
置換グラフ上における最小節点ランキング全域木問題を解くアルゴリズム

中山　慎一 † 増山　繁 ‡
†徳島大学総合科学部自然システム学科数理科学

‡豊橋技術科学大学　知識情報工学系

要 旨

最小節点ランキング全域木問題とは，与えられたグラフG上において，節点ランキン
グが最小となる全域木を求める問題である．本論文では，置換グラフ上における最小
節点ランキング全域木問題を解く O(n3)時間アルゴリズムを提案する．

An algorithm for solving the minimum vertex ranking spanning

tree problem on permutation graphs.

Shin-ichi Nakayama† Shigeru Masuyama‡
†Department of Mathematical Sciences, Faculty of Integrated Arts and Sciences,

The University of Tokushima,
‡Department of Knowledge-Based Information Engineering, Toyohashi University of Technology,

Abstract

The minimum vertex ranking spanning tree problem is to find a spanning tree of G

whose vertex ranking is minimum. This paper proposes an O(n3) time algorithm
for solving the minimum vertex ranking spanning tree problem on a permutation
graph.

1 Introduction

Consider a simple connected undirected graph
G = (V, E). A vertex ranking of G is labeling r

from the vertices of G to the positive integers such
that for each path between any two vertices u and
v, u �= v, with r(u) = r(v), there exists at least
one vertex w on the path with r(w) > r(u) = r(v).
The value r(v) of a vertex v is called the rank of
vertex v. A vertex ranking r of G is minimum if the
largest rank k assigned by r is the smallest among
all rankings of G. Such rank k is called the vertex
ranking number of G, denoted by χ(G). The ver-
tex ranking problem is to find a minimum ranking
of given graph G. The vertex ranking problem
has interesting applications to e.g., communica-
tion network design, planning efficient assembly of
products in manufacturing systems [19], and VLSI

layout design[18].

As for the complexity, this problem is NP-
complete even when restricted to cobipartite
graphs [13] and bipartite graphs [2], and a num-
ber of polynomial time algorithms for this prob-
lem have been developed on several subclasses of
graphs. Much work has been done in finding the
minimum vertex ranking of a tree; a linear time
algorithm for trees is proposed in [16]. The prob-
lem is trivial on split graphs and is solvable in
linear time on cographs [17]. Concerning to in-
terval graphs, Deogun et al has given an O(n3)
time algorithm recently[5], which outperforms the
previously known O(n4) time algorithm [1] where
n is the number of vertices. They also presented
O(n6) time algorithms on permutation graphs and
on trapezoid graphs, respectively, and showed that
a polynomial time algorithm on d-trapezoid graphs

–1–

研究会Temp
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
2003－ＡＬ－92　　（6）

研究会Temp
2003／11／7

研究会Temp
－33－

exists [5]. Moreover, a polynomial time algorithm
on graphs with treewidth at most k was developed
[3].

The problem described above is the ranking with
respect to vertices, while a ranking with respect
to edges is similarly defined as follows. An edge
ranking of G is labeling re from the edges of G

to the positive integers such that for each path
between any two edges eu and ev, eu �= ev, with
r(eu) = r(ev), there exists at least one edge ew on
the path with r(ew) > r(eu) = r(ev). The value
r(ev) of an edge ev is called the rank of edge ev. An
edge ranking of G is minimum if the largest rank
k assigned is the smallest among all rankings of
G. Such rank k is called the edge ranking number
of G, denoted by χe(G). The edge ranking prob-
lem is to find a minimum edge ranking of given
graph G. Before the proof of this problem to be
NP-complete was given, an O(n3) time algorithm
for trees was known [19]. By now, a linear time al-
gorithm for trees is shown in [9]. Recently, it has
finally been shown that this problem on general
graphs is NP-complete [8].

Makino et al. introduced a minimum edge rank-
ing spanning tree problem which is related to the
minimum edge ranking problem but is essentially
different [11]. The minimum edge ranking span-
ning tree problem is to find a spanning tree of
G whose edge ranking is minimum. They proved
that this problem is NP-complete and presented
an approximation algorithm for this problem. This
problem has interesting applications, e.g., schedul-
ing the parallel assembly of a multipart product
from its components and the relational database
[11].

In this paper, we consider the vertex version
of this problem, i.e., the minimum vertex rank-
ing spanning tree problem. The minimum ver-
tex ranking spanning tree problem is to find a
spanning tree of G whose vertex ranking is min-
imum. We recently proved that this problem is
NP-complete[10] and developed an O(n3) time al-
gorithm when an input graph is an interval graph
[12]. We show that, in this paper, an O(n3) time
algorithm for the minimum vertex ranking span-
ning tree exists when an input graph is a permuta-
tion graph. It is interesting that, for permutation
graphs, the minimum vertex ranking spanning tree
problem is solved in O(n3) time, although the time
complexity of known algorithm for the minimum

vertex ranking problem is O(n6).

2 Permutation graph

Let V = {v1, v2, · · · , vn} and π = [
π[1],π[2],· · ·,π[n]] be a permutation on V . We con-
struct an undirected graph G(π) = (V, E) such
that {vi, vj} ∈ E iff (i − j)(π−1[i] − π−1[j]) < 0,
where π−1[i] denotes the position of vertex vi in
π. An undirected graph G is a permutation graph

if there exists a π such that G is isomorphic to
G(π) [6]. Pnueli et al.[14] describe an O(n3) algo-
rithm for testing if a given undirected graph is a
permutation graph. This result was improved to
O(n2) by Spinrad [15], whose algorithm produces
the corresponding permutation if the graph is a
permutation graph.

A permutation graph can also be visualized
by its corresponding permutation diagram. The
permutation diagram consists of two horizontal
parallel channels, named the top channel and
the bottom channel, respectively. Put the index
1, 2, · · ·, n of vertices on the top channel, in the
order from left to right, and put the index of ver-
tex in π[1], π[2], · · ·, π[n] on the bottom channel in
the same way. Finally, for each i, draw a straight
line joining the two i’s, one on the top channel and
the other on the bottom channel, respectively [6].
The index number i of vertex vi is same as that
of the corresponding line li. Note that line li in-
tersects line lj in the diagram iff li and lj appear
in the reversed order in π. That is, lines li and lj
intersect iff vertices vi and vj of the correspond-
ing permutation graph are adjacent. The reader is
encouraged to draw the permutation diagram for
given π’s since they are sometimes quite useful in
visualizing the properties of the original permuta-
tion graphs.

Permutation graphs are a useful discrete mathe-
matical structure for modeling practical problems
[6]. Moreover, permutation graphs construct an
important class of perfect graphs and many prob-
lems that are NP-complete on arbitrary graphs
are shown to admit polynomial time algorithms
on this class [6].

–2–

研究会Temp
－34－

3 The basic idea of the algo-

rithm

The basic idea of our algorithm is as follows:
First find a shortest path P∗ of G between a cer-
tain pair of vertices, then construct a spanning
tree with the minimum vertex ranking by join-
ing each vertex v ∈ V − V (P∗) to a vertex of
P ∗ using an edge of G, based on the fact, to be
proven in this paper, that, for permutation graphs,
v ∈ V − V (P ∗) not included in P ∗ is adjacent to
some vertex on P ∗. For preparation, we introduce
a known result on the vertex ranking of paths.

Lemma 1 (17) The ranking χ(P) of a path P =
x1, x2, · · · , xn is �log n�1 + 1. �

In the following, we clarify what kind of short-
est path P ∗ is selected and how each vertex in
V −V (P ∗) should be joined to some vertex on P ∗

in order to construct a minimum vertex ranking
spanning tree.

A shortest path to be selected in our algorithm
is a shortest path between a vertex corresponding
to the rightmost line on the diagram and a vertex
corresponding to the leftmost line on the diagram.
Namely, denoting the vertex corresponding to a
line whose position is 1 and n on the top (resp.
bottom) channel by vt

1 (resp. vb
1) and vt

n (resp.
vb

n), respectively, we select a path whose length is
shortest among four shortest paths from vt

1 to vt
n,

from vt
1 to vb

n, from vb
1 to vt

n and from vb
1 to vb

n.
Note here that the length of each edge is 1. Let
P ∗ be the selected shortest path. On a spanning
tree T of permutation graph G, as the length of a
diameter of T is equal to or greater than that of
P ∗, for the minimum ranking χ(P ∗) of P ∗ on G,
χ(P ∗) ≤ χ(T).

Our algorithm first finds the shortest path P∗

described above and then constructs a spanning
tree by joining each vertex in V −V (P∗) to a vertex
on P ∗ using an edge of G. Now, we show that, for
permutation graph G, each vertex in V − V (P ∗)
is adjacent to some vertices on P∗.

Lemma 2 Let a shortest path selected by the
above process be P ∗ = v1, v2, . . . , vl. For permuta-
tion graphs G = (V, E), each vertex in V − V (P ∗)
is adjacent to some vertex on P ∗ in G.

1Throughout this paper, log denotes log 2.

(Proof) We consider lines l1, l2, . . . , ll correspond-
ing to vertices v1, v2, . . . , vl, respectively. If a ver-
tex v is not adjacent to any vertex on P∗, none of
lines l1, l2, . . . , ll intersects the line lv correspond-
ing to v. Hence, lv is to the left of l1 or is to
the right of ll. However, by the definition of P ∗,
as v1 (resp. vl) corresponds to the leftmost (resp.
rightmost) line on the diagram, a line setting on
the left (resp. right) position of l1 (resp. ll) but
not intersecting l1 (resp. ll) does not exist. Thus,
v ∈ V − V (P ∗) is adjacent to a vertex on P ∗. �

We now consider how each vertex in V − V (P∗)
should be joined to a vertex on P ∗ in order to con-
struct a minimum vertex ranking spanning tree.
Let a vertex set V − V (P∗) be V

′
. By lemma 2,

each vertex v
′ ∈ V

′
is adjacent to a vertex on P ∗.

Then, our algorithm finds a path P ∗ of G and joins
each vertex in V

′
to a vertex on P ∗ using an edge

of G.
By Lemma 2, the relation of connections be-

tween v
′ ∈ V

′
and vertices on P∗ are classified

into the following three cases.
(1) v

′ ∈ V
′

is adjacent to only one vertex on P ∗.
(2) v

′ ∈ V
′
is adjacent to two consecutive vertices

vj, vj+1 on P ∗ or three consecutive vertices vj ,
vj+1, vj+2 on P ∗.
(3) v

′ ∈ V
′
is not adjacent to consecutive vertices

on P ∗ but adjacent to two vertices vj , vj+2 having
one skip on P ∗.
Note: As P ∗ is the shortest path, v

′ ∈ V
′

is ad-
jacent to neither more than three consecutive ver-
tices on P ∗ in the case (2) nor two vertices which
have more than one skip on P ∗ in the case (3).

Let V
′
1 denote a subset of V

′
that contains ver-

tices in V
′

each of which is adjacent to only one
vertex on P ∗, let V

′
2 denote a subset of V

′
that

contains vertices in V
′

each of which is adjacent
to two or three consecutive vertices on P∗ and let
V

′
3 denote a subset of V

′
that contains vertices in

V
′

each of which is adjacent to two vertices vj ,
vj+2 having one skip on P ∗.

We first consider v
′′ ∈ V

′
2 adjacent to two or

three consecutive vertices on P∗. As for v
′′ ∈ V

′
2

adjacent to at least two vertices on P∗, we can
select a vertex on P∗ to be joined to v

′′
in order

to construct a spanning tree. Then, let us con-
sider to which vertex of P ∗ v

′′ ∈ V
′
2 should be

joined. After finding the minimum vertex ranking
of P ∗, for consecutive vertices vi, vi+1 on P ∗, ei-
ther r(vi) > r(vi+1) or r(vi) < r(vi+1) holds by

–3–

研究会Temp
－35－

the definition of the vertex ranking. As v
′′ ∈ V

′
2

is adjacent to at least two consecutive vertices on
P ∗, v

′′
is adjacent to a vertex v on P ∗ whose rank

is at least 2. Then, joining v
′′

to v and assigning
rank 1 to v

′′
, we can construct a spanning tree T

with χ(T) = χ(P ∗), without changing the rank of
vertices on P∗.

Next, we consider v
′ ∈ V

′
1 adjacent to only one

vertex on P ∗ and v
′ ∈ V

′
3 which is adjacent to two

vertices having one skip on P ∗. In this case, de-
pending on the result of vertex ranking of P ∗, v

′

may be adjacent to a vertex v on P ∗ with rank
1. Then, when selecting the edge (v

′
, v) in or-

der to construct a spanning tree, we must mod-
ify the rank of v for satisfying the vertex ranking.
Moreover, G may not have a spanning tree T such
that χ(T) = χ(P ∗). Fortunately, for permutation
graphs, the upper bound on χ(T) is determined as
shown in the following lemma.

Lemma 3 For permutation graph G, the ranking
χ(T) of a spanning tree T satisfies the following
inequality: χ(T) ≤ χ(P ∗) + 1.

(Proof) By lemma 2, any vertex v not included in
P ∗ is adjacent to some vertex on P∗. We assume
that each vertex on P∗ is given a rank such that
the ranking of P ∗ is minimum. For each vertex v

on P ∗, the rank r(v) + 1 is newly assigned to v,
that is, r(v)← r(v)+1. Each rank r(v

′
) of v

′ ∈ V
′

is set to 1. Then, the ranking of a tree constructed
by P ∗ and v

′ ∈ V
′
satisfies the condition of vertex

ranking. Therefore, χ(T) ≤ χ(P ∗) + 1. �

By lemma 3, the ranking of spanning tree χ(T)
is either χ(P ∗) or χ(P ∗) + 1. Therefore, our al-
gorithm tries to construct a spanning tree T with
rank χ(P ∗). As a result, if we can not construct a
spanning tree T with rank χ(P ∗), we construct a
spanning tree T with rank χ(P ∗) + 1.

After assigning ranks to vertices on P∗ with a
minimum ranking, if the rank of a vertex vj on P ∗

adjacent to v
′ ∈ V

′
1 is 1, a spanning tree satisfying

the ranking condition can not be constructed by
joining v

′
to vj by this assignment. Similarly, if

each rank of vertices vj, vj+2 on P ∗ adjacent to
v

′ ∈ V
′
3 is 1, a spanning tree satisfying the ranking

condition can not be constructed by joining v
′
to vj

or vj+2. In these cases, we may get a spanning tree
satisfying the ranking condition either by changing
the rank of vj (or vj+2) to become greater than 1

or by joining v
′
to a vertex in V

′
. Then, our algo-

rithm classifies each vertex v
′ ∈ V

′
1 ∪V

′
3 according

to the connection between v
′

and vertices on P∗

and selects an edge to join v
′
.

For illustration, we now consider the minimum
vertex ranking of trees. A tree is divided into more
than one components T1, T2, · · · , Tl by removing a
vertex v other than a leaf. A path from a vertex of
Ti to a vertex of Tj (i �= j) obviously go through v.
Then, by assigning the largest rank max{ χ(T1),
χ(T2), · · ·, χ(Tl)} + 1 to v, the condition of ver-
tex ranking of the tree is satisfied. However, the
resulting vertex ranking is not necessarily the min-
imum one. Based on this observation, we develop
an algorithm as sketched below. We assign the
largest rank χ(P ∗)(= �log |P ∗|� + 1) to a vertex
vi on P ∗(= v1, · · · , vl). (Here |P ∗| denotes the
number of vertex on P ∗.) Then, we pay atten-
tion to two subgraphs G1

vi
, G2

vi
of G such that G1

vi

is induced by path v1, v2, · · · , vi−1 and vertices in
V

′
(= V −V (P∗)) adjacent to v1, v2, · · · , vi−1 and

G2
vi

is induced by path vi+1, vi+2, · · · , vl and ver-
tices in V

′
adjacent to vi+1, vi+2, · · · , vl, respec-

tively. As will be described in detail later, the
case when G1

vi
and G2

vi
share a common vertex

v∗ of V
′

needs to be treated separately. Then,
we find a minimum vertex ranking spanning tree
T1 in G1

vi
and T2 in G2

vi
, respectively. If both of

minimum vertex rankings of T1 and T2 are not
greater than �log |P ∗|�, a spanning tree with rank-
ing χ(P ∗)(= �log |P ∗|�+ 1) can be constructed by
joining T1, T2 via vi. Even when a spanning tree
with ranking �log |P ∗|�+1 can not be constructed,
by using some other vertex on P∗ instead of vi, a
spanning tree with ranking �log |P ∗|� + 1 may be
constructed. Hence, we check whether each of G1

vi

and G2
vi

has a spanning tree with ranking at most
�log |P ∗|� for each vi, i = 2, · · ·, l − 1, with the
largest rank. For this purpose, we use the dynamic
programming. We check whether a subgraph in-
duced by k consecutive vertices vj , · · ·, vj+k on
P ∗ , (j = 1, · · · , l, k = 0, · · · , l − j), and vertices
in V

′
adjacent to vj , · · ·, vj+k has a spanning tree

with ranking �log |P ∗
vjvj+k

|� + 1. (Note that P ∗
vivj

denotes a subpath vi, · · ·, vj on P ∗.) Therefore,
we now consider a spanning tree on a subgraph in-
duced by consecutive vertices vj, · · ·, vj+k on P ∗

and vertices in V
′
adjacent to vj , · · ·, vj+k.

Let define some terms needed to explain the
algorithm in the following. As for consecutive

–4–

研究会Temp
－36－

vertices vj , · · · , vk on P ∗, a subgraph of G in-
duced by vj, · · · , vk and vertices in V

′
adjacent to

vj , · · · , vk is called a subgraph regarding vj , · · ·,
vk and denoted by G[vj, vk]. For G[vj, vk], if we
can construct a spanning tree such that each rank
of vertices in G[vj, vk] is at most �log |P ∗

vjvk
|� +

1(= χ(P ∗
vjvk

)), we say that G[vj, vk] is minimum-
rankable.

Note: For a subgraph G[vi, vi] regarding one
consecutive sequence of vertices, as we can always
construct spanning tree T with ranking at most
2 by assigning rank 2 to vi and rank 1 to ver-
tices adjacent to vi. Then, we say that each sub-
graph G[vi, vi] regarding one consecutive vertices
is minimum-rankable.

Using these terms, what we are going to do in
the dynamic programming is as follows: Let sub-
paths of P ∗ selected in the first step be P∗

1 =
vi, · · · , vj−1 and P ∗

2 = vj+1, · · · , vk, respectively.
We check whether G[vi, vj−1], G[vj+1, vk] are
minimum-rankable or not. If each of G[v i, vj−1],
G[vj+1, vk] is minimum-rankable, the subgraph
G[vi, vk] regarding vi, · · · , vk is minimum-rankable
by assigning �log |P ∗

vjvk
|�+1 to vj. However, when

G[vi, vj−1] and G[vj+1, vk] share a common vertex,
even if these are not minimum-rankable, we need
to check some conditions, to be described later,
because G[vi, vk] may be minimum-rankable. If
either of G[vi, vj−1] or G[vj+1, vk] is not minimum-
rankable and do not share a common vertex,
G[vi, vk] is not minimum-rankable.

As mentioned above, for constructing a mini-
mum vertex ranking spanning tree, our algorithm
first check whether subgraphs G[vi, vi+1], for i =
1, · · · , l − 1, regarding two consecutive vertices on
P ∗ is minimum-rankable, and then check whether
subgraphs G[vi, vi+2], for i = 1, · · · , l − 2, regard-
ing three consecutive vertices on P∗ is minimum-
rankable. Concerning subgraphs G[vi, vi+k], k ≤
3, regarding more than three consecutive vertices
on P ∗, using known information about subgraphs,
we check whether G[vi, vi+k] is minimum-rankable
by using the dynamic programming.

We then consider the way to check whether
a subgraph regarding consecutive vertices is
minimum-rankable. We classify each vertex v

′ ∈
V

′
1 ∪ V

′
3 according to the connection between v

′

and vertices on P∗ and investigate whether each
case is minimum-rankable or not.

3.1 Subgraph regarding two consec-

utive vertices

We consider whether a subgraph G[vj, vj+1] re-
garding two consecutive vertices vj, vj+1 on P ∗

is minimum-rankable or not. That is, we exam-
ine whether we can construct a spanning tree such
that each rank of vertices in G[vj, vj+1] is at most
�log |P ∗

vjvj+1
|�+ 1 (= χ(P ∗

vjvj+1
) = 2). We classify

the cases by connection between v
′ ∈ V

′
1 ∪ V

′
3 and

a vertex of P ∗. However, we do not consider, for
brevity, the cases which can be treated by discus-
sions similar to some other cases due to symmetry.
The proof of each case is omitted due to the space
limit.

Case 1: v
′ ∈ V

′
1 is adjacent to only one vertex on

P ∗.
Case 1-1: If each of vj and vj+1 is adjacent to a
vertex in V ′

1 whose degree is 1, G[vj, vj+1] is not
minimum-rankable. However, if either of vj and
vj+1 is adjacent to a vertex in V ′

1 whose degree is
1, G[vj, vj+1] is minimum-rankable.
Case 1-2: vj is adjacent to v′j ∈ V ′

1 whose degree is
at least 2, or vj+1 is adjacent to v′j+1 ∈ V ′

1 whose
degree is at least 2.
Case 1-2-1: If vj , vj+1 are adjacent to v′j , v

′
j+1 ∈

V ′
1 , respectively, and v′j and v′j+1 are only adja-

cent to each other, G[vj, vj+1] is not minimum-
rankable.
Case 1-2-2: If vj , vj+1 are adjacent to v′j , v

′
j+1 ∈

V ′
1 , respectively, and v′j and v′j+1 are adjacent to a

vertex v
′′ ∈ V

′
2 , G[vj, vj+1] is minimum-rankable.

Case 1-2-3: If vj , vj+1 are adjacent to v′j , v
′
j+1 ∈

V ′
1 , respectively, and v′j+1 is adjacent to a ver-

tex v∗ ∈ V
′
2 adjacent to v′j+2, then G[vj, vj+1] is

minimum-rankable. (By symmetry, the case where
v′j is adjacent to a vertex v∗ ∈ V

′
2 adjacent to v′j−1,

can be discussed in a similar way.)
Case 2: v

′′′ ∈ V
′
3 is adjacent to not consecutive

vertices on P∗ but two vertices vj , vj+2 having
one skip on P ∗.
Case 2-1: If v

′′′ ∈ V
′
3 is adjacent to only two ver-

tices vj and vj+2, then G[vj, vj+1] is minimum-
rankable. (By symmetry, the case where v

′′′ ∈ V
′
3

is only adjacent to vj−1 and vj+1, can be discussed

–5–

研究会Temp
－37－

in a similar way.)
Case 2-2: If v

′′′ ∈ V
′
3 is adjacent to only two ver-

tices vj+1 and vj+3, then G[vj, vj+1] is minimum-
rankable.
Case 3: Both vertices in V

′
1 and in V

′
3 exist in

G[vj, vj+1].
Case 3-1: A vertex in V

′
1 and a vertex in V

′
3 share

a common vertex on P ∗.
Case 3-1-1: v

′′′ ∈ V
′
3 is adjacent to vj and vj+2 on

P ∗ and either vj or vj+1 is adjacent to vertices in
V

′
1 .

Case 3-1-2: If v
′′′ ∈ V

′
3 is adjacent to vj+1 and

vj+3 on P ∗ and vj+1 is adjacent to a vertex in V
′
1 ,

G[vj, vj+1] is minimum-rankable.
Case 3-2: Vertices in V

′
1 and these in V

′
3 do not

share a common vertex: v
′′′ ∈ V

′
3 is adjacent to

vj+1, vj+3 on P ∗, the degree of v
′′′

is 2 and a
vertex in V

′
1 with degree 1 is adjacent to vj .

When a vertex in V
′
1 is adjacent to vj , v

′′′

can not be joined to vj+1 for G[vj, vj+1] to be
minimum-rankable. Then, in this case, whether
G[vj, vj+1] is minimum-rankable or not depends on
the rank of vj+3 in a subgraph G[vj+3, ∗] regard-
ing vj+3, vj+4, · · ·. If the rank of vj+3 is greater
than 1, we can join v

′′′
to vj+3. Therefore, in this

case, we decide whether G[vj, vj+1] is minimum-
rankable or not when connecting a spanning tree
in G[vj, vj+1] and one in G[vj+3, ∗] via vj+2.

In the following, we call a vertex like v
′′′

a
suspension vertex and if G[vj, vj+1] has a sus-
pension vertex, we say that G[vj, vj+1] is not
minimum-rankable by a suspension vertex.

3.2 Subgraph regarding three con-

secutive vertices

We consider whether a subgraph G[vj, vj+2] re-
garding three consecutive vertices vj , vj+1, vj+2

on P ∗ is minimum-rankable or not. We clas-
sify the cases with respect to connection between
v

′ ∈ V
′
1 ∪V

′
3 and a vertex of P ∗. However, we elim-

inate the cases which can be treated in a manner
similar to some other cases due to symmetry. The
proof of each case is omitted due to the space limit.

Case 4: v
′ ∈ V

′
1 is adjacent to only one vertex on

P ∗.
Case 4-1: If vj is an articulation (1-cut) vertex
in G and v′

j ∈ V
′
1 adjacent to vj is not adjacent

to a vertex adjacent to vj−1, then G[vj, vj+2] is
not minimum-rankable. Note that an articulation

vertex is a vertex of a connected graph whose
deletion disconnects the graph. (By symmetry,
the case where vj+2 is an articulation vertex and
v′j+2 ∈ V

′
1 adjacent to vj+2 is not adjacent to a ver-

tex adjacent to vj+3, can be discussed in a similar
way.)
Case 4-2: If v′j ∈ V

′
1 adjacent to vj is adjacent

to v′j−1 adjacent to vj−1, G[vj, vj+2] is minimum-
rankable. (By symmetry, the case where v′j+2 ∈ V

′
1

adjacent to vj+2 is adjacent to v′j+3 adjacent to
vj+3, can be discussed in a similar way.)
Case 4-3: vj and vj+2 are not articulation vertices:
Whereas v′j ∈ V

′
1 is adjacent to vj , if v∗

j ∈ V
′
2 ∪V

′
3

that is adjacent to vj−1 and vj+1 exists, G[vj, vj+2]
is minimum-rankable. (As for vj+2, we can discuss
in a similar way.)
Case 5: v

′′′ ∈ V
′
3 is adjacent to not consecutive

vertices on P∗ but adjacent to two vertices vj, vj+2

having one skip on P ∗.
Case 5-1: If v

′′′ ∈ V
′
3 is adjacent to only two vj and

vj+2 on P ∗ and vj and vj+2 are articulation ver-
tices, then G[vj, vj+2] is not minimum-rankable.
Case 5-2: If v

′′′ ∈ V
′
3 is adjacent to two vertices

vj, vj+2 and v′j+3 ∈ V
′

is adjacent to vj+3, then
G[vj, vj+2] is minimum-rankable.
Case 5-3: If v

′′′ ∈ V
′
3 is adjacent to both vj and

vj+2 on P ∗ and v∗ ∈ V
′
2 ∪ V

′
3 that is adjacent

to both vj+1 and vj+3 exits, then G[vj, vj+2] is
minimum-rankable.
Case 5-4: If v

′′′ ∈ V
′
3 is adjacent to two vertices

vj+1, vj+3 on P ∗, then G[vj, vj+2] is minimum-
rankable. (By symmetry, the case where v

′′′ ∈ V
′
3

is adjacent to two vertices vj−1, vj+1 on P ∗, can
be discussed in a similar way.)
Case 5-5: If v

′′′ ∈ V
′
3 is adjacent to only two

vertices vj+2 and vj+4 on P ∗ and vj+2 and vj+4

are articulation vertices, then G[vj, vj+2] is not
minimum-rankable by a suspension vertex. (By
symmetry, the case where v

′′′ ∈ V
′
3 is adjacent to

only two vertices vj and vj−2 on P ∗, and the fact
that vj and vj−2 are articulation vertices can be
discussed in a similar way.)
Case 5-6: If v

′′′ ∈ V
′
3 is adjacent to vj+2, vj+4 on

P ∗ and is adjacent to v
′
j+3 ∈ V

′
adjacent to vj+3,

then G[vj, vj+2] is minimum-rankable.
Case 5-7: If v

′′′ ∈ V
′
3 is adjacent to vj+2, vj+4 on

P ∗ and v∗ ∈ V
′
2 ∪ V

′
3 that is adjacent to vj+1 and

vj+3 exits, then G[vj, vj+2] is minimum-rankable.

–6–

研究会Temp
－38－

Case 6: Both vertices in V
′
1 and in V

′
3 exists in

G[vj, vj+2].
Case 6-1: If a vertex in V

′
3 is adjacent to two ver-

tices vj , vj+2, v
′
j ∈ V

′
1 (resp. v

′
j+2 ∈ V

′
1) is adja-

cent to vj (resp. vj+2) and vj (resp. vj+2) is artic-
ulation vertices, then G[vj, vj+2] is not minimum-
rankable.
Case 6-2: A vertex v

′′′ ∈ V
′
3 is adjacent to two

vertices vj, vj+2, v
′
j+2 ∈ V

′
1 (resp. v

′
j ∈ V

′
1) is

adjacent to vj+2 (resp. vj) and a vertex v
′
j+3 ∈ V

′

adjacent to vj+3 is adjacent to v
′′′

or v
′
j+2.

Case 6-2-1: If v
′
j+3 ∈ V

′
is adjacent to v

′′′ ∈ V
′
3 ,

then G[vj, vj+2] is minimum-rankable,
Case 6-2-2: If v

′
j+3 ∈ V

′
is adjacent to v

′
j+2 ∈ V

′
1

but not adjacent to v
′′′

, then G[vj, vj+2] is not
minimum-rankable.
Case 6-3: A vertex v

′′′ ∈ V
′
3 is adjacent to two ver-

tices vj , vj+2, v
′
j+2 ∈ V

′
1 (resp. v

′
j ∈ V

′
1) is adja-

cent to vj+2 (resp. vj) and a vertex v∗ ∈ V
′
2 ∪V

′
3 is

adjacent to vj+1 and vj+3. In this case, G[vj, vj+2]
is minimum-rankable.
Case 6-4: If a vertex v

′′′ ∈ V
′
3 is adjacent to two

vertices vj+2, vj+4 and v
′
j+2 ∈ V

′
1 adjacent to vj+2

is adjacent to v
′′′

, then G[vj, vj+2] is not minimum-
rankable.
Case 6-5: If a vertex v

′′′ ∈ V
′
3 is adjacent to two

vertices vj+2, vj+4, v
′
j+2 ∈ V

′
1 adjacent to vj+2

is adjacent v
′′′

and v
′′′

is adjacent to v
′
j+3 ∈ V

′

adjacent to vj+3, then G[vj, vj+2] is minimum-
rankable.
Case 6-6: If a vertex v

′′′ ∈ V
′
3 is adjacent to two

vertices vj+2, vj+4, v
′
j+2 ∈ V

′
1 adjacent to vj+2 is

adjacent v
′′′

and a vertex v∗ ∈ V
′
2 ∪ V

′
3 is adja-

cent to vj+1 and vj+3. In this case, G[vj, vj+2] is
minimum-rankable.

4 An algorithm for solving

the minimum vertex rank-

ing spanning tree problem

Following the above explanations given in sec-
tions 3.1 and 3.2, we can check whether spanning
trees with rank 2 can be constructed in subgraphs
regarding two consecutive vertices and subgraphs
regarding three consecutive vertices, respectively.

Using the dynamic programming, we then check
whether spanning trees with rank χ(P∗

vjvj+3
)(=

�log |P ∗
vjvj+3

|� + 1 = 3) can be constructed in

subgraphs regarding four consecutive vertices vj ,
· · ·, vj+3 on P ∗ and spanning trees with rank
χ(P ∗

vjvj+4
)(= �log |P ∗

vjvj+4
|� + 1 = 3) can be con-

structed in subgraphs regarding five consecutive
vertices and so on. Namely, for example, if each
of G[vi, vi], G[vi+2, vi+3] is minimum-rankable, the
subgraph G[vi, vi+3] regarding four consecutive
vertices vi, · · · , vi+3 is minimum-rankable by as-
signing rank �log |P ∗

vivi+3
|� + 1(= 3) to vi+1 or

if each of G[vi, vi+1], G[vi+3, vi+3] is minimum-
rankable, the subgraph G[vi, vi+3] is minimum-
rankable by assigning rank 3 to vi+2. Thus, if
a pair of G[vi, vj−1] and G[vj+1, vk] which are
minimum-rankable exists, G[vi, vk] is minimum-
rankable, as otherwise, G[vi, vk] is not minimum-
rankable.

Our algorithm is described as follows. In the al-
gorithm, we use an array R[vi, vj], for i, j= 1,· · ·,l.
If G[vi, vj] is minimum-rankable, ‘OK’ is assigned
to R[vi, vj].

Procedure Find Minimum Ranking Spanning Tree
begin
Step 1. Find a path P ∗(= v1, v2, . . . , vl) whose length

is shortest among four shortest paths from vt
1

to vt
n, from vt

1 to vb
n, from vb

1 to vt
n and from

vb
1 to vb

n.
Step 2. For V − V (P ∗), find vertex sets V

′
1 , V

′
2 and V

′
3 .

Step 3. If every vertex in V − V (P∗) is in V
′
2 , a span-

ning tree with χ(T) = �log |P ∗|� + 1 can be
constructed. Stop.

Step 4. For i, j = 1 to l, R[vi, vj] ← ‘null’
For k = 1 to l, R[vk, vk] ← ‘OK’.

Step 5. For subgraph G[vj, vj+1] regarding two con-
secutive vertices vj , vj+1, j = 1, · · · , l − 1,
on P ∗, check whether G[vj, vj+1] is minimum-
rankable. If G[vj, vj+1] is minimum-rankable,
R[vj, vj+1] ← ‘OK’.

Step 6. For subgraph G[vj, vj+2] regarding three con-
secutive vertices vj, vj+1, vj+2, j = 1, · · · , l−2,
on P ∗, check whether G[vj, vj+2] is minimum-
rankable. If G[vj, vj+2] is minimum-rankable,
R[vj, vj+2] ← ‘OK’.

Step 7. For the pairs of vertices on P∗ whose distance
is greater than 3, sort R[vi, vk]’s in increas-
ing order according to value of the distance
between vi and vk.

–7–

研究会Temp
－39－

Step 8. Compute R[vi, vk]’s in the order of step 7 as
follows :
for each j such that i < j < k do
begin
If G[vi, vj−1] is not minimum-rankable by a
suspension vertex v

′′′
, we check whether the

rank of vj+1 adjacent to v
′′′

in G[vj+1, vk] is
1. If the rank of vj+1 is not 1, as a suspension
vertex v

′′′
can be joined to vj+1 in G[vj+1, vk]

for G[vi, vj−1] to be minimum-rankable, then
R[vi, vj−1] ← ‘OK’.

If G[vj+1, vk] is not minimum-rankable
by a suspension vertex v

′′′
, we check

whether the rank of vj−1 adjacent to v
′′′

in G[vi, vj−1] is 1. If the rank of vj−1 is
not 1, as a suspension vertex v

′′′
can be

joined to vj−1 in G[vi, vj−1] for G[vj+1, vk]
to be minimum-rankable, then R[vj+1, vk]
← ‘OK’.
If the value of R[vi, vj−1] is ‘OK’,
that of R[vj+1, vk] is ‘OK’ and
max{�log |P ∗

vivj−1
|�+1, �log |P ∗

vj+1vk
|�+1}

≤ �log |P ∗
vivk
|� then, R[vi, vk] ← ‘OK’.

end
Step 9. If the value of R[1, l] is ‘OK’, a spanning

tree with χ(T) = �log |P ∗|�+1 can be con-
structed. Otherwise, a spanning tree with
χ(T) = �log |P ∗|�+1+1(= χ(P ∗)+1) can
be constructed.

end.

Theorem 1 Procedure
Find Minimum Ranking Spanning Tree solves
the minimum vertex ranking spanning tree
problem in O(n3) time.

The proof is lengthy and is omitted due to the
space limit.

5 Conclusion

In this paper, we proposed an O(n3) time al-
gorithm for solving the minimum vertex ranking
spanning tree problem, when an input graph is
a permutation graph. It is interesting that, for
permutation graphs, the minimum vertex ranking
spanning tree problem is solved in O(n3) time, al-
though the time complexity of known algorithm for
the minimum vertex ranking problem is O(n6).

References
[1] B. Aspvall, P. Heggernes : “Finding minimum

height elimination tree for interval graphs in poly-
nomial time”, BIT, 34, pp. 484-509, 1994.

[2] H. L. Bodlaender, J. S. Deogun, K. Jansen, T.
Kloks, D. Kratsch, H. Müller, Z. Tuza, “Rank-
ings of graphs”, Lecture Notes in Computer Sci-
ence, vol. 903, Springer, Berlin, pp.292-304, 1996.

[3] H. Bodlaender, J. R. Gilbert, H. Hafsteinsson, T.
Kloks, D. Kratsch, H. Müller, Z. Tuza, “Rankings
of Graphs”, SIAM J. Discrete Math, 11 pp.168-
181, 1998.

[4] J.A.Bondy and U.S.R.Murty : “Graph Theory with
Applications”, North-Holland, 1976.

[5] J. S. Deogun, T. Kloks, D. Kratsch, H. Müller, “On
the vertex ranking problem for trapezoid, circular-
arc and other graphs”, Discrete Appl. Math., 98,
pp.39-63, 1999.

[6] M. C. Golumbic, “Algorithmic graph theory and
perfect graphs”, Academic Press, New York, 1980.

[7] D.E.Knuth, “The Art of Computer Programming,
Vol. III: Sorting and Searching”, Addison-Wesley,
Reading Mass., 1973.

[8] T. W. Lam, F. L. Yue, “Edge ranking of graphs is
hard”, Discrete Appl. Math.. 85, pp.71-86, 1998.

[9] T. W. Lam, F. L. Yue, “Optimal edge ranking
of trees in linear time”, Proceeding of the ninth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp.436-445, 1998.

[10] K. Miyata, S. Masuyama, S. Nakayama, “Compu-
tational complexity of the minimum vertex ranking
spanning tree problem”, to be reported in IEICE
Technical Report COMP2003, Nov. 2003.

[11] K. Makino, Y. Uno, T, Ibaraki, “On minimum
edge ranking spanning trees”, J. Algorithms, 38,
pp.411-437, 2001.

[12] S. Nakayama, S. Masuyama, “An algorithm for
solving the minimum vertex ranking spanning tree
problem on interval graphs”, IEICE Trans, Funda-
mentals, Vol.E86-A, No.5, pp.1019-1026, 2003.

[13] A. Pothen, “The complexity of optimal elimina-
tion trees”, Technical Report CS-88-13, Pennsyl-
vania State University, USA, 1988.

[14] A. Pnueli, A. Lempel, S. Even, ”Transitive orien-
tation of graphs and identification of permutation
graphs”, Can. J. Math., 23, pp.160-175, 1971.

[15] J. Spinrad, ”On comparability and permutation
graphs”, SIAM J. Computing, 14, pp.658-670,
1985.

[16] A. A. Schäffer, “Optimal node ranking of trees in
linear time”, Information Process. Lett., 33, pp.91-
96, 1989/1990.

[17] P. Scheffler, “Node ranking and searching on
graphs (Abstract)”, in: U. Faigle, C.Hoede (Eds.),
Third Twente Workshop on Graphs and Combina-
torial Optimization, Memorandum No. 1132, The
Netherlands, 1993.

[18] A. Sen, H Deng, S. Guha, “On a graph partition
problem with application to VLSI layout”, Infor-
mation Process. Lett., 43, pp.87-94, 1992.

[19] P. de la Torre, R. Greenlaw, A. A. Schäffer, “Op-
timal edge ranking of trees in polynomial time, Al-
gorithmica, 13, pp.592-618, 1995.

–8–E

研究会Temp
－40－

