藤本 英昭 潮 和彦
近畿大学理工学部
電気電子工学科 情報学科
〒 577－8502 東大阪市小若江 3－4－1
Tel：＋81－6－6721－2332（ext． 4555 （藤本） 4615 （潮））
Fax：＋81－6－6727－2024（藤本）$\quad+81-6-6730-1320$（潮）
E－mail：fujimoto＠ele．kindai．ac．jp ushio＠info．kindai．ac．jp

アブストラクト
グラフ理論において，グラフの分解問題は主要な研究テーマである。 $C_{4}, ~ C_{10}$ をそれぞれ 4 点， 10点を通るサイクルとする。 1 点を共有する辺素な 3 個のサイクル $C_{4}, ~ C_{10}, ~ C_{10}$ からなるグラフを $\left(C_{4}, C_{10}, C_{10}\right)$－trefoil という。本研究では，完全グラフ $K_{n} を\left(C_{4}, C_{10}, C_{10}\right)$－trefoil 部分グラフに均衡的に分解する分解アルゴリズムを与える。

キーワード：均衡的 $\left(C_{4}, C_{10}, C_{10}\right)$－trefoil 分解；完全グラフ；グラフ理論

Balanced $\left(C_{4}, C_{10}, C_{10}\right)$－Trefoil Decomposition Algorithm of Complete Graphs

Hideaki Fujimoto Kazuhiko Ushio
Department of Electric and Electronic Engineering Department of Informatics Faculty of Science and Technology
Kinki University
Osaka 577－8502，JAPAN
Tel：＋81－6－6721－2332（ext．4555（Fujimoto） 4615 （Ushio）） Fax：＋81－6－6727－2024（Fujimoto）＋81－6－6730－1320（Ushio） E－mail：fujimoto＠ele．kindai．ac．jp ushio＠info．kindai．ac．jp

Abstract

In graph theory，the decomposition problem of graphs is a very important topic．Various types of decompositions of many graphs can be seen in the literature of graph theory．This paper gives a balanced $\left(C_{4}, C_{10}, C_{10}\right)$－trefoil decomposition algorithm of the complete graph K_{n} ．

Keywords：Balanced（ C_{4}, C_{10}, C_{10} ）－trefoil decomposition；Complete graph；Graph theory

1．Introduction

Let K_{n} denote the complete graph of n vertices．Let C_{4} and C_{10} be the 4－cycle and the 10－cycle， respectively．The $\left(C_{4}, C_{10}, C_{10}\right)$－trefoil is a graph of 3 edge－disjoint cycles C_{4}, C_{10} and C_{10} with a common vertex and the common vertex is called the center of the（ C_{4}, C_{10}, C_{10} ）－trefoil．
When K_{n} is decomposed into edge－disjoint sum of（ C_{4}, C_{10}, C_{10} ）－trefoils，we say that K_{n} has a $\left(C_{4}, C_{10}, C_{10}\right)$－trefoil decomposition．Moreover，when every vertex of K_{n} appears in the same num－ ber of（ C_{4}, C_{10}, C_{10} ）－trefoils，we say that K_{n} has a balanced（ C_{4}, C_{10}, C_{10} ）－trefoil decomposition
and this number is called the replication number.
It is a well-known result that K_{n} has a C_{3} decomposition if and only if $n \equiv 1$ or $3(\bmod 6)$. This decomposition is known as a Steiner triple system. See Colbourn and Rosa[1] and Wallis[6, Chapter 12 : Triple Systems]. Horák and Rosa[2] proved that K_{n} has a (C_{3}, C_{3})-bowtie decomposition if and only if $n \equiv 1$ or $9(\bmod 12)$. This decomposition is known as a bowtie system.
In this sense, our balanced $\left(C_{4}, C_{10}, C_{10}\right)$-trefoil decomposition of K_{n} is to be known as a balanced (C_{4}, C_{10}, C_{10})-trefoil system.

2. Balanced $\left(C_{4}, C_{10}, C_{10}\right)$-trefoil decomposition of K_{n}

We use the following notation for a $\left(C_{4}, C_{10}, C_{10}\right)$-trefoil.
Notation. We denote a $\left(C_{4}, C_{10}, C_{10}\right)$-trefoil passing through $v_{1}-v_{2}-v_{3}-v_{4}-v_{1}, v_{1}-v_{5}-v_{6}-$ $v_{7}-v_{8}-v_{9}-v_{10}-v_{11}-v_{12}-v_{13}-v_{1}, v_{1}-v_{14}-v_{15}-v_{16}-v_{17}-v_{18}-v_{19}-v_{20}-v_{21}-v_{22}-v_{1}$ by $\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}\right),\left(v_{1}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}, v_{12}, v_{13}\right),\left(v_{1}, v_{14}, v_{15}, v_{16}, v_{17}, v_{18}, v_{19}, v_{20}, v_{21}, v_{22}\right)\right\}$.

We have the following theorem.
Theorem. K_{n} has a balanced $\left(C_{4}, C_{10}, C_{10}\right)$-trefoil decomposition if and only if $n \equiv 1(\bmod 48)$.
Proof. (Necessity) Suppose that K_{n} has a balanced (C_{4}, C_{10}, C_{10})-trefoil decomposition. Let b be the number of (C_{4}, C_{10}, C_{10})-trefoils and r be the replication number. Then $b=n(n-1) / 48$ and $r=22(n-1) / 48$. Among $r\left(C_{4}, C_{10}, C_{10}\right)$-trefoils having a vertex v of K_{n}, let r_{1} and r_{2} be the numbers of $\left(C_{4}, C_{10}, C_{10}\right)$-trefoils in which v is the center and v is not the center, respectively. Then $r_{1}+r_{2}=r$. Counting the number of vertices adjacent to $v, 6 r_{1}+2 r_{2}=n-1$. From these relations, $r_{1}=(n-1) / 48$ and $r_{2}=21(n-1) / 48$. Therefore, $n \equiv 1(\bmod 48)$ is necessary.
(Sufficiency) Put $n=48 t+1$. We consider 2 cases.
Case 1. $t=1, n=49$. (Example 1.) Construct a balanced (C_{4}, C_{10}, C_{10})-trefoil decomposition of K_{49} as follows:
$B_{1}=\{(1,35,48,15),(1,2,19,31,36,13,40,33,23,4),(1,3,21,32,38,14,42,34,25,5)\}$
$B_{2}=\{(2,36,49,16),(2,3,20,32,37,14,41,34,24,5),(2,4,22,33,39,15,43,35,26,6)\}$
$B_{3}=\{(3,37,1,17),(3,4,21,33,38,15,42,35,25,6),(3,5,23,34,40,16,44,36,27,7)\}$
$B_{4}=\{(4,38,2,18),(4,5,22,34,39,16,43,36,26,7),(4,6,24,35,41,17,45,37,28,8)\}$
$B_{5}=\{(5,39,3,19),(5,6,23,35,40,17,44,37,27,8),(5,7,25,36,42,18,46,38,29,9)\}$
$B_{6}=\{(6,40,4,20),(6,7,24,36,41,18,45,38,28,9),(6,8,26,37,43,19,47,39,30,10)\}$
$B_{7}=\{(7,41,5,21),(7,8,25,37,42,19,46,39,29,10),(7,9,27,38,44,20,48,40,31,11)\}$
$B_{8}=\{(8,42,6,22),(8,9,26,38,43,20,47,40,30,11),(8,10,28,39,45,21,49,41,32,12)\}$
$B_{9}=\{(9,43,7,23),(9,10,27,39,44,21,48,41,31,12),(9,11,29,40,46,22,1,42,33,13)\}$
$B_{10}=\{(10,44,8,24),(10,11,28,40,45,22,49,42,32,13),(10,12,30,41,47,23,2,43,34,14)\}$
$B_{11}=\{(11,45,9,25),(11,12,29,41,46,23,1,43,33,14),(11,13,31,42,48,24,3,44,35,15)\}$
$B_{12}=\{(12,46,10,26),(12,13,30,42,47,24,2,44,34,15),(12,14,32,43,49,25,4,45,36,16)\}$
$B_{13}=\{(13,47,11,27),(13,14,31,43,48,25,3,45,35,16),(13,15,33,44,1,26,5,46,37,17)\}$
$B_{14}=\{(14,48,12,28),(14,15,32,44,49,26,4,46,36,17),(14,16,34,45,2,27,6,47,38,18)\}$
$B_{15}=\{(15,49,13,29),(15,16,33,45,1,27,5,47,37,18),(15,17,35,46,3,28,7,48,39,19)\}$
$B_{16}=\{(16,1,14,30),(16,17,34,46,2,28,6,48,38,19),(16,18,36,47,4,29,8,49,40,20)\}$
$B_{17}=\{(17,2,15,31),(17,18,35,47,3,29,7,49,39,20),(17,19,37,48,5,30,9,1,41,21)\}$
$B_{18}=\{(18,3,16,32),(18,19,36,48,4,30,8,1,40,21),(18,20,38,49,6,31,10,2,42,22)\}$
$B_{19}=\{(19,4,17,33),(19,20,37,49,5,31,9,2,41,22),(19,21,39,1,7,32,11,3,43,23)\}$
$B_{20}=\{(20,5,18,34),(20,21,38,1,6,32,10,3,42,23),(20,22,40,2,8,33,12,4,44,24)\}$
$B_{21}=\{(21,6,19,35),(21,22,39,2,7,33,11,4,43,24),(21,23,41,3,9,34,13,5,45,25)\}$
$B_{22}=\{(22,7,20,36),(22,23,40,3,8,34,12,5,44,25),(22,24,42,4,10,35,14,6,46,26)\}$
$B_{23}=\{(23,8,21,37),(23,24,41,4,9,35,13,6,45,26),(23,25,43,5,11,36,15,7,47,27)\}$
$B_{24}=\{(24,9,22,38),(24,25,42,5,10,36,14,7,46,27),(24,26,44,6,12,37,16,8,48,28)\}$
$B_{25}=\{(25,10,23,39),(25,26,43,6,11,37,15,8,47,28),(25,27,45,7,13,38,17,9,49,29)\}$
$B_{26}=\{(26,11,24,40),(26,27,44,7,12,38,16,9,48,29),(26,28,46,8,14,39,18,10,1,30)\}$
$B_{27}=\{(27,12,25,41),(27,28,45,8,13,39,17,10,49,30),(27,29,47,9,15,40,19,11,2,31)\}$
$B_{28}=\{(28,13,26,42),(28,29,46,9,14,40,18,11,1,31),(28,30,48,10,16,41,20,12,3,32)\}$
$B_{29}=\{(29,14,27,43),(29,30,47,10,15,41,19,12,2,32),(29,31,49,11,17,42,21,13,4,33)\}$
$B_{30}=\{(30,15,28,44),(30,31,48,11,16,42,20,13,3,33),(30,32,1,12,18,43,22,14,5,34)\}$
$B_{31}=\{(31,16,29,45),(31,32,49,12,17,43,21,14,4,34),(31,33,2,13,19,44,23,15,6,35)\}$
$B_{32}=\{(32,17,30,46),(32,33,1,13,18,44,22,15,5,35),(32,34,3,14,20,45,24,16,7,36)\}$
$B_{33}=\{(33,18,31,47),(33,34,2,14,19,45,23,16,6,36),(33,35,4,15,21,46,25,17,8,37)\}$
$B_{34}=\{(34,19,32,48),(34,35,3,15,20,46,24,17,7,37),(34,36,5,16,22,47,26,18,9,38)\}$
$B_{35}=\{(35,20,33,49),(35,36,4,16,21,47,25,18,8,38),(35,37,6,17,23,48,27,19,10,39)\}$
$B_{36}=\{(36,21,34,1),(36,37,5,17,22,48,26,19,9,39),(36,38,7,18,24,49,28,20,11,40)\}$
$B_{37}=\{(37,22,35,2),(37,38,6,18,23,49,27,20,10,40),(37,39,8,19,25,1,29,21,12,41)\}$
$B_{38}=\{(38,23,36,3),(38,39,7,19,24,1,28,21,11,41),(38,40,9,20,26,2,30,22,13,42)\}$
$B_{39}=\{(39,24,37,4),(39,40,8,20,25,2,29,22,12,42),(39,41,10,21,27,3,31,23,14,43)\}$
$B_{40}=\{(40,25,38,5),(40,41,9,21,26,3,30,23,13,43),(40,42,11,22,28,4,32,24,15,44)\}$
$B_{41}=\{(41,26,39,6),(41,42,10,22,27,4,31,24,14,44),(41,43,12,23,29,5,33,25,16,45)\}$
$B_{42}=\{(42,27,40,7),(42,43,11,23,28,5,32,25,15,45),(42,44,13,24,30,6,34,26,17,46)\}$
$B_{43}=\{(43,28,41,8),(43,44,12,24,29,6,33,26,16,46),(43,45,14,25,31,7,35,27,18,47)\}$
$B_{44}=\{(44,29,42,9),(44,45,13,25,30,7,34,27,17,47),(44,46,15,26,32,8,36,28,19,48)\}$
$B_{45}=\{(45,30,43,10),(45,46,14,26,31,8,35,28,18,48),(45,47,16,27,33,9,37,29,20,49)\}$
$B_{46}=\{(46,31,44,11),(46,47,15,27,32,9,36,29,19,49),(46,48,17,28,34,10,38,30,21,1)\}$
$B_{47}=\{(47,32,45,12),(47,48,16,28,33,10,37,30,20,1),(47,49,18,20,35,11,39,31,22,2)\}$
$B_{48}=\{(48,33,46,13),(48,49,17,29,34,11,38,31,21,2),(48,1,19,30,36,12,40,32,23,3)\}$
$B_{49}=\{(49,34,47,14),(49,1,18,30,35,12,39,32,22,3),(49,2,20,31,37,13,41,33,24,4)\}$.

This decomposition can be written as follows:
$B_{i}=\{(i, i+34, i+47, i+14),(i, i+1, i+18, i+30, i+35, i+12, i+39, i+32, i+22, i+3)$, $(i, i+2, i+20, i+31, i+37, i+13, i+41, i+33, i+24, i+4)\}(i=1,2, \ldots, 49)$,
where the additions $i+x$ are taken modulo 49 with residues $1,2, \ldots, 49$.

Note. We consider the vertex set V of K_{n} as $V=\{1,2, \ldots, n\}$.
The additions $i+x$ are taken modulo n with residues $1,2, \ldots, n$.

Case 2. $t \geq 2, n=48 t+1$. Construct $\operatorname{tn}\left(C_{4}, C_{10}, C_{10}\right)$-trefoils as follows:
$B_{i}^{(1)}=\{(i, i+12 t+1, i+45 t+2, i+13 t+1),(i, i+1, i+16 t+2, i+28 t+2, i+32 t+3, i+10 t+$ $2, i+36 t+3, i+30 t+2, i+20 t+2, i+2 t+1),(i, i+2, i+16 t+4, i+28 t+3, i+32 t+5, i+$ $10 t+3, i+36 t+5, i+30 t+3, i+20 t+4, i+2 t+2)\}$
$B_{i}^{(2)}=\{(i, i+12 t+2, i+45 t+4, i+13 t+2),(i, i+3, i+16 t+6, i+28 t+4, i+32 t+7, i+10 t+$ $4, i+36 t+7, i+30 t+4, i+20 t+6, i+2 t+3),(i, i+4, i+16 t+8, i+28 t+5, i+32 t+9, i+$ $10 t+5, i+36 t+9, i+30 t+5, i+20 t+8, i+2 t+4)\}$
$B_{i}^{(3)}=\{(i, i+12 t+3, i+45 t+6, i+13 t+3),(i, i+5, i+16 t+10, i+28 t+6, i+32 t+11, i+$ $10 t+6, i+36 t+11, i+30 t+6, i+20 t+10, i+2 t+5),(i, i+6, i+16 t+12, i+28 t+7, i+32 t+$ $13, i+10 t+7, i+36 t+13, i+30 t+7, i+20 t+12, i+2 t+6)\}$
$B_{i}^{(t)}=\{(i, i+13 t, i+47 t, i+14 t),(i, i+2 t-1, i+20 t-2, i+30 t, i+36 t-1, i+12 t, i+40 t-1, i+32 t, i+$ $24 t-2, i+4 t-1),(i, i+2 t, i+20 t, i+30 t+1, i+36 t+1, i+12 t+1, i+40 t+1, i+32 t+1, i+24 t, i+4 t)\}$ $(i=1,2, \ldots, n)$.
Then they comprise a balanced $\left(C_{4}, C_{10}, C_{10}\right)$-trefoil decomposition of K_{n}.
This completes the proof.
Example 2. A balanced $\left(C_{4}, C_{10}, C_{10}\right)$-trefoil decomposition of K_{97}.
$B_{i}^{(1)}=\{(i, i+25, i+92, i+27),(i, i+1, i+34, i+58, i+67, i+22, i+75, i+62, i+42, i+5),(i, i+$ $2, i+36, i+59, i+69, i+23, i+77, i+63, i+44, i+6)\}$
$B_{i}^{(2)}=\{(i, i+26, i+94, i+28),(i, i+3, i+38, i+60, i+71, i+24, i+79, i+64, i+46, i+7),(i, i+$ $4, i+40, i+61, i+73, i+25, i+81, i+65, i+48, i+8)\}$
($i=1,2, \ldots, 97$).
Example 3. A balanced $\left(C_{4}, C_{10}, C_{10}\right)$-trefoil decomposition of K_{145}.
$B_{i}^{(1)}=\{(i, i+37, i+137, i+40),(i, i+1, i+50, i+86, i+99, i+32, i+111, i+92, i+62, i+$ 7), $(i, i+2, i+52, i+87, i+101, i+33, i+113, i+93, i+64, i+8)\}$
$B_{i}^{(2)}=\{(i, i+38, i+139, i+41),(i, i+3, i+54, i+88, i+103, i+34, i+115, i+94, i+66, i+$ $9),(i, i+4, i+56, i+89, i+105, i+35, i+117, i+95, i+68, i+10)\}$
$B_{i}^{(3)}=\{(i, i+39, i+141, i+42),(i, i+5, i+58, i+90, i+107, i+36, i+119, i+96, i+70, i+$ 11), $(i, i+6, i+60, i+91, i+109, i+37, i+121, i+97, i+72, i+12)\}$
($i=1,2, \ldots, 145$).
Example 4. A balanced $\left(C_{4}, C_{10}, C_{10}\right)$-trefoil decomposition of K_{193}.
$B_{i}^{(1)}=\{(i, i+49, i+182, i+53),(i, i+1, i+66, i+114, i+131, i+42, i+147, i+122, i+82, i+$ 9), $(i, i+2, i+68, i+115, i+133, i+43, i+149, i+123, i+84, i+10)\}$
$B_{i}^{(2)}=\{(i, i+50, i+184, i+54),(i, i+3, i+70, i+116, i+135, i+44, i+151, i+124, i+86, i+$ 11), $(i, i+4, i+72, i+117, i+137, i+45, i+153, i+125, i+88, i+12)\}$
$B_{i}^{(3)}=\{(i, i+51, i+186, i+55),(i, i+5, i+74, i+118, i+139, i+46, i+155, i+126, i+90, i+$ $13),(i, i+6, i+76, i+119, i+141, i+47, i+157, i+127, i+92, i+14)\}$
$B_{i}^{(4)}=\{(i, i+52, i+188, i+56),(i, i+7, i+78, i+120, i+143, i+48, i+159, i+128, i+94, i+$ 15), $(i, i+8, i+80, i+121, i+145, i+49, i+161, i+129, i+96, i+16)\}$
($i=1,2, \ldots, 193$).
Example 5. A balanced $\left(C_{4}, C_{10}, C_{10}\right)$-trefoil decomposition of K_{241}.
$B_{i}^{(1)}=\{(i, i+61, i+227, i+66),(i, i+1, i+82, i+142, i+163, i+52, i+183, i+152, i+102, i+$ 11), $(i, i+2, i+84, i+143, i+165, i+53, i+185, i+153, i+104, i+12)\}$ $B_{i}^{(2)}=\{(i, i+62, i+229, i+67),(i, i+3, i+86, i+144, i+167, i+54, i+187, i+154, i+106, i+$ 13), $(i, i+4, i+88, i+145, i+169, i+55, i+189, i+155, i+108, i+14)\}$
$B_{i}^{(3)}=\{(i, i+63, i+231, i+68),(i, i+5, i+90, i+146, i+171, i+56, i+191, i+156, i+110, i+$ 15), $(i, i+6, i+92, i+147, i+173, i+57, i+193, i+157, i+112, i+16)\}$
$B_{i}^{(4)}=\{(i, i+64, i+233, i+69),(i, i+7, i+94, i+148, i+175, i+58, i+195, i+158, i+114, i+$ 17), $(i, i+8, i+96, i+149, i+177, i+59, i+197, i+159, i+116, i+18)\}$ $B_{i}^{(5)}=\{(i, i+65, i+235, i+70),(i, i+9, i+98, i+150, i+179, i+60, i+199, i+160, i+118, i+$ 19), $(i, i+10, i+100, i+151, i+181, i+61, i+201, i+161, i+120, i+20)\}$
($i=1,2, \ldots, 241$).

References

[1] C. J. Colbourn and A. Rosa, Triple Systems. Clarendom Press, Oxford, 1999.
[2] P. Horák and A. Rosa, Decomposing Steiner triple systems into small configurations, Ars Combinatoria, Vol.26, pp.91-105, 1988.
[3] K. Ushio and H. Fujimoto, Balanced bowtie and trefoil decomposition of complete tripartite multigraphs, IEICE Trans. Fundamentals, Vol.E84-A, No.3, pp.839-844, March 2001.
[4] K. Ushio and H. Fujimoto, Balanced foil decomposition of complete graphs, IEICE Trans. Fundamentals, Vol.E84-A, No.12, pp.3132-3137, December 2001.
[5] K. Ushio and H. Fujimoto, Balanced bowtie decomposition of complete multigraphs, IEICE Trans. Fundamentals, Vol.E86-A, No.9, pp.2360-2365, September 2003.
[6] W. D. Wallis, Combinatorial Designs. Marcel Dekker, New York and Basel, 1988.

