
A Simple Constant Time Enumeration Algorithm for Free Trees

Shin-ichi Nakano1 and Takeaki Uno2

1 Gunma University, Kiryu-Shi 376-8515, Japan
email:nakano@cs.gunma-u.ac.jp

URL: http://www.msc.cs.gunma-u.ac.jp/̃nakano/index.html
2 National Institute of Informatics, Tokyo 101-8430, Japan

email:uno@nii.jp
URL: http://research.nii.ac.jp/̃uno/

Abstract: In this paper, we consider a problem of enumerating all trees with n vertices where n

is given as input. Any output tree have to be isomorphic to no other output tree. We propose an
algorithm for solving this problem. The time completiy of the algorithm is exactly constant time per
output tree, which means computation time between any consecutive two trees is constant time. In
existing studies, many algorithms are proposed for solving this problem, however the time complexity
of the best algorithm is average constant time, which may takes long time between two consecutive
output trees.
Keywords: enumeration, generation, free tree

無順序根無し木を列挙するシンプルなアルゴリズム

中野 眞一 1 and 宇野 毅明 2

1 〒 376-8515 群馬県桐生市群馬大学
email:nakano@cs.gunma-u.ac.jp

URL: http://www.msc.cs.gunma-u.ac.jp/̃nakano/index.html
2 〒 101-8430 東京都千代田区一ツ橋 国立情報学研究所

email:uno@nii.jp
URL: http://research.nii.ac.jp/̃uno/

抄録: 本稿では, 頂点数が nの木を列挙する問題を考える。ただし、同型な木は 1度しか出力しない
ものとする。この問題に対し、木 1つあたりの計算時間が正確に定数時間であるアルゴリズムを提案す
る。正確に定数時間であるとは、任意の連続する 2つの出力の間にかかる時間が定数時間であるというこ
とである。この問題に対して多くのアルゴリズムが既存研究で提案されているが、これらの計算時間は、
最良のものでも木 1つあたりの平均時間が定数時間であり、連続する 2つの出力の間に時間がかかる可能
性もある。
キーワード： 列挙, 生成, 根無し木

1 Introduction
Recently, enumeration problems are frequently appearing in the models of many scientific area, such
as artificial intelligence, computational linguistics, data mining, and graph mining. In these areas,
fundamental graph objects subset families, sequences of letters with several constraints are needed
to be enumerated efficiently. These are done by modified versions of fundamental enumeration algo-
rithms proposed in the area of discrete algorithms. To develop the researches of these areas, efficient
enumeration algorithms for many objects are needed.
In this paper, we deal with enumeration of trees composed of n vertices without outputting two

isomorphic trees. This problem is known as enumeration of free trees. For this kind of subgraph
enumeration problems, many algorithms have been proposed [B80, LN01, LR99, N02, M98, R78, W86].
Algorithms for enumerating free trees are also already known. The best algorithm [W86] runs in time
proportional to the number of trees. However, the time needed to generate each tree may not be
bounded by a constant, even though it is “on average”.
In this paper we give a simple algorithm to generate, without repetition, all trees with exactly n

vertices and diameter d. By using this, we can solve enumeration of free trees. Our algorithm generates
each tree in constant time. It does not output each tree entirely, but outputs the difference from the
preceding tree.

1

研究会Temp 
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp 
2003－AL－91　　(2)

研究会Temp 
2003／9／19

研究会Temp 
－9－



n=10
d=4

Figure 1: The family tree T10,4 for 10 vertices and diameter 4.
0

1 1 1

2
2 2 2 2

(a)

3 3 3

(0,1,2,3,3,2,2,1,2,3,1,2)

0

1 1 1

2 2
2 2 2

(c)

3 3 3

(0,1,2,2,3,3,2,1,2,3,1,2)

0

11 1

2
2 22 2

(b)

3 33

(0,1,2,3,1,2,3,3,2,2,1,2)

Figure 2: The depth sequences.

The main idea of our algorithm is to define an implicit tree connecting all the trees with n vertices.
We call the tree “family tree” of trees (see Fig. 1). The algorithm traverses the tree and outputs trees
corresponding to the current visiting vertex. Furthermore, the algorithm generates all trees so that
each tree can be obtained from the preceding tree by at most three operations, where each operation
consists of a deletion of a vertex and an addition of a vertex. Therefore the derived sequence of trees
is a kind of combinatorial Gray code [J80, S97, W89] for trees with n vertices and diameter d. A Gray
code [R00] is a cyclic sequence of all 2k bitstrings of length k, such that each bitstring differs from the
preceding one in a small number of bit entries.

2 Preliminaries
In this section we give some definitions.
Let G be a connected graph with n vertices. The length of a path is the number of edges in the path.

The diameter of G is the maximum number of edges in a path connecting two vertices in G if G includes
no cycle. A rooted tree is a tree with one vertex r chosen as its root . Un-rooted trees are called free
trees. the depth of vertex v is the number of edges in the paths connecting v and r. An ordered tree is
a rooted tree with left-to-right ordering specified for the children of each vertex. We denote by T (v)
the ordered subtree of an ordered tree T consisting of a vertex v and all descendants of v that preserve
the left-to-right ordering for the children of each vertex.
Let T be an ordered tree with n vertices, and (v1, v2, · · · , vn) be the sequence of the vertices of T in

preorder [A95], which is given by the visiting order of a depth first search, searching the descendants of
the children of any vertex in the left-to-right order. The sequence L(T ) = (dep(v1), dep(v2), · · · , dep(vn))
is called the depth sequence of T . Some examples are shown in Fig. 2. Note that those trees in Fig. 2

2

研究会Temp 
－10－



are isomorphic as rooted trees, but non-isomorphic as ordered trees.
Let T1 and T2 be two ordered trees having n vertices, and L(T1) = (a1, a2, · · · , an) and L(T2) =

(b1, b2, · · · , bn) be their depth sequences. If ai = bi for each i = 1, 2, · · · , j − 1 (possibly j = 1) and
aj > bj, then we say that L(T1) is heavier than L(T2), and write L(T1) > L(T2).

3 The Family Tree
In this section, we give the definition of family tree, which is the key idea of our algorithm. In Section
3 and 4, we only consider the case where the diameter is even.
If a tree has n ≥ 3 vertices and diameter 2, then the number of such a tree is exactly one, which is

K1,n−1. In the rest of this section, we assume that the diameter is 2k ≥ 4.
Let T be a tree with the diameter 2k. Let v0, v1, · · · , v2k be a path in T having length 2k. One can

observe that T may have many such paths, but the vertex vk, called the center of T , is unique [W01,
p72]. Let R be the rooted tree obtained from T by setting vk to the root. Let H be the ordered tree
corresponding to R that has the heaviest depth sequence L(H) among all the ordered tree corresponding
to R. We say that H is the left-heavy embedding of T . For example, the ordered tree in Fig. 2(a) is
the left-heavy embedding of a rooted tree, however the trees in Fig. 2(b) and (c) are not, since the
one in Fig. 2(a) is heavier. Note that left-heavy embedding is uniquely defined for any tree with even
diameter, and no two trees share the same left-heavy embedding.
Let Sn,2k be the set of all left-heavy embeddings of trees with exactly n vertices and diameter 2k.

If we generate all ordered trees in Sn,2k, then it also means the generation of all trees with exactly n

vertices and diameter 2k. Hence, we are going to generate all ordered trees in Sn,2k.
To characterize the ordered trees of Sn,2k, we have the following lemma.

Lemma 1 An ordered tree H is the left-heavy embedding of a rooted tree if and only if for every
pair of consecutive child vertices v1 and v2, that appear in this order in the left-to-right ordering,
L(T (v1)) ≥ L(T (v2)) holds.

Proof : By contradiction.
In the rest of the paper the condition “L(T (v1)) ≥ L(T (v2)) for each consecutive child vertices v1

and v2”, is called the left-heavy condition.
Let H be a left-heavy embedding in Sn,2k rooted at rk. Let c1, c2, · · · , ck be the children of rk. Assume

they appear in this order in the left-to-right ordering. We say that ci, 3 ≤ i ≤ k is a waiting vertex if
ci, ci+1, · · · , ck are leaves. Since H has a path of length 2k with the center rk, one can observe that c1

and c2 have a descendant at depth k, respectively. Thus, neither c1 nor c2 are leaves. We denote by
A(H) the ordered tree derived from H by removing all (possibly none) waiting vertices. We say that
A(H) is the active tree of H . Note that the diameter of A(H) is also 2k.
Let ca be the rightmost child of the root rk in A(H). Let Pright = (v0 = rk, v1 = ca, v2, · · · , vx) be

the path in A(H) such that vi is the rightmost child of vi−1 for each i, 1 ≤ i ≤ x, and vx is a leaf in
A(H). We call Pright the right path of H . If v1 = c2 and H(v1) is a path, then we say H is right empty.
Note that H(v1) is the ordered subtree of H induced by v1 and all descendants of v1. Similarly, let
Pleft = (u0 = rk, u1 = c1, u2, · · · , uy) be the path in A(H) such that u1 is the leftmost child of u0, and
ui is the rightmost child of ui−1 for each i, 2 ≤ i ≤ y, and uy is a leaf in A(H). We call Pleft the left
path of H . If H(u1) is a path, then we say H is left empty. The right and left paths are depicted as
thick lines in Fig. 1.
If H is not right empty then vx is called the active leaf of H . Otherwise, if H is not left empty then

uy is called the active leaf of H . Otherwise, A(H) is a path of length 2k, and H has no active leaf.
Assume that H is an ordered tree in Sn,2k that has an active leaf. We denote by P (H) the ordered

tree derived from H by (i) removing the active leaf of H , then (ii) adding one leaf as the rightmost
child of the root. We say that P (H) is the parent tree of H and H is a child tree of P (H). We have
the following lemma.

Lemma 2 For any ordered tree H in Sn,2k having an active leaf, P (H) ∈ Sn,2k. Moreover, H is heavier
than P (H).

3

研究会Temp 
－11－



1u

2u 2u

1u

2u

3u

(a)

(b)

H

1v

2v

3v 3v

4v

1u

H[1] H[2+]

2v

H[+] H

1v

2v

H[2] H[2+]

2v

H[+]

Figure 3: The possible child trees.

Proof : Removing the active leaf and then adding one leaf as the rightmost child of the root never
destroys the left-heavy condition. And the number of vertices in the derived tree is still n. Furthermore
the diameter of the derived tree is again 2k. Thus any derived tree is also in Sn,2k.
The proof for the second half of the claim is omitted.
From the lemma, we can see that the parent-child relationship is acyclic, and its graph representation

forms a tree whose root corresponds to the ordered tree with no active leaf. we call the tree the family
tree of Sn,2k, denoted by Tn,2k. For instance, T10,4 is shown in Fig. 1.

4 Algorithm
In this section we give an algorithm to traverse the family tree.
If we can generate all child trees of a given ordered tree of Sn,2k, then in a recursive manner we can

traverse the family tree. This means we can generate all trees with exactly n vertices and diameter 2k.
Now we are going to generate all child trees of a given ordered tree. Let H be an ordered tree in Sn,2k.
Let Pright = (v0 = rk, v1, · · · , vx) be the right path of H , and Pleft = (u0 = rk, u1, · · · , uy) be the left
path of H . We construct some ordered trees by slightly modifying H as follows. Set x

′
= min{x, k−1}

and y
′
= min{y, k−1}. If H has at least one waiting vertex and H is right empty, then we define H [i],

1 ≤ i ≤ y
′
, as the ordered tree derived from H by (i) removing the rightmost waiting vertex, then (ii)

adding a new vertex as the rightmost child of ui. See Fig. 3 for some examples. Note that the constraint
i ≤ y

′ ≤ k − 1 ensures that the diameter of H [i] remains 2k. If H has at least one waiting vertex,
then we define H [i+], 1 ≤ i ≤ x

′
, as the ordered tree derived from H by (i) removing the rightmost

waiting vertex, then (ii) adding a new vertex as the rightmost child of vi. See some examples in Fig. 3.
If H has at least two waiting vertices, then we define H [+] as the ordered tree derived from H by (i)
removing the rightmost waiting vertex, then (ii) adding a new vertex as the only child vertex of the
leftmost waiting vertex. See Fig. 3.
We can observe that each child tree of H is in {H [1], H [2], · · · , H [y′

]} ∪ {H [1+], H [2+], · · · , H [x
′
+]}

∪{H [+]}. However, not all trees in {H [1], H [2], · · · , H [y′
]} ∪ {H [1+], H [2+], · · · , H [x′

+]} ∪ {H [+]} are
child trees of H , so we need to check whether each possible child tree is actually a child tree of H .
We need some notations here. If vertex vi−1 has two or more children in the active tree A(H), then

we denote by v
′
i the child of vi−1 that precedes vi. Thus v

′
i is the 2nd last child of vi−1 in A(H).

Similarly, for ui−1, we denote by u
′
i the 2nd last child of ui−1. Note that H(v) is the ordered subtree

of H induced by v and all descendants of v. We now have the following lemma.

Lemma 3 Let H be an ordered tree in Sn,2k with the right path (v0 = rk, v1, · · · , vx) and the left path
(u0 = rk, u1, · · · , uy).

(1) H [i], i ≤ min{y, k − 1}, is a child tree of H if and only if H has at least one waiting vertex and
is right empty, and for each j, j = 1, 2, · · · , i, either uj−1 has only one child uj in H , or L(H(u

′
j)) ≥

L(H(uj)) holds in H [i].
(2) H [i+], i ≤ min{x, k − 1}, is a child tree of H if and only if H has at least one waiting vertex,

and for each j, j = 1, 2, · · · , i, either vj−1 has only one child vj in H , or L(H(v
′
j)) ≥ L(H(vj)) holds

in H [i+].
(3) H [+] is a child tree of H if and only if H has at least two waiting vertices.

Proof : (1) Since H ∈ Sn,2k, the left heavy condition has held in H . Then, only for vertex u =
u0, u1 · · · , ui, L(H(u)) in H [i] is heavier than L(H(u)) in H . The claim checks all of these possible
changes that may destroy the left-heavy condition.
(2) (3) Omitted.

4

研究会Temp 
－12－



If we generate each tree in {H [1], H [2], · · · , H [y′
]}∪ {H [1+], H [2+], · · · , H [x′

+]}∪ {H [+]} and check
whether it is actually a child tree or not based on the lemma above, then we need considerable running
time. However, we can save running time as follows. We need some definitions here.
Let H be an ordered tree in Sn,2k. We define “active at depth” in the following three cases. First,

assume that H is not right empty. We say that H is active at depth i if (i) the right path contains
a vertex vi with depth i, (ii) vi has two or more child vertices, and (iii) L(H(vi+1)) is a prefix of
L(H(v

′
i+1)). Intuitively, if H is active at depth i, then we are copying subtree H(vi+1) from H(v

′
i+1).

Then, assume that H is right empty but not left empty. We say that H is active at depth i if (i) the
left path contains a vertex ui with depth i, (ii) ui has two or more child vertices, and (iii) L(H(ui+1))
is a prefix of L(H(u

′
i+1)). Then assume that H is right and left empty. We say that H is active at

depth 0. Note that L(H(v1)) is a prefix of L(H(u1)).
We can show that H is always active at some depth as follows. If H is not right empty, then let j be

the maximum index such that vertex vj has two or more child vertices. Since H is not right empty, H
always has such a vertex. Now since H is left-heavy and H(vj+1) is a path, L(H(vj+1)) is a prefix of
L(H(v

′
j+1)). Thus, H is active at depth j. Otherwise, H is right empty. Then if H is not left empty,

in a similar manner as above, we can show that H is active at some depth. Otherwise, H is right and
left empty. In this case H is active at depth 0. Therefore H is always active at some depth.
We say the copy-depth of H is c if H is active at depth c but not active at any depth in {0, 1, · · · , c−1}.
Now we are going to generate all child trees of an ordered tree H in Sn,2k. We have the following

four cases.
We assume that H has the copy-depth c, the right path Pright = (v0 = rk, v1, · · · , vx) and the left

path Pleft = (u0 = rk, u1, · · · , uy).
Case 1: H has no waiting vertex. Then H corresponds to a leaf in Tn,2k. Hence H has no child tree.
Case 2: Otherwise, and if H is not right empty. In this case, for H [i], i = 1, 2, · · · ,min{y, k − 1}, the
active leaf of H [i] is on the right path of H [i]. So H [i] is not a child tree of H . If H has two waiting
vertices, then H [+] is defined and is a child tree of H . The copy-depth of H [+] is 0. Otherwise, H has
exactly one waiting vertex and H [+] is not defined. We have two subcases for H [i+]. Note that since
Case 1 does not occur, H has a waiting vertex.
Case 2a: L(H(v

′
c+1)) = L(H(vc+1)). (Intuitively the copy has completed.) First we show that H [c+]

is a child tree of H . Since H has the copy-depth c, for j = 1, 2, · · · , c, L(H(v
′
j)) > L(H(vj)) holds

in H and L(H(vj)) is not a prefix of L(H(v
′
j)). Since, for j = 1, 2, · · · , c, L(H(vj)) is not a prefix of

L(H(v
′
j)), L(H(v

′
j)) > L(H(vj)) still holds in H [c+]. Thus by Lemma 4.1 H [c+] is a child tree of H .

The copy-depth of H [c+] remains at c. Similarly, H [i+], i = 1, 2, · · · , c − 1, is a child tree of H , and
the copy-depth of H [i+] is i. However, for each H [i+], where i = c + 1, c+ 2, · · · ,min{x, k − 1}, the
left-heavy condition is destroyed because of L(H(v

′
c+1)) < L(H(vc+1)) in H [i+]. Thus, they are not

child trees.
Case 2b: Otherwise. (Now L(H(v

′
c+1)) > L(H(vc+1)) holds. Intuitively the copy has not completed

yet.) Let L(H(v
′
c+1)) = (dep(s1), dep(s2), · · · , dep(sn

′ )), L(H(vc+1)) = (dep(t1), dep(t2), · · · , dep(tn′′)),
and set z = dep(sn′′+1). (Intuitively we are copying H(vc+1) from H(v

′
c+1) and sn′′+1 is the next vertex

to be copied.) First, H [(z − 1)+] is a child tree of H , and the copy-depth of H [(z − 1)+] remains at c.
Similarly, H [1+], H [2+], · · · , H [(z−2)+] are child trees of H , and we will prove in a lemma below that
the copy-depth ofH [i+] is i for i = 0, 1, · · · , z−2. For each of H [i+], where i = z, z+1, · · · ,min{x, k−1},
L(H(v

′
c+1)) < L(H(vc+1)) holds in H [i]. Therefore, they are not left-heavy.

Case 3: Otherwise, and if H is not left empty. Now H is right empty and H has a waiting vertex.
Let z

′
be the (k + 1)-th depth in L(H). Then H [i+], i = 1, 2, · · · , z′ − 1, is a child tree of H . The

copy-depth of H [i+] is i for i = 1, 2, · · · , z′ − 2, and 0 for z
′ − 1. On the other hand, H [i+], where

i = z, z + 1, · · · ,min{x, k − 1}, is not a child tree of H , since L(T (u1)) < L(T (v1)) and so H [i+] is not
left-heavy. If H has two waiting vertices, then H [+] is a child tree of H and the copy-depth of H [+] is
0. Otherwise, H [+] is not defined.
We have two subcases for H [i]. Note that H has a waiting vertex.

Case 3a: L(H(u
′
c+1)) = L(H(uc+1)). H [i], i = 1, 2, · · · , c, is a child tree of H , and the copy-depth of

H [i+] is i. However, H [i], where i = c+ 1, c+ 2, · · · , y, is not a child tree of H .
Case 3b: Otherwise. Let L(H(u

′
c+1)) = (dep(s1), dep(s2), · · · , dep(sn

′)), L(H(uc+1)) = (dep(t1),
dep(t2), · · · , dep(tn′′ )), and set z = dep(sn

′′
+1). H [1], H [2], · · · , H [(z − 1)] are child trees of H . The

5

研究会Temp 
－13－



cv
c+1

1

v
v

w

depth i

depth j

depth c

w2w
2

1

w'

'

w'
w'

c+1

Figure 4: Illustration for Lemma 4.2.

copy-depth of H [i] is i for i = 0, 1, · · · , z − 2, and c for i = z − 1. For each of H [i], where i =
z, z + 1, · · · ,min{y, k − 1}, L(H(v

′
c+1)) < L(H(vc+1)) holds in H [i], therefore they are not left-heavy.

Case 4: Otherwise. (Now H is right and left empty.) H [i+], i = 1, 2, · · · ,min{x, k − 1}, is not a child
tree of H . If H has two waiting vertices, then H [+] is a child tree of H and the copy-depth of H [+] is
0. Otherwise, H [+] is not defined. H [i], i = 1, 2, · · · , k − 1, is a child tree of H , and the copy-depth of
H [i+] is i.

Lemma 4 In Case 2(b) the copy-depth of H [i] is i for i = 1, 2, · · · , z − 2.

Proof : For i = 1, 2, · · · , c the claim is obvious, so we assume otherwise. We can observe that the
copy-depth of H [i], c+1 ≤ i ≤ z−2, is never smaller than c, and H [i] is active at i. So the copy-depth
of H [i] is somewhere between i and c.
Assume for contradiction that the copy-depth of H [i] is j < i. Let dep(w) be the last occurrence of

depth j in L(H [i]). By the assumption above, w has two or more child vertices. Let w1 be the rightmost
child of w, and w2 be the child vertex of w preceding w1. See Fig. 4 for examples. Let w

′
be the vertex

in H(v
′
c+1) corresponding to w, and w

′
1 and w

′
2 be vertices in H(v

′
c+1) corresponding to w1 and w2.

(Note that we are copying H(vc+1) from H(v
′
c+1).) Now since H ∈ Sn,2k, L(H(w

′
2)) ≥ L(H(w

′
1)) holds.

By the choice of i, L(H(w
′
1)) > L(H(w1)) holds and L(H(w1)) is not a prefix of L(H(w

′
1)). Since the

copy-depth of H is c, L(H(w
′
2)) = L(H(w2)). Then, L(H(w2)) = L(H(w

′
2)) ≥ L(H(w

′
1)) > L(H(w1))

holds, and L(H(w1)) is not a prefix of L(H(w
′
1)). Thus, L(H(w1)) is not a prefix of L(H(w2)), and the

copy-depth of H [i] is not j, a contradiction.
Therefore, the copy-depth of H [i] is i for i = 1, 2, · · · , z − 2.
Based on the case analysis above, we have the following algorithm.

Procedure find-all-children(T :current tree, c:copy-depth of T )
01 Output H { Output the difference from the preceding tree.}
02 if H has no waiting vertices then return {Case 1}
03 else if H is not right empty then {Case 2}
04 if H has two waiting vertices then find-all-children(H [+], 0)
05 if L(H(v

′
c+1)) = L(H(vc+1)) then {Case 2a}

06 for i = 1 to c find-all-children(H [i+], i)
07 else {Case 2b} { H(T (v

′
c+1)) > L(H(vc+1)) }

08 { Let z be the depth of the next vertex to be copied.}
09 for i = 1 to z − 2 find-all-children(H [i+], i)
10 find-all-children(H [(z − 1)+], c)
11 else if H is not left empty then {Case 3}
12 { Let z

′
be the (k + 1)-th depth in L(H).}

13 for i = 1 to z
′ − 2 find-all-children(H [i+], i)

14 find-all-children(H [(z
′ − 1)+], 0)

15 if H has two waiting vertices then find-all-children(H [+], 0)
16 if L(H(u

′
c+1)) = L(H(uc+1)) then {Case 3a}

17 for i = 1 to c find-all-children(H [i], i)
18 else {Case 3b} { H(T (u

′
c+1)) > L(H(uc+1)) }

19 { Let z be the depth of the next vertex to be copied.}
20 for i = 1 to z − 2 find-all-children(H [i], i)

6

研究会Temp 
－14－



2
131

3 11 2 3 11 2 3 2 1

3 2
2 1 2 3

Figure 5: An execution of the algorithm for T10,4.

21 find-all-children(H [z − 1], c)
22 else {H is right empty and left empty.}
23 if H has two waiting vertices then find-all-children(H [+], 0)
24 for i = 1 to k − 1 find-all-children(H [i], i)

Algorithm find-all-trees(n)
Output the tree H that consists of the path of length 2k and (n − 2k − 1) of waiting vertices.
find-all-children(H , 0)

5 Modification
Our algorithm generates each tree in O(1) time “average”, however it often takes O(n) time to return
from the deep recursive call without outputting any tree after generating the tree corresponding to the
last vertex in a large subtree of Tn,d. Therefore, we cannot generate each tree in O(1) delay. However,
a simple modification improves the algorithm to generate each tree in O(1) time. The algorithm is as
follows.

Procedure find-all-children2(T , c, depth)
{ T is the current tree, c is the copy-depth of T , and depth is the depth of the recursive call.}
begin

01 if T has no waiting vertex then output T { T is a leaf.}
02 else if depth is even then output T { before outputting its child trees.}
04 Generate child trees T1, T2, · · · , Tx by the method in Section 4, and
05 recursively call find-all-children2 for each child tree.
06 if depth is odd then Output T { after outputting its child trees.}

An execution of the algorithm is shown in Fig. 5. One can observe that the algorithm generates all
trees so that each tree can be obtained from the preceding tree by tracing at most three edges of Tn,k,
each of which corresponds to an operation consisting of a deletion of a vertex and an addition of a
vertex. The derived sequence of the trees is a combinatorial Gray code [J80, S97, W89] for rooted trees.
In Fig. 5 the added vertices are drawn as white circles, and the deleted, then added again, vertices

are drawn as gray circles. (See the sixth tree in Fig. 5.) Each integer near an arrow mark is the number
of edges in Tn,d between the two vertices corresponding to the two trees. Each tree corresponding to
a vertex in Tn,d at odd depth is surrounded by a rectangle, and these trees are generated after all its
child trees are generated.

Theorem 1 Nonisomorphic trees with exactly n vertices and diameter 2k can be enumerated in O(n)
space and O(1) delay.

6 The Odd Diameter Case
In this section we sketch the case where the diameter is odd.
It is known that a tree with odd diameter 2k + 1 may have many paths of length 2k + 1, but all of

them share a unique edge, called the center of T [W01, p72].
Intuitively, by treating the edge as the root in a similar manner to the even diameter case, we can

define the family tree Tn,2k+1. The detail is omitted. We only show T10,5 in Fig. 6 as an example of the
family tree.

7

研究会Temp 
－15－



n=10
d=5

Figure 6: The family tree T10,5.

7 Conclusion
In this paper we gave a simple algorithm to generate all trees with n vertices and diameter d. The
algorithm generates each tree in constant time and clarifies the family tree of the trees.

References
[A95] A. V. Aho and J. D. Ullman, Foundations of Computer Science, Computer Science Press, New

York, (1995).
[B80] T. Beyer and S. M. Hedetniemi, Constant Time Generation of Rooted Trees, SIAM J. Comput.,

9, (1980), pp.706-712.
[G93] L. A. Goldberg, Efficient Algorithms for Listing Combinatorial Structures, Cambridge University

Press, New York, (1993).
[J80] J. T. Joichi, D. E. White and S. G. Williamson, Combinatorial Gray Codes, SIAM J. Comput.,

9, (1980), pp.130-141.
[KS98] D. L. Kreher and D. R. Stinson, Combinatorial Algorithms, CRC Press, Boca Raton, (1998).
[LN01] Z. Li and S. Nakano, Efficient Generation of Plane Triangulations without Repetitions, Proc.

ICALP2001, LNCS 2076, (2001), pp.433–443.
[LR99] G. Li and F. Ruskey, The Advantage of Forward Thinking in Generating Rooted and Free Trees,

Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms, (1999), pp.939–940.
[M98] B. D. McKay, Isomorph-free Exhaustive Generation, J. of Algorithms, 26, (1998), pp.306-324.
[N02] S. Nakano, Efficient Generation of Plane Trees, Information Processing Letters, 84, (2002),

pp.167–172.
[R78] R. C. Read, How to Avoid Isomorphism Search When Cataloguing Combinatorial Configurations,

Annals of Discrete Mathematics, 2, (1978), pp.107–120.
[R00] K. H. Rosen (Eds.), Handbook of Discrete and Combinatorial Mathematics, CRC Press, Boca

Raton, (2000).
[S97] C. Savage, A Survey of Combinatorial Gray Codes, SIAM Review, 39, (1997) pp. 605-629.
[W01] D. B. West, Introduction to Graph Theory, 2nd Ed, Prentice Hall, NJ, (2001).
[W89] H. S. Wilf, Combinatorial Algorithms : An Update, SIAM, (1989).
[W86] R. A. Wright, B. Richmond, A. Odlyzko and B. D. McKay, Constant Time Generation of Free

Trees, SIAM J. Comput., 15, (1986), pp.540-548.

8

研究会Temp 
－16－




