
FEM Fast Marching Methodによるボート航行距離の計算

西田徹志 ∗ 杉原厚吉 ∗

概要

流れのある水面上を航行するボートの振舞いをモデル化することによって，ボート航行距離という概念
を導入する. そして，この距離を計算する問題を偏微分方程式の境界値問題に定式化し，得られた境界値問
題を解く数値計算法を構成する．その方法は eikonal方程式に対して提案された fast marching法を改良し
たものである．数値実験により，提案した方法が効率性よく安定に動作することを示す．

FEM-like Fast Marching Method for the Computation of the

Boat-Sail Distance

Tetsushi Nishida∗ and Kokichi Sugihara∗

Abstract

A new concept called a boat-sail distance is introduced on the surface of water with flow. The
problem of computing this distance is reduced to a boundary value problem of a partial differential
equation, and a numerical method for solving this problem is constructed. The method is a modification
of a so-called fast marching method originally proposed for the eikonal equation. Computational
experiments show the efficiency and the stableness of the proposal method.

1 Introduction

Fast marching methods [4] are computational tech-
niques that approximate the solutions to nonlinear
eikonal equations of the form

F (x)|∇T (x)| = 1, x ∈ Ω, F (x) > 0,

T (x) = g(x), x ∈ Γ,

where Ω is a domain in R2 or R3, F (x) is a known
input function, and g(x) is a known function repre-
senting the boundary condition. Here, T (x) repre-
sents the arrival time at each point x.

In general, the solution of the eikonal equation
is not unique, and in addition, is not differentiable,
even if boundary data are smooth. The fast march-
ing method is a numerical method which can handle
this nondifferentiability efficiently and stably, and
thus can construct physically correct nonsmooth so-
lutions.

These methods are of use in a variety of appli-
cations, computing distances from complex curves

∗東京大学大学院情報理工学系研究科数理情報学専攻
Department of Mathematical Informatics, Graduate
School of Information Sience and Technology, University
of Tokyo
{nishida,sugihara}@mist.i.u-tokyo.ac.jp

and surfaces [5], shape-from-shading [5], photolitho-
graphic development [5], computing first arrivals
in seismic travel times [6], construction of short-
est geodesics on surfaces [1], optimal path planning
around obstacles, and visibility and reflection cal-
culations [4].

However, for a certain type of problems, the accu-
racy of the solutions computed by the fast marching
methods is much less than the accuracy we want.
The computation of a boat-sail distance, which we
propose in this paper, is exactly one of such kind of
problems.

Suppose that we want to travel on the surface
of water with a boat. If there is no flow of water,
the boat can move in any direction at the same
maximum speed. If the water flows, on the other
hand, the speed of the boat is anisotropic; the boat
can move faster in the same direction as the flow,
while it move only slowly in the direction opposite
to the flow direction. Modeling this situation, we
can introduce the boat-sail distance.

In order to construct a numerical method for
computing the boat-sail distances, we reduce the
problem to a boundary value problem of a partial
differential equation. This idea is the same as the
idea for reducing the problem of computing the Eu-
clidean distance was reduced to a boundary value

1

研究会Temp
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
2004－AL－93　　(15)

研究会Temp
2004／1／30

研究会Temp
－105－

problem of the eikonal equation [4]. Hence, our for-
mulation can be considered a generalization of the
eikonal equation. Therefore we applied the idea of
the fast marching method to our equation, but we
found that it did not work well.

In this paper, we consider the reasons why the
original fast marching method does not work well,
and extend the scheme of the fast marching method
in such a way that it works very well for this kind of
problems and show the efficiency and the stableness
of our proposal method.

In Section 2, we introduce a mathematical model
for the boat-sail distance. In Section 3, we derive
a partial differential equation for representing the
boat-sail distance. In Section 4, we construct a new
method, which is a combination of the fast marching
method and the finite-element method. In Section
5, we show some numerical examples. Finally, we
give concluding remarks in Section 6.

2 Boat-Sail Distance

Let Ω ⊂ R2 denote a two-dimensional domain
with an (x, y) Cartesian coordinate system, and let
f(x, y) ∈ R2 be a two-dimensional vector given at
each point (x, y) in Ω. A physical interpretation
is that Ω corresponds to the surface of water and
f(x, y) represents the velocity of the water flow.
Hence, we call f(x, y) the flow field. We assume
that f(x, y) is continuous in Ω.

Consider a boat that has the maximum speed F
in any direction on the still water. Let ∆t denote
a short time interval. Suppose that the driver tries
to move the boat at speed F in the direction vF ,
where vF is the unit vector, and hence the boat
will move from the current point p to p+∆tFvF in
time ∆t if there is no water flow, as shown by the
broken arrow in Fig 1. However, the flow of water
also displaces the boat by ∆tf(x, y), and hence the
actual movement ∆u of the boat in time interval
∆t is represented by ∆u = ∆tFvF + ∆tf(x, y).

p

∆u
FvF∆t

f∆t

Fig. 1. Relations among the actual movement ∆u
of the boat, the water flow f and the velocity FvF

of the boat.

Consequently, the effective speed of the boat in
the water flow in given by

∣∣∣∣∆u

∆t

∣∣∣∣ = |FvF + f(x, y)| . (1)

We assume that F is large enough to satisfy the
condition F > max(x,y)∈Ω |f(x, y)|. Hence, the boat
can move in any direction against the flow even if
the direction of the boat sailing is opposite to the
direction of the flow.

Let p and q be two points in Ω, and let c(s) ∈
Ω denote a curve from p to q with the arc-length
parameter s (0 ≤ s ≤ s) such that c(0) = p and
c(s) = q. Then, the time, say δ(c, p, q), necessary
for the boat to move from p to q along the curve
c(s) with the maximum speed is obtained by

δ(c, p, q) ≡
∫ s

0

1∣∣∆u
∆t

∣∣ds =
∫ s

0

1
|FvF + f(x, y)|ds.

(2)
Let C be the set of all paths from p to q. We

define d(p, q) by

d(p, q) ≡ infc∈C δ(c, p, q). (3)

That is, d(p, q) represents the shortest time neces-
sary for the boat to move from p to q. We can con-
sider that d(p, q) is proportional to the effective dis-
tance from p to q, and hence we abuse the term “dis-
tance” and call d(p, q) the boat-sail distance from p
to q. Note that d(p, q) is not symmetric; the time
necessary to move from p to q is not in general equal
to the time necessary to move from q to p.

3 Reduction to a Boundary
Value Problem

Suppose that we are given the flow field f(x, y) and
the point p0 = (x0, y0), called a boat harbor, in Ω.
Let T (x, y) be the shortest arrival time at which
the boat departing p0 at time 0 can reach the point
p = (x, y), that is, T (x, y) ≡ d(p0, p).

In this section, we derive the partial differential
equation that should be satisfied by the unknown
function T (x, y).

Let C be an arbitrary positive constant. The
equation T (x, y) = C represents a curve, any point
on which can be reached in time C by the boat
departing p0 at time 0. As shown in Fig. 2, assume
that the boat moving along the shortest path passes
through the point (x, y) at time C and reaches the
point (x + ∆x, y + ∆y) at time C + ∆t, where ∆t
is positive and small. Hence, in particular, we get

T (x + ∆x, y + ∆y) − T (x, y) = ∆t. (4)

2

研究会Temp
－106－

T=C

T=C+∆t

(x+∆x,y+∆y)

(x,y)

f∆t

F∆t∇T/|∇T|

Fig. 2. Decomposition of the movement of a boat.

If there is no flow of water, the shortest path
should be perpendicular to the curve T = C, and
hence, the progress of the boat during time interval
∆t is represented by F ∇T

|∇T |∆t. On the other hand,
the displacement of the boat caused by the flow of
water is f∆t. Hence, the total motion of the boat
is represented by

F
∇T

|∇T |∆t + f∆t. (5)

Let us denote Tx ≡ ∂T
∂x and Ty ≡ ∂T

∂y , respec-
tively. Also let g(x, y) and h(x, y) denote the first
and second components of f(x, y). Then from the
equation (5), we get

∆x = F
Tx

|∇T |∆t + g∆t, ∆y = F
Ty

|∇T |∆t + h∆t,

and linearly approximating T (x + ∆x, y + ∆y), we
get an approximate expression:

T (x + ∆x, y + ∆y) ≈ T (x, y)

+Tx(F
Tx

|∇T |+g)∆t + Ty(F
Ty

|∇T |+h)∆t.(6)

Therefore, from this expression (6) and equation
(4), we obtain

F |∇T | = 1 −∇T · f. (7)

This is the partial differential equation that should
be satisfied by the arrival time T (x, y).

In the next section, we consider how to solve this
partial differential equation numerically, together
with the boundary condition

T (x0, y0) = 0. (8)

4 FEM-like Fast Marching

Method and the Algorithm

Our partial differential equation is quadratic, but
not linear. Hence, we cannot use the numerical

method such as the finite difference method and so
on. On the other hand, our equation has the prop-
erty that the arrival time T (x, y) is monotone in-
creasing as we move along the shortest paths start-
ing at p0. A typical equation of this type is the
eikonal equation [4]. This equation can be solved
efficiently and stably by the fast marching method
[4].

However, from numerical experiments [2, 3], we
recognize that the fast marching method did not
work for our equation. Hence, in order to fulfill our
purposes, we propose a new scheme by modifying
the fast marching method.

4.1 FEM-like Differences

In Ω, we place grid points (xi, yj) = (i∆x, j∆y),
i, j = 0,±1,±2, · · ·, where ∆x and ∆y are small
constants and i and j are integers. For each grid
point (xi, yj), we associate Tij = T (xi, yj). T00 =
T (x0, y0) = 0 because of the boundary condition
(8), while all the other Tij ’s are unknown variables.

Starting with the neighbors of (x0, y0), we want
to compute Tij ’s grid by grid from smaller values to
larger values. Hence, we use the modified upwind
differences which we explain as follows.

In the finite element method, the domain Ω ⊂ R2

is divided into many small regions called finite el-
ements, which are triangles or rectangles, and the
value of an interior point of a finite element is inter-
polated from the values on the vertices and on the
edges of the finite element.

Consider a triangular element shown in Fig.
3(a), where the coordinates of nodes 1, 2 and 3
are (x1, y1), (x2, y2) and (x3, y3), respectively and
nodes 4, 5 and 6 are the middle points of the
edges. Let T1, T2, . . . , T6 be the values at the nodes
1, 2, . . . , 6, respectively. Then, the interpolation
function T which represents the value at point (x, y)
in the triangular element is represented by

T (x, y) = T1φ1(2φ1−1)+T2φ2(2φ2−1) (9)
+ T3φ3(2φ3−1)+4T4φ2φ3+4T5φ3φ1+4T6φ1φ2,

where φ1 = φ1(x, y), φ2 = φ2(x, y) and φ3 =
φ3(x, y) are the area coordinate functions:

φi(x, y) =
1
D

(ai + bix + ciy), (10)

where

D =

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ ,
and

a1 = x2y3 − x3y2, b1 = y2 − y3, c1 = x3 − x2,
a2 = x3y1 − x1y3, b2 = y3 − y1, c2 = x1 − x3,
a3 = x1y2 − x2y1, b3 = y1 − y2, c3 = x2 − x1.

3

研究会Temp
－107－

The functions φ1φ2, φ2φ3, φ3φ1 and φi(2φi − 1) for
i = 1, 2, 3 are called shape functions.

1

3

4

6

5

2
1T

T5

T3

T4

T2

T6
1 1(x ,y)

2 2(x ,y)

(x ,y)3 3

(a)

1

6
4

5

2

3

(b)
1 2

5

6

4

3

(c)

Fig. 3. Examples of triangular finite elements: the
number 1, 2, . . . , 6 are nodes and T1, T2, . . . T6 are
the values at the nodes.

Next, partially differentiating this interpolation
function, we get the partial derivatives:

∂T

∂x
(x, y)

=
(b1T1 + b2T6 + b3T5)φ1+(b1T6 + b2T2 + b3T4)φ2

D

+
(b1T5 + b2T4 + b3T3)φ3−(b1T1 + b2T2 + b3T3)

D
,

(11)
∂T

∂y
(x, y)

=
(c1T1 + c2T6 + c3T5)φ1+(c1T6 + c2T2 + c3T4)φ2

D

+
(c1T5 + c2T4 + c3T3)φ3−(c1T1 + c2T2 + c3T3)

D
.

(12)
In order to know the values of the partial deriva-

tives at the node 3, we substitute (x3, y3) into (11)
and (12), and get

∂T

∂x
(x3, y3) =

3b3T3+4(b2T4+b1T5)−b1T1−b2T2

D
,

(13)
∂T

∂y
(x3, y3) =

3c3T3+4(c2T4+c1T5)−c1T1−c2T2

D
.

(14)
Assume that the angle at the node 3 is right as

shown in Fig. 3(b), and that the length of the hor-
izontal and vertical sides adjacent to the node 3

are 2∆x and 2∆y, respectively. Then, the partial
derivatives become

∂T

∂x
(x3, y3) =

3T3 − 4T5 + T1

2∆x
,

∂T

∂y
(x3, y3) =

3T3 − 4T4 + T2

2∆y
.

These derivatives coincide with the usual second-
order upwind-like differences in the fast marching
method. Thus, the equations (13) and (14) are
generalizations of upwind-like differences. Hence,
for instance, in the case where the node 2 forms a
right angle as shown in Fig. 3 (c), the upwind-like
differences at the node 3 are obtained by

∂T

∂x
(x3, y3) =

4(T4 − T5) − (T2 − T1)
2∆x

,

∂T

∂y
(x3, y3) =

3T3 − 4T4 + T2

2∆y
.

We call (13) and (14) the second order FEM-like
differences.

However, if T1 < T5 or T2 < T4, the second or-
der difference cannot be used [5], and so we have to
prepare the first order difference. Consider a trian-
gular element whose vertices are nodes 3, 4 and 5,
as shown in Fig. 3. Then the interpolation function
T 1 is represented by

T 1(x, y) = T3φ3(x, y) + T4φ4(x, y) + T5φ5(x, y),
(15)

where φ3, φ4 and φ5 are the area coordinate func-
tions; we get these functions by replacing the nodes
1 and 2 with the nodes 5 and 4 in the equation
(10), respectively. Considering the differences of
the equation (15) in the same manner as the sec-
ond order difference, we get

∂T 1

∂x
(x3, y3) =

b′3T3 + b′4T4 + b′5T5

D′ , (16)

∂T 1

∂y
(x3, y3) =

c′3T3 + c′4T4 + c′5T5

D′ , (17)

where

D′ =

∣∣∣∣∣∣
1 x3 y3

1 x4 y4

1 x5 y5

∣∣∣∣∣∣ ,

and
b′3 = y5 − y4, c′3 = x4 − x5.
b′4 = y3 − y5, c′4 = x5 − x3,
b′5 = y4 − y3, c′5 = x3 − x4.

We call the equations (16) and (17) the first order
FEM-like differences.

Next, we combine the first and second differences
and construct operators similar to upwind operators
[3]. Let �123 be the triangle whose vertices are the

4

研究会Temp
－108－

nodes 1, 2 and 3, and �543 be the triangle whose
vertices are the nodes 5, 4 and 3. Since the triangle
�123 is similar to the triangle �543 and, in addition,
the length of each edge of �123 is twice as that of
the corresponding edge of �543, we get

D′ =
D

4
,

⎧⎨
⎩

b′3 = b3/2, c′3 = c3/2.
b′4 = b2/2, c′4 = c2/2,
b′5 = b1/2, c′5 = c1/2.

Hence, the first order FEM-like differences can be
replaced by

∂T 1

∂x
(x3, y3) =

2b3T3 + 2b2T4 + 2b1T5

D
≡ Dx

1T,

∂T 1

∂x
(x3, y3) =

2c3T3 + 2c2T4 + 2c1T5

D
≡ Dy

1T.

In addition, let us define Dx
2T ≡ ∂T

∂x (x3, y3) − Dx
1T

and Dy
2T ≡ ∂T

∂y (x3, y3) − Dy
1T . Then, the second

order differences can be decomposed to

∂T

∂x
(x3, y3) = Dx

1T + Dx
2T,

∂T

∂y
(x3, y3) = Dy

1T + Dy
2T.

Suppose that nodes 1 to 6 are on each grid point
and let the node 3 be a grid point (xi, yj). Then,
we get the second order FEM-like operators

Dx
ijT ≡ Dx

1T + swDx
2T, (18)

Dy
ijT ≡ Dy

1T + swDy
2T, (19)

where

sw =

⎧⎨
⎩

1, if T1, T2, T4 and T5 are “known”,
T2 ≤ T4 and T1 ≤ T5,

0, otherwise.
(20)

The word “known” means that the value T has al-
ready been computed on the grid point.

There is one thing we should note. We can use
only “known” grid points in the operator (18) and
(19). This means that Dx

2T and Dy
2T are valid only

when T1, T2, T4 and T5 are “known”, and Dx
1T and

Dy
1T are valid only when T4 and T5 are “known”.

Therefore, if one of T4 and T5 is not “known”, the
operators (18) and (19) cannot be defined. In what
follows, we call the triangle available if T4 and T5

are “known”.

4.2 Choice of a Triangle

In the second-order operator of Sethian’s fast
marching method, the two vertical neighbors and
the two horizontal neighbors are used to compute
the value at the target point, as shown in Fig. 4(a),

where the target point is represented by the double
circles and the used neighbors are represented by
dots. In this sence, Sethian’s method uses a trian-
gle with a horizontal edge of length 2∆x and a ver-
tical edge of length 2∆y meet at the target point.
Fig. 4(a) shows one of the four possible triangles;
the other three are obtained when we rotate the
triangle in Fig. 4(a) by π/2, π and 3π/2 around the
target point. Thus, in the second order operator of
the fast marching method, we can choose one of the
four possible triangles according to the direction of
the shortest path to the target point.

In our new operator, on the other hand, we can
use eight triangles. Fig. 4(b) shows an example,
in which a vertical edge of length 2∆y and a slant
edge meeting at the target point; the other seven
triangles can be obtained by rotating this triangle
by π/2, π and 3π/2 around the target point, and by
mirroring them with respect to the horizontal and
the vertical lines passing through the target point.
Therefore, we can use one of the eight possible tri-
angles of the type in Fig. 4(b) instead of the four of
the type in Fig. 4(a). Thus, we have larger freedom
in the choice of a triangle. In what follows, let us
call a triangle of the type in Fig. 4(a) a standard
triangle, and a triangle of the type in Fig. 4(b) a
sharp triangle.

(a) (b)

Fig. 4. Freedom in the choice of a triangle.

Now, we can use the eight sharp triangles. The
next question is which triangle we should choose for
the most precise computation.

The best triangle is what includes the shortest
path to p3. Consider the triangle p1, p2, p3 shown
in Fig. 5. Let n1 and n2 be outer normal vectors
for the edges p1p3 and p2p3, respectively. Also, Let
n′

1 (n′
2) be the vector directed from p1(p2) to p3.

Then, the triangle include the shortest path to p3

if and only if the direction of the shortest path is
between n′

1 and n′
2. Hence, from equation (5), this

5

研究会Temp
－109－

condition can be expressed by(
F

∇T

|∇T | + f

)
·n1 ≥ 0 and

(
F

∇T

|∇T | + f

)
·n2 ≥ 0.

(21)

p
1

p
3

p
2

n1

n’1

n2

n’2

Fig. 5. Relation between the shortest path and the
best triangle

Therefore, we have to find the sharp triangle that
satisfies the condition (21). However, we have nu-
merical errors in actual computation, and hence
cannot expect that the condition (21) is always sat-
isfied strictly. Hence, we choose the sharp triangle
that maximizes

min
{(

F
∇T

|∇T | + f

)
· n1,

(
F

∇T

|∇T | + f

)
· n2

}
.

(22)
Hence, for each target point p, we can construct
the following strategy to select the best triangle to
compute the value T at p.

Strategy for the Choice of the Best Sharp
Triangle

1. Let A be the set of all available sharp triangles
for the target point p.

2. For each triangle in A, compute the value T
at p using the triangle, and adopt the value T
that maximizes the value (22)

4.3 FEM-like Scheme

Let us define gij and hij by gij = g(xi, yj) and
hij = h(xi, yj), respectively. We replace ∇T by
(Dx

ijT, Dy
ijT) and f by (gij , hij) in our equation (7).

Then we obtain the finite difference version of the
equation:

F 2{(Dx
ijT)2+(Dy

ijT)2}=(1−(Dx
ijT)gij+(Dy

ijT)hij)2.
(23)

We call this scheme the FEM-like scheme.
Note that this scheme can be applied only when

the target point has one or more available sharp
triangles. If there is no available triangle at the
current target point, we postpone the computation
of T until sharp triangles become available.

4.4 Algorithm

We solve our boundary value problem by the same
strategy as the fast marching method by Sethian [4].
This method is similar to the Dijkstra method for
computing all shortest paths from a start vertex in a
graph. We consider the grid structure the graph in
which the vertices are grid points and the edges con-
nect the four neighbors of each grid point. We start
with the boat harbor at which Tij = 0, and compute
Tij ’s one by one from the nearest grid point. The
only difference from the Dijkstra method is that the
quadratic equation (23) is solved to obtain the value
of Tij .

In the next algorithm, the grid points are classi-
fied into three groups: “known” points, “frontier”
points and “far” points. The “known” points are
points at which the values Tij are known. The
“frontier” points are points that are not yet known
but are the neighbors of the “known” points. The
“far” points are all the other points. In the al-
gorithm, all the points other than the boat har-
bor are initially categorized as “far” points, and
then changed to “frontier” points and eventually
to “known” points.

Algorithm 1 (Boat-sail distance from a single
harbor)

Input: flow function f(x, y) in Ω and the boat har-
bor p0.
Output: Arrival time Tij at every grid point in Ω.
Procedure:

1. Set Tij ← 0 for the grid point corresponding
to the harbor, and Tij ← ∞ for all the other
points.

2. Name the grid point p0 as “frontier”, and all
the other grid points as “far”.

3. choose the “frontier” point p = (xi, yi) with
the smallest value of Tij , and rename it as
“known”.

4. For all the neighbors of p that are not “known”,
do 4.1, 4.2 and 4.3.

4.1 If p is “far”, rename it as “frontier”.

4.2 Recompute the value of Tij by solving the
equation (23).

4.3 If the recomputed value Tij is smaller than
the current value, update the value.

5. If all the grid points are “known”, stop. Oth-
erwise go to Step 3.

Let N be the number of the grid points in Ω.
Step 1 and 2 of the above algorithm are done in

6

研究会Temp
－110－

O(N) time. Just as the Dijkstra method, we use
a heap data structure to store the “frontier” grid
points with the key Tij . Then, the addition of a
new grid point to the heap and the deletion of the
“frontier” grid point with the smallest Tij can be
done in O(log N) time. Hence, each processing of
Steps 3 and 4 is done in O(log N) time. Since Steps
3, 4 and 5 are repeated N times, the total time
complexity of Algorithm 1 is O(N log N).

5 Numerical Examples

In this section, we show the behavior of our method
for computing the boat-sail distances in numerical
examples. We consider shortest path problems in
the flow field at this time.

Suppose that the flow field f and the boat harbor
p is given, and that, for each query point q, we want
to find the shortest path from p to q with respect
to the boat-sail distance. To solve this problem, we
first use Algorithm 1 to compute the arrival time
T (x, y) in Ω from the start point p. Next, from
each query point p in Ω, we trace back the shortest
path, until we reach the starting point p. For this
purpose we solve the following ordinary differential
equation.

Let X(t) = (x(t), y(t)) be the shortest path with
parameter t such that

X(0) ≡ (x(0), y(0)) = q. (24)

We assume that, as t increases, the point X(t)
moves along the shortest path in the opposite way
from q to p. The motion of the boat in time interval
∆t is represented by the expression (5), and hence
we get

X(t + ∆t) − X(t) = −
(

F
∇T

|∇T |∆t + f∆t

)
, (25)

and consequently we obtain the ordinary differential
equation:

Xt = −
(

F
∇T

|∇T | + f

)
. (26)

Thus, the problem of constructing the shortest path
is reduced to the ordinary differential equation (26)
together with the initial condition (24). Since the
arrival time T (x, y) at the grid points has been
obtained by algorithm 1, the gradient ∇T at any
points can be computed by (11) and (12). Hence,
we can construct the following algorithm to com-
pute the shortest path.

Algorithm 2 (shortest path)

Input: arrival time T (x, y) from p to all the grid

points in Ω and the query point q.
Output: shortest path X(t) from p to q.
Procedure:

1. X(t) ← 0, t ← 0, and fix a small positive real
∆t.

2. Find a triangle of the type in Fig. 3(b) or (c)
that includes the point X(t), and compute the
gradient ∇T at X(t) using (11) and (12).

3. X(t + ∆t) ← X(t) −
(
F ∇T

|∇T |∆t + f∆t
)
.

4. t ← t + ∆t.

5. If X(t) is sufficiently close to p, stop. Other-
wise go to Step 2.

Note that we cannot distinguish between the
standard triangle and the sharp triangle in Step 2 of
the above algorithm, because the point X(t) is not
a grid point; we can use any triangle that include
X(t).

We show three examples of the shortest paths
in the flow field in Figs. 6(a) to 6(c). Here, we
assumed that the speed F of a boat be 1. The
arrows in the figures represent the directions and
the relative speeds of the flow in the field. The
lengths of the arrows in the same figure express the
relative speeds of the flow; the longer is the arrow,
the faster is the flow. The thin curves express the
isoplethic curves of the first arrival time, and the
thick curve expresses the shortest path.

Fig. 6(a) is for the circular flow f =
(−0.7 sin θ, 0.7 cos θ) in a doughnut region {(x, y) |
0.25 < x2 + y2 < 1}. Fig. 6(b) is for the flow
field f = (0.7(1 − y2), 0.0) in a rectangular region
{(x, y) | −1 < y < 1}. Finally, Fig. 6(c) shows the
case for the flow f = 0.35(1 − 0.25/z2), z ∈ C in
the square region {(x, y) | −1 < |z| < 1}. This flow
coincides with the theoretical flow pattern obtained
when the cylinder of the radius 0.5 is placed at the
center of region in the homogeneous, uncompress-
ible and nonviscouse flow from left to right.

6 Concluding Remarks

We first defined the boat-sail distance, next de-
rived the partial differential equation satisfied by
the first arrival time, thirdly constructed a new
scheme for computing the boat-sail distance, and fi-
nally showed computational experiments. The con-
cept of the boat-sail distance is natural and intu-
itive, but the computation is not trivial. Actually
the original definition of the boat-sail distance given
by the equations (2) and (3) does not imply any ex-
plicit idea for computing this distance, because the

7

研究会Temp
－111－

shortest path is unknown. This seems the main rea-
son why these concepts have not been studied from
the computational point of view.

Our breakthrough toward efficient computation
is that we succeeded in formulating the problem
as the boundary value problem. The distance is
defined according to the notion of the boat sail-
ing, and hence a naive formulation will reach an
initial value problem of a partial differential equa-
tion containing the time variable and its derivatives.
In this paper, on the other hand, we concentrated
on the first arrival time as the unknown function,
and thus constructed an equation without time vari-
able. Moreover, this partial differential equation is
quadratic, which is not so simple as linear, but is
still tractable. This formulation enables us to use
the same idea as the fast marching method, which
was originally proposed for the eikonal equation,
and thus could construct efficient algorithms.

Acknowledgment

This work is supported by the 21st Century COE
Program of the Information Science and Technology
Strategic Core, and the Grant-in-aid for Scientific
Research (S)15100001 of the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

References

[1] R. Kimmel and J. A. Sethian: Fast Marching
Methods on Triangulated Domains, Proc. Nat.
Acad. Sci., 95, 1998, pp. 8431–8435.

[2] T. Nishida and K. Sugihara: Voronoi diagram
in the flow field. Algorithms and Computation,
14th International Symposium, ISAAC 2003,
Kyoto, Springer, 2003, pp. 26–35.

[3] T. Nishida and K. Sugihara: FEM-like Fast
Marching Method for the Computation of the
Boat-Sail Distance and the Associated Voronoi
Diagram. Technical Reports, METR 2003-45,
Department of Mathematical Informatics, the
University of Tokyo, 2003.

[4] J. A. Sethian: Fast marching method. SIAM
Review, vol. 41 (1999), pp. 199–235.

[5] J. A. Sethian: Level Set Methods and Fast
Marching Methods, Second Edition. Cambridge
University Press, Cambridge, 1999.

[6] J. A. Sethisn and M. Popovici: Fast Marching
Methods Applied to Computation of Seismic
Travel Times, Geophysics, 64, 2, 1999.

(a)

(b)

(c)

Fig. 6. Isoplethic curves of the first arrival time and
the shortest paths to query points.

–8–E

研究会Temp
－112－

