered
delivery and the �-timeliness. In the rest of this
subsection, we brie
y describe the idea for resolving
these two problems.
Informally, the algorithm achieves the totally-

ordered delivery as follows: The algorithm divides
its execution into synchronous rounds. Each process
assigns each received ABcast messages to a round.
All ABcast messages are delivered in order of the
assigned rounds. Two ABcast messages that are as-
signed to the same round are delivered in ascend-
ing order of their broadcaster's ID. If the two mes-
sages have the same broadcaster's ID, the one broad-
cast earlier is delivered �rst. Clearly, if all processes
assign each ABcast message to a common round,
totally-ordered delivery is guaranteed.
In order to assign an ABcast message to a common

round, the algorithm uses the consensus. At the end
of each round, each process executes the consensus
algorithm to agree on the set of messages assigned
to the round. However, to ensure the �-timeliness,
the consensus algorithm must complete its execution
within constant time, even in presence of faulty pro-
cesses. Moreover, to ensure timing-faulty processes
also deliver ABcast messages in the same order as
correct processes, the timing-faulty processes have
to participate in the consensus. Therefore, we can-
not use existing consensus algorithms. To resolve
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these problem, we propose a novel consensus algo-
rithm, �-timed consensus. The �-timed consensus
algorithm has the following two properties distinct
from existing consensus algorithms: (1) When a pro-
cess proposes a value at t, it decides a value at t+�
or earlier (even if the process is timing-faulty). That
is, the running time of the algorithm is not a�ected
by overdelayed messages. (2) After execution of the
algorithm, all non-crashed processes, including the
timing-faulty processes, have a common decision.
The algorithm consists of three parts, the round

synchronization algorithm Sync, �-timed consensus
Tconsensus and the main algorithm TABcast. The al-
gorithm Sync divides an execution into synchronous
rounds. Since the algorithms Tconsensus and TAB-
cast are based on the synchronous rounds, we �rst
introduce the round synchronization algorithm Sync
in the next subsection, and later introduce the other
two algorithms.

3.2 Round Synchronization Algo-
rithm

3.2.1 Speci�cation

Roughly speaking, the objective of the round syn-
chronization algorithm is that each process period-
ically invokes the synchronous end-of-round event.
The algorithm provides two primitives, StartSynci
and EORi(r). The event StartSynci and EORi(r)
are respectively invoked by the process pi to initiates
the round synchronization and to report the end of
the rth round. Formally, the round synchronization
algorithm satis�es the following speci�cations:

Timed Initiation : If a non-timing-faulty process pi
invokes the StartSynci at t, there is some con-
stant � such that every process pk invokes
EORk(0) or becomes crashed at t+ �.

Eventual Initiation : If a timing-faulty process pi in-
vokes the StartSynci at t, every process pk in-
vokes EORk(0) or becomes crashed eventually.

Liveness : If a process pi invokes EORi(r) at t, it
invokes EORi(r + 1) or crashes after t.

Integrity : For any nonnegative integer r, every pro-
cess pi invokes EORi(r) at most once only if
EORi(r � 1) has already occurred.

Synchrony : If a process pi invokes EORi(r) at ti
and a process pk invokes EORk(r + 1) at tk,
then tk � ti � d holds.

The synchrony property implies that the length of
each round is su�ciently long so that any message
sent by a non-timing-faulty process at the beginning
of a round can be received by all non-crashed pro-
cesses by the end of the round.

3.2.2 Algorithm

The key of the round synchronization algorithm Sync
is to synchronize the occurrence of EOR�(0). If
EOR�(r) are invoked synchronously, it is easy to
invoke EOR�(r + 1) synchronously: On occurrence
of EORi(r), each process pi sets a timer for some
prede�ned time, and it invokes EORi(r + 1) when
the alarm raises. Then, each process invokes the
EORi(r+1) with the same timing di�erence as that
of the rth. Thus, in what follows, we only describe
how to synchronize EORi(0)
In our algorithm, the process pi invoking

StartSynci broadcasts an invocation message. Each
process invokes EOR�(0) when it receives the invo-
cation message �rst. Clearly, if pi is non-timing-
faulty, invocations of EOR�(0) are synchronized with
di�erence of u or less. However, if pi is timing-
faulty, processes may receive the invocation mes-
sages with unbounded di�erence of receiving timing.
Thus, the algorithm cannot attain the synchroniza-
tion of EOR�(0) only by using the uniform FIFO
reliable broadcast of the invocation messages. To
resolve this problem, the algorithm relays an invo-
cation message through distinct ft+1 processes (in-
cluding the process invoking StartSync�). Then, a
transmission path corresponds to a permutation of
ft+1 processes starting from pi. When StartSynci is
invoked, pi tries to transmit the invocation message
through all possible paths. However, the number of
all possible paths is exponential to ft and thus the
message complexity is unacceptable. To reduce the
message complexity, the algorithm stops the trans-
mission along a path by some condition. In fact,
our algorithm uses at most n2ft messages for one
initiation.
Figure 1 presents the program code of Sync in

event driven style: Each transition is represented
by a triggering event followed by its handler. If
two triggering events occur at the same time, the
transition preceding in the description is executed
�rst. The invocation messages is the pair (cnt; dom)
where cnt is the number of times of relays and dom
is the set of processes that have relayed this invo-
cation message�. The invocation message (k; �) is
called a k-level invocation message. The process pi
that invokes StartSynci broadcasts the 0-level in-
vocation message (0; fpig). When a process pj re-
ceives a k-level invocation message M = (k; dom),
pj broadcasts the k + 1-level invocation message
(k + 1; dom [ fpjg) if (1) pj is not in dom and (2)
pj has not yet broadcast the k

0-level invocation mes-
sage such that k0 � k + 1. The condition (1) is to
prevent the path from forming a cycle. The con-
dition (2) is to stop an unnecessary relay (in the

�Since cnt = jdomj � 1 always holds, cnt is redundant in
practice. We introduce cnt only for ease of explanation.
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variable
rcnt : init 0
round: init 0
activated: init FALSE

transition function of process pi

when StartSynci occurs :
Bcasti(0; fpig)

when Deliveri(cnt; dom) occurs :
if cnt = ft and activated = FALSE then

EORi(round)
round round+ 1
activated = TRUE
Timerseti((ft + 1)u+ d;next)

elseif pi 62 dom and rcnt � cnt then
Bcasti(cnt+ 1; dom [ fpig)
rcnt cnt+ 1

endif

when Alarmi(next) occurs :
EORi(round)
round round+ 1
Timerseti((ft + 1)u+ d;next)

Figure 1: Algorithm Sync

correctness proof, we explain why it is unnecessary).
Each process pi invokes EORi(0) when it receives the
ft-level invocation message �rst. When EORi(r) oc-
curs at t, the process pi sets the timer to raise up at
(ft+1)u+d later, which is the time when pi invokes
EORi(r+ 1). For Sync, the following theorem holds
(for lack of space, we omit the correctness proof).

Theorem 1 The algorithm Sync realizes the round
synchronization,

About the length of each round, we propose the
next corollary, which is easily obtained from theorem
1.

Corollary 1 For any r > 0, the length of round r
is (ft + 1)u + d, and the length of 0-th round is at
most (ft + 1)d if a initiator is non-timing-faulty.

3.3 �-Timed Consensus Algorithm

3.3.1 Speci�cation

The �-timed consensus is the consensus algorithm
that completes its execution within constant �
in presence of faulty processes. Moreover, ev-
ery timing-faulty process reaches the same decision
as correct processes. The �-timed consensus al-
gorithm provides two primitives, proposei(V ) and
decidei(V ). The events proposei(V ) and decidei(V )
are respectively invoked by process pi to propose the
value V and to return the decision value V . Notice
that V is a set (of ABcast messages in our Delta-
timed atomic broadcast algorithm). We de�ne the
�-timed consensus algorithm to be the algorithm
satisfying the following speci�cation:

variable
r : init 0 =� current round �=

buffer[0::ft] : init ;

transition function of process pi

when Proposei(val) occurs :
Bcast(0; f(val; pi; fpig)g)

when EORi(�) occurs:
if r = ft then

decidei(pi;intersection of value in bufferr)
else

Bcasti(r; buffer
r)

r  r + 1
endif

when Deliveri(c; buf) occurs :
for all (val; pid; dom) in buf do

if (val; pid; �) is not in bufferc then
if (pi 62 dom and r � c) or c = ft then

bufferc := bufferc [ f(value; pid; dom [ pi)g
endif

endif
endfor

Figure 2: Algorithm TConsensus

Timed Termination If proposei(V ) occurs at t,
the process pi invokes decidei(�) or becomes
crashed by t+�.

Uniform Agreement If decidei(Vi) and decidej(Vj)
occur, Vi = Vj holds.

Validity If every proposed value Vi contains a com-
mon element v, the decision value by every pro-
cess contains v.

Since our algorithm works on synchronized rounds
realized by Sync, we assume that a process (or the
subset of processes in the system) invokes StartSync�
in advance. Moreover, the algorithm requires the
following two assumptions:

Assumption 2 All processes invoke propose�(�) at
the beginning of a same round.

Assumption 3 The length of each round is within
a constant.

In the following discussion, let r0 be the round
that all processes invoke propose�(�).

3.3.2 Algorithm

In this subsection, we brie
y describe the idea of
the �-timed consensus algorithm Tconsensus. In the
algorithm, each process gathers the proposed value
from all processes. The decision value that the algo-
rithm returns is the intersection of the all gathered
values. To guarantee Uniform Agreement and Timed
Termination, all non-crashed processes must gather
the same set of values within constant time. The val-
ues proposed by non-timing-faulty processes can be
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gathered within constant time. On the other hand,
the values proposed by timing-faulty processes can-
not be always gathered within constant time. There-
fore, each process has to ignore the values proposed
by timing-faulty processes, if the values are not gath-
ered to all non-crashed processes. This is the main
problem we have to consider.
The �-timed consensus algorithm Tconsensus is

given in Figure 2. The idea for Tconsensus is sim-
ilar to Sync: the algorithm transmits a proposed
value by relaying through the distinct ft + 1 pro-
cesses in synchronous fashion. The message is the
triple (val; pi; dom) where val is the proposed value,
pi is the proposer's ID and dom is the set of pro-
cess IDs that have already relayed this message.
At the beginning of r0, every process pi broadcasts
the message (Vi; pi; fpig) where Vi is the value that
pi proposes. If a process pi receives the messages
M = (val; pj ; dom) at round r, pi records it to
bufferr, which is the variable storing the messages
to be relayed at the next round, unless pi is in dom,
M is sent at round r � 2 or before, or (val; pj ; �)
is in bufferr already. At the beginning of round
r + 1(0 � r � ft � 1), each process broadcasts
its bufferr with the current round number (that
is r + 1) y . At the end of round r0 + ft, each pro-
cess returns a decision value by intersection the all
proposed values stored in bufferft . Due to lack of
space, we omit the correctness proof of Tconsensus.

Theorem 2 Under the Assumptions 2 and 3, the
algorithm Tconsensus realizes the �-timed consen-
sus, and completes the execution in exactly ft + 1
rounds.

3.4 �-timed Atomic Broadcast

3.4.1 Algorithm

Using Tconsensus and Sync, we realize the �-timed
atomic broadcast algorithm TABcast. In the previ-
ous section, we have already stated the idea of TAB-
cast Atomic Broadcast. We describe the detailed
behavior of the algorithm in this subsection. The al-
gorithm TABcast executes the algorithm Sync in ad-
vance: At the �rst time when a process pi broadcasts
an ABcast message by the �-timed atomic broad-
cast, pi invokes the StartSynci to start Sync if pi
has not yet recognized that Sync has already been
executed. Each process maintains the local vari-
able sync to know whether Sync is running or not.
The variable sync is initially FALSE, and changes
to TRUE when StartSync� or EOR�(0) occur.

yAt the beginning of each round, each process broadcasts
one "packed message" containing all messages to be broadcast
at the round.

In our algorithm, every ABcast message has a
distinct identi�er. An identi�er is a pair of broad-
caster's ID and a serial number. Each process main-
tains its own serial number in a local variable sn.
When TABcasti(m) occurs, the process broadcasts
M = (m;pi; sn) by the uniform FIFO reliable broad-
cast. When a process receives the message M , it
records M to a local variable Received. When the
process delivers the ABcast message m, it appends
M to a local variable Delivered.
At the end of each round r, the algorithm exe-

cutes Tconsensus. Then, two or more Tconsensus al-
gorithm may be concurrently executed. However, in
our algorithm, each execution is distinguished from
each other by its round number, and is executed
independently. The value a process pi proposes is
the set of ABcast messages that are received by pi
but not yet delivered (that is Received�Delivered).
When decidei(Vi) occurs, the process pi removes the
messages that have already delivered by pi from Vi
and delivers the rest in order of their broadcaster's
ID. If two or more messages have the same broad-
caster's ID, they are ordered by their serial numbers.
For lack of space, we omit the correctness proof

of TABcast and only investigate the delivery la-
tency �. Let a non-timing-faulty process pi invoke
TABcasti(m) at t in a round r. Since all processes
receive m at round r or r + 1, the ABcast message
m is assigned to the round r or r + 1 because of
Validity of the �-timed consensus. From Theorem
2, Tconsensus completes each execution in exactly
ft + 1 rounds, and thus, m is delivered by the end
of round r+ ft+2. Then, we consider the two case.
(1) In the case of r > 0, m's delivery latency is at
most ((ft + 1)u + d)(ft + 2) because the length of
each round is (ft + 1)u + d from Corollary 1. (2)
In case of r = 0, since a non-timing-faulty pro-
cess pi invokes StartSynci at t or earlier, the length
of the r-th round is at most (ft + 1)d from Corol-
lary 1. Therefore, m's delivery latency is at most
(ft + 1)d+ ((ft + 1)u+ d)(ft + 1).
From this observation, the following theorem

holds;

Theorem 3 The algorithm TABcast realizes (ft +
1)d+(ft+2)(d+(ft+1)u)-timed atomic broadcast.

4 Impossibility Result

In this section, we consider the maximum number
of faulty-processes that a timed atomic broadcast
algorithm can tolerate. Let fc and ft be the maxi-
mum numbers of crashed processes and timing-faulty
processes respectively. We prove that no �-timed
atomic broadcast can be designed if d(n�fc)e=2 � ft
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variable
sn : init 0
sync : init FALSE
DeliverList;Received;Delivered : init ;

transition function s of process pi
when TABcasti(m) occurs :

if synced = FALSE then StartSynci
sn sn+ 1
M  (m; pi; sn)
Bcasti(M)

when Deliveri(M) occurs :
Received Received [M

when Decideri (D) occurs :
DeliverList D �Delivered
TADeliver all messages in DeliverList in some determin-

istic order
=� It is ordered �rstly by Broadcaster's ID, and secondary

by sn. �=
Delivered Delivered [DeliverList

when EORi(r) occurs :
if synced = FALSE then synced = TRUE
proposeri (Received �Delvered)

Figure 3: Algorithm TABcast

holds. In the following proof, we use the technique of
shifting [1], which changes the timing of occurrence
of events appeared in an execution. For a timed ex-
ecution E, a set of processes P , and a constant �,
we de�ne shift(E;P; �) to be the execution obtained
from E as follows: (1)Every event (e; t) of E occur-
ring at each process in P is replaced by (e; t + �),
(2)other events of E are unchanged, and (3)those
events are ordered in increasing order of the occur-
rence times. Notice that all shifted executions are
not possible executions. However, for an timed ex-
ecution E of an algorithm AL, Es = shift(E;P;�)
is possible execution of AL if delays of all messages
broadcast by non-timing-faulty processes are in the
range of [d� u; d].

Theorem 4 For any �, no �-timed atomic broad-
cast algorithm can tolerate ft timing-faulty pro-
cesses and fc crashed processes if d(n � fc)e=2 � ft
holds.

Proof Suppose for contradiction that AL is a �-
timed atomic broadcast algorithm that works cor-
rectly in case of d(n� fc)e=2 � ft. We consider the
execution E de�ned as follows (Fig. 4(1)): (1) fc
processes are crashed from the beginning of the ex-
ecution. (2) Delay of each message is (2a) d if the
sender is correct, (2b) d if both of the sender and
the receiver are timing-faulty, and (2c)� + �(� > 0)
if the sender is timing-faulty and the receiver is cor-
rect. (3) TABcasti(m) occurs at t, where pi is a
timing-faulty process. Clearly, E is a possible exe-
cution of AL. First, we show TADeliver(pi; pi;m)
occurs after t + � + � in E. Assume for contradic-
tion that TADeliveri(m) occurs at t0(� t + � + �).

Consider E0 obtained from E by replacing the de-
lays � + � of (2c) with 2� + 3�. Process pi cannot
recognize the di�erence between E and E0 before
t0, and hence TADeliveri(m) occurs at t0 also in E0.
Moreover,we extend E0 to E00 by adding an event
(TABcastj(m

0); t + � + 2�), where pj is a correct
process (Fig. 4(2)). Since E is an execution of AL,
E0 and E00 are also possible executions of AL. Then,
from the speci�cation of the �-timed atomic broad-
cast, m0 is delivered by all non-crashed processes at
t+2�+2� or earlier. However, all correct processes
cannot deliver m until t+ 2�+ 3� because they are
unaware of the occurrence of the TABcasti(m) at
that time. On the other hand, pi delivers m at t0,
that is the time before m0 is delivered. This vio-
lates Total Order of the �-timed atomic broadcast.
A contradiction. Thus, TADeliveri(m) occurs after
t+�+ � in E.
Next we lead the main contradiction. Let Pt be

the set of timing-faulty processes in E. We consider
Es = shift(E;Pt;� + � � d). In Es, delay of mes-
sages are � + � if the sender is correct and the re-
ceiver is timing-faulty, and d otherwise. Notice that
Es may not be a possible execution of AL, because
the delay of messages sent by correct processes to
timing-faulty processes is � + � and may be larger
than d. However, consider the execution E0s (Fig.
4(3))obtained from Es only by changing the fault
states of processes as follows: Correct processes in
Es are changed to timing-faulty, and timing-faulty
processes in Es are changed to correct. It is clear
that the execution E0s is a possible execution of AL.
Let f 0c and f 0t be the numbers of the crashed pro-
cesses and the timing-faulty processes in E0s. From
assumption d(n � fc)e=2 � ft, more than half of
non-crashed processes in E are timing-faulty. This
implies that f 0c = fc and f 0t � ft holds. Therefore,
the algorithm AL must tolerate f 0c crashes and f 0t
timing faults, that is, AL has to realizes �-timed
atomic broadcast in E0s. However, in E0s, the AB-
cast message m sent by the correct process pi has
delivery latency of � + � or more at pi. This con-
tradicts to Nonfaulty �-Liveness of �-timed atomic
broadcast. 2

5 Concluding Remarks

We considered the �-Timed Atomic Broadcast re-
silient to crash and timing faults in partially syn-
chronous environment ,where message delay is in the
range of [d� u; d], and timing faults. We presented
a (ft + 1)d + (ft + 2)(d + (ft + 1)u)-timed atomic
broadcast algorithm that tolerates the fc crashes and
d(n � fc)=2e � 1 timing faults. The algorithm uses
the uniform FIFO reliable broadcast as a commu-
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Figure 4: Execution E, E00 and E0s

nication primitive and guarantees that the timing-
faulty process also delivers the same messages in the
same order as the correct processes. Moreover, we
showed that there is no �-timed atomic broadcast
algorithm if d(n�fc)e=2 � ft holds, where fc and ft
are the numbers of crash processes and the timing-
faulty processes respectively. This impossibility re-
sult implies that our algorithm attains the maximum
resilience for both crash and timing faults.
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