
木構造の動的ネットワーク上の施設配置問題に対する
O(n log2 n)時間アルゴリズム
間々田聡子 ∗ 宇野毅明 † 牧野和久 ∗ 藤重悟 ‡

∗ 大阪大学大学院基礎工学研究科 † 国立情報学研究所 ‡ 京都大学数理解析研究所

概要: 動的ネットワークとは，各枝に移動時間と容量が与えられているネットワークである．ここで，各点
に供給量がある木構造の動的ネットワークが与えられているとき，全ての供給量をできるだけ早く送り込む
ことができるような点 vを求める問題を考える．この問題は，木構造ネットワークにおける動的フローと施
設配置問題を複合したもので，木構造ネットワークにおける 1-センター問題の動的フロー版として考えるこ
とができる．本研究では，動的に構造変更が可能な平衡 2分木である区間木を用いた，O(n log2 n)時間アル
ゴリズムを提案する (ただし，nは点数である）．

An O(n log2 n) Algorithm for the Optimal Sink Location Problem
on Dynamic Tree Networks

SatokoMAMADA ∗ TakeakiUNO† KazuhisaMAKINO∗ SatoruFUJISHIGE‡

∗ Osaka University † National Institute of Informatics ‡Kyoto University

Abstract: In this paper, we consider a sink location in a dynamic network which consists of a graph with capacities
and transit times on its arcs. Given a dynamic network with initial supplies at vertices, the problem is to find a
vertexv as a sink in the network such that we can send all the initial supplies tov as quick as possible. Motivated
by evacuation plans, we study dynamic networks of tree structure. We present anO(n log2 n) time algorithm for
the sink location problem, wheren is the number of vertices in the network.

1. Introduction

We consider dynamic networks that include transit
times on arcs. Each arca has the transit timeτ(a) spec-
ifying the amount of time it takes for flow to travel from
the tail to the head ofa. In contrast to the classicalstatic
flows, flows in a dynamic network are calleddynamic.
In the setting, the capacity of an arc limits the rate of the
flow into the arc at each time instance. Dynamic flow
problems were introduced by Ford and Fulkerson [6] in
late 1950s (see e.g. [5]). Since then, dynamic flows have
been studied extensively. One of the main reasons is that
dynamic flow problems arise in a number of applica-
tions such as traffic control, evacuation plans, production
systems, communication networks, and financial flows
(see the surveys by Aronson [2] and Powell, Jaillet, and
Odoni [14]). For example, for building evacuation [7],
verticesv ∈ V model workplaces, hallways, stairwells,
and so on, and arcsa ∈ A model the connection link
between the adjacent components of the building. For
an arca = (v, w), the capacityu(a) represents the num-
ber of people which can traverse the link corresponding
to a per unit time, andτ(a) denotes the time it takes to
traversea from v to w.

This paper addresses the sink location problem in dy-
namic networks: given a dynamic network with the ini-
tial supplies at vertices, find a vertex, called asink, such
that the completion time to send all the initial supplies to

the sink is as small as possible. In the setting of build-
ing evacuation, for example, the problem models the lo-
cation problem of an emergency exit together with the
evacuation plan for it.

Our problem is a generalization of the following two
problems. First, it can be regarded as a dynamic flow
version of the 1-center problem [13]. In particular, if the
capacities are sufficiently large, our problem represents
the 1-center location problem. Secondly, our problem
is an extension of the location problems based on flow
(or connectivity) requirements in static networks, which
have received much attention recently [1, 11, 16, 17].

We consider the sink location problem in dynamictree
networks. This is motivated by evacuation plans [7, 8],
for example. In an emergency, everyone has to be evacu-
ated fairly and without confusion, and hence it is natural
to assume that the possible evacuation routes form a tree.
It is known [12] that the problem can be solved in O(n2)
time by using two-phase algorithm, wheren denotes the
number of vertices in a given network. We show that the
problem is solvable inO(n log2 n) time.

Our algorithm is based on a simple single-phase pro-
cedure, but uses a new technique for implicit represen-
tation which allows us to quick update tablesg i.e., sets
of time intervals[θ1, θ2) with their heightg(θ1) to per-
form three operationsAdd-Table (i.e., adding tables),
Shift-Table (i.e., shifting a table), andCeil-Table (i.e.,

研究会Temp
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
2004－AL－93　　(2)

研究会Temp
2004／1／30

研究会Temp
－9－

ceiling a table by a prescribed capacity). We gener-
alize interval trees (standard data structures for tables)
by attaching additional parameters and show that using
the data structures, we can efficiently handle the above-
mentioned operations. Especially, we can merge tables
gi in O((

∑
i di) log2(

∑
i di)) time, where we say that

tablesgi are mergedif gi’s are added into a single table
g after shifting and ceiling tables are performed, anddi

denotes the number of intervals ingi. This result implies
anO(n log2 n) time bound for the location problem. We
mention that our data structures may be of independent
interest and useful for some other problems which man-
age tables.

We remark that our location problem for general dy-
namic networks can be solved in polynomial time by
solving the quickest transshipment problemn times.
Here the quickest transshipment problem is to find a dy-
namic flow that zeroes all given supplies and demands
within the minimum time, and is polynomially solvable
by an algorithm of Hoppe and Tardos [9]. However,
since their algorithm makes use of submodular function
minimization [10, 15] as a subroutine, it requires poly-
nomial time of high degree. As a corollary of our result,
this paper shows that the quickest transshipment prob-
lem can be solved inO(n log2 n) time if a given network
is a tree and has a single sink.

The rest of the paper is organized as follows. The next
section provides some preliminaries and fixes notation.
Section 3 presents a simple single-phase algorithm for
the sink location problem, and Section 4 describes and
discusses our data structures. In Section 5, we analyze
the complexity of our single-phase algorithm with our
data structures. Finally, we give some conclusions in
Section 6.

2. Definitions and Preliminaries
Let T = (V,E) be a tree with a vertex setV and an

edge setE. LetN = (T, c, τ, b) be a dynamic flow net-
work with the underlying undirected graph being the tree
T , wherec : E → R+ is a capacity function represent-
ing the least upper bound for the rate of flow through
each edge per unit time,τ : E → R+ a transit time
function, andb : V → R+ a supply function. Here,R+

denotes the set of all nonnegative reals and we assume
the number of vertices inT is at least two.

This paper addresses the problem of finding a sinkt ∈
V such that we can send given initial suppliesb(v) (v ∈
V \ {t}) to sinkt as quick as possible. Suppose that we
are given a sinkt in T . Then,T is regarded as an in-
tree with roott, i.e., each edge ofT is oriented toward
the roott. Such an oriented tree with roott is denoted by
~T (t) = (V, ~E(t)). Each oriented edge in~E(t) is denoted
by the ordered pair of its end vertices and is called an
arc. For each edge{u, v} ∈ E, we write c(u, v) and
τ(u, v) instead ofc({u, v}) andτ({u, v}), respectively.

For any arce ∈ ~E(t) and anyθ ∈ R+, we denote by
fe(θ) the flow rate entering the arce at time θ which
arrives at the head ofe at timeθ + τ(e). We callfe(θ)
(e ∈ ~E(t), θ ∈ R+) a continuous-time dynamic flowin
~T (v∗) (with a sinkv∗) if it satisfies the following three
conditions, whereδ+(v) andδ−(v) denote the set of all
arcs leavingv and enteringv, respectively.

(a) (Capacity constraints): For any arce ∈ ~E(t) and
θ ∈ R+,

0 ≤ fe(θ) ≤ c(e).

(b) (Flow conservation): For anyv ∈ V \ {v∗} and
Θ ∈ R,

∑

e∈δ+(v)

∫ Θ

0

fe(θ)dθ −
∑

e∈δ−(v)

∫ Θ

τ(e)

fe(θ − τ(e))dθ ≤ b(v).

(c) (Demand constraints): There exists a timeΘ ∈ R+

such that
∑

e∈δ−(v∗)

∫ Θ

τ(e)

fe(θ − τ(e))dθ −
∑

e∈δ+(v∗)

∫ Θ

0

fe(θ)dθ

=
∑

v∈V \{v∗}
b(v). (1)

As seen in (b), we allow intermediate storage (or hold-
ing inventory) at each vertex. For a continuous-time dy-
namic flowf , let θf be the minimum timeθ satisfying
(1), which is called thecompletion time for f . We fur-
ther denote byC(v∗) the minimumθf among all contin-
uous dynamic flowsf in ~T (v∗). We study the problem
of computing a sinkv∗ ∈ V with the minimumC(v∗).
This problem can be regarded as a dynamic version of
the 1-center location problem (for a tree) [13]. In partic-
ular, if c(v, w) = +∞ (a sufficiently large real) for each
edge{v, w} ∈ E, our problem represents the 1-center
location problem [13].

We remark that dynamic flows can be restricted to
those having no intermediate storage without chang-
ing optimal sinks of our problem (see discussions in
[6, 9, 12], for example).

2.1. AnO(n2) algorithm given in [12]
In this section, we review the outline of anO(n2) al-

gorithm which has been proposed in [12], in order to
make our faster algorithm easily understood.

The algorithm consists of two phases, Phases I and II.
Phase I arbitrarily chooses a vertext ∈ V as a candi-
date sink and compute the completion timeC(t) and a
dynamic flowf that completes inC(t). Then Phase II
computes an optimal sinkt∗ by repeatedly picking up a
new candidate sink̂t that is adjacent to the current onet
and updatingt := t̂ if C(t̂) < C(t).

In both phases, we keep two tables,Arriving Ta-
ble Av and Sending TableSv for each vertexv ∈
V . Arriving Table Av represents the sum of the flow

研究会Temp
－10－

rates arriving at vertexv as a function of timeθ, i.e.,∑
e∈~E(t):e=(u,v) fe(θ− τ(e)) + ηθ(v), wherefe(θ) = 0

holds for anye ∈ ~E(t) andθ < 0, andηθ(v) = b(v)
∆ if

0 ≤ θ < ∆; otherwise 0. Here,∆ denotes a sufficiently
small positive constant. Sending TableSv represents the
flow rate leaving vertexv as a function of timeθ, i.e.,
f(v,w)(θ), where(v, w) ∈ ~E(t).

Let us consider a tableg : R+ → R+ , which rep-
resents the flow rate in timeθ ∈ R+. Here, we assume
g(θ) = 0 for θ < 0. Since our problem can be solved
by sending out as much amount of flow as possible from
each vertex to its parent if a candidate sinkt is chosen
in advance, we only consider the tableg which is repre-
sentable as

g(θ) =





0 if θ < θ1

g(θi) if θi ≤ θ < θi+1 for i = 1, · · · , k − 1
0 if θ ≥ θk,

whereθi < θi+1 andg(θi) 6= g(θi+1) for i = 1, . . . , k.
Thus, we represent such tablesg by a set of intervals
(with their height), i.e.,

((−∞, θ1), 0), ([θi, θi+1), g(θi)) (i = 1, · · · , k),

whereθk+1 = +∞ andg(θk) = 0. A time θ is called
a jump time of g if limx→−0 g(θ + x) 6= limx→+0

g(θ + x).
Let us now describe Phases I and II as follows.

Algorithm DOUBLE-PHASE

(Phase I)
Step 0: Choose a vertext arbitrarily. PutT ′ ← ~T (t).
Step 1: If T ′ consists oft alone, then go to Step 3. For each

leaf v of T ′, construct Sending TableSv from Arriving
TableAv by boundingAv by c(v, w), wherew is a par-
ent ofv in T ′.

Step 2: For each non-leafw whose children are all leaves,
construct Arriving TableAw from Sending TablesSv of
its childrenv by shiftingAv right byτ(v, w) and adding
all such shifted tables and the initial supplyηθ(w).
Remove all the leavesv(6= t) from T ′ and denote the re-
sultant tree byT ′ again.
Go to Step 1.

Step 3: Compute the completion timeC(t) from At.
(Phase II)
Step 0: Find a childv of root t that sendst the last flow (i.e.,

the flow that arrives at timeC(t)). Put t̂ ← v and con-
sidert̂ as a new sink.

Step 1: Compute the completion timeC(t̂) and the corre-
sponding tables as follows.

(1-1) Compute new Arriving TableÃt by subtracting
from At the table obtained fromSt̂ by shifting it
right by τ(t̂, t).

(1-2) Compute fromÃt Sending TableSt to go through
(t, t̂) (as in Step 1 of Phase I).

(1-3) Compute Arriving TableÃt̂ by addingAt̂ and the
table constructed fromSt by shifting it right by
τ(t, t̂). Compute the completion timeC(t̂).

Step 2:

(2-1) If C(t) < C(t̂), then returnt∗ = t and halt.
(2-2) If C(t) ≥ C(t̂) and the last flow reaches sink̂t

from t, then returnt∗ = t̂ and halt.
(2-3) Otherwise, putt ← t̂ and go to Step 0. 2

Note that tablesAv and Sv can be constructed by
adding, shifting, and/or bounding the other tables. Now,
we more formally describe how to compute them.

In Step 1 of Phase I, Arriving TableAv for a leafv of
the original~T (t) is given as

((−∞, 0), 0), ([0, ∆), b(v)/∆), ([∆, +∞), 0), (2)

and Sending TableSv for a leaf v of T ′ can be con-
structed fromAv as follows. LetAv be represented as

((−∞, θ1), 0), ([θi, θi+1), hi) (i = 1, 2, · · · , k),

whereθk+1 = +∞ andhk = 0, and letRi = (hi −
c(v, w))(θi+1 − θi).

Step 1: Output((−∞, θ1), 0) andi := 1
Step 2: If Ri < 0, then output([θi, θi+1), hi), and i :=

i + 1. Otherwise, letα be an integer such that∑j

`=i
R` ≥ 0 for j ≤ α − 1 and

∑α

`=i
R` < 0 and

let β = θα +
∑α−1

`=i
R`/(c(v, w) − hα). Then output

([θi, β), c(v, w)) and([β, θα+1), hα), andi := α + 1.
Step 3: If i = k + 1, then halt. Otherwise, go to Step 2.

Step 2 of Phase I computes Arriving TableAw from
Sv for childrenv’s of w and the initial supply ofw as
follows.

For a child v of w, let Sv be represented as
((−∞, θv

1), 0), ([θv
i , θv

i+1), h
v
i) (i = 1, 2, · · · , kv),

where θv
kv+1 = +∞ and hv

kv
= 0, and let

the initial supply of w be represented as in (2):
((−∞, 0), 0), ([0, b(w)/∆),∆), ([b(w)/∆, +∞), 0).
From these tables, we first sort all the elements in
{θv

i + τ(v, w) | v : a child ofw, i = 1, · · · , kv + 1} ∪
{0, b(w)/∆, +∞} asθ1 < θ2 < · · · < θk+1 (= +∞),
and then output((−∞, θ1), 0) and(

[θi, θi+1),
∑

v: a child ofw

hv(θi − τ(v, w)) + hw(θi)
)
,

where i = 1, 2, · · · , k, hv(θ) and hw(θ) denote the
height of the tableSv and the initial supply ofw at time
θ, respectively.

By using similar methods, Phase II computes the ta-
bles.

It was shown in [12] that AlgorithmDOUBLE-PHASE

correctly computes an optimal sink and it requires O(n2)
time. The latter follows from the fact that each tableg
can be computed in time linear in the total number of
intervals in the tables from whichg is constructed and
the number of intervals in each table is linear inn.1

Namely, we have the following theorem.
1 It was shown in [12] that the number of intervals is at most3n for

discrete-timedynamic flows.

研究会Temp
－11－

Theorem 2.1([12]): AlgorithmDOUBLE-PHASE solves
the sink location problem inO(n2) time. 2

3. A Single-Phase Algorithm
Algorithm DOUBLE-PHASE consists of two phases.

This section presents a simpleO(n2) algorithm with a
single phase. Because of the simplicity, it gives us a
good prospect to develop a faster algorithm. In fact, we
can construct añO(n) algorithm based on this frame-
work, which is given in the next section.

Intuitively, our single-phase algorithm first constructs
Arriving TablesAv for all leavesv. Then the algorithm
finds a leafv∗ such thatT has an optimal sink other than
v∗ and removes it fromT . If some vertexv becomes a
leaf of the modified treeT , then the algorithm computes
Arriving TableAv for such a new leafv by using Arriv-
ing tables for the vertices that are adjacent tov and have
already been removed. The algorithm repeatedly applies
this procedure toT until T becomes a single vertext,
and outputs such a vertext as an optimal sink.

Algorithm SINGLE-PHASE

Step 0: Let W := V , and letL be the set of all leaves ofT .
For eachv ∈ L, construct Arriving TableAv.

Step 1: For eachv ∈ L, construct fromAv Sending TableSv

to go through(v, p(v)), wherep(v) is a vertex adjacent
to v in T . Compute the timeTime(v, p(v)) at which the
flow based onSv is completely sent top(v).

Step 2: Compute a vertexv∗ ∈ L such thatTime(v∗, p(v∗))
= minv∈L Time(v, p(v)). Let W := W \ {v∗} and
L := L \ {v∗}.
If there exists a leafv of T [W] such thatv is not con-
tained inL,

then:
(1) Let L := L ∪ {v}.
(2) Construct Arriving TableAv from the initial supplyηθ(v)

and Sending TableSv′ for the verticesv′ that are adja-
cent tov in T and have already been removed fromW .

(3) Compute fromAv Sending TableSv to go through
(v, p(v)) wherep(v) is a vertex adjacent tov in T [W],
and computeTime(v, p(v)).

Step 3: If |W | = 1, then outputt ∈ W as an optimal sink.
Otherwise, return to Step 2. 2

HereT [W] denotes a subtree ofT induced by a vertex
setW , and tablesAv andSv are constructed as in Algo-
rithm DOUBLE-PHASE.

Note that at most one leafv of T [W] is not contained
in L in the if-statement of Step 2, andL is always the
set of all leaves ofT [W] before executing Step 2 in each
iteration. Denote byT(v,w) the tree containingv and
obtained by removing edge(v, w) fromT , and byT+

(v,w)

the trees obtained by addingT(v,w) to edge(v, w). Then
we can see thatTime(v, p(v)) in Step 1 or 2 represents

the completion time for
−→
T+

(v,p(v))(p(v)).
Lemma 3.1: AlgorithmSINGLE-PHASE outputs an op-
timal sinkt. 2

Similarly as AlgorithmDOUBLE-PHASE, it is not dif-
ficult to see that AlgorithmSINGLE-PHASE requires
Θ(n2) time if we construct Arriving and Sending Tables
explicitly. In Section 4, we present a method to represent
these tables implicitly, and develop anO(n log2 n) time
algorithm for our location problem.

4. Data Structure for Arriving and Send-
ing Tables

This section presents sophisticated data structures
which can be used to represent Arriving/Sending Ta-
blesimplicitly. We adopt interval trees for them, which
are standard data structures for a set of intervals. Note
that SINGLE-PHASE only applies to tablesAv and/or
Sv the following three basic operations:Add-Table(i.e.,
adding tables),Shift-Table(i.e., shifting a table), and
Ceil-Table (i.e., ceiling a table by a prescribed capac-
ity). It is known that interval trees can efficiently handle
operationsAdd-TableandShift-Table(see Section 4.1).
However, standard interval trees cannot efficiently han-
dle operationCeil-Table. This paper develops new inter-
val trees which efficiently handle all the three operations.

4.1. Interval Trees

This section explains our interval trees for data struc-
tures of tablesAv andSv. Our interval trees are imple-
mented by using binary balanced trees. Letg be a table
represented as

Ii = ([θi, θi+1), g(θi)) (i = 0, 1, · · · , k), (3)

whereθ0 = −∞, θk+1 = +∞, andg(θ0) = g(θk) =
0,2 and letBTg denote a binary tree forg. We denote
the root byrBT and the height ofBT by height(BT).
The binary treeBTg has an additional parametertbase

to represent how muchg is shifted right. Thistbase

is used for operationShift-Tableby updatingtbase to
tbase + µ, whereµ denotes the time to shift the table
right. Moreover, each nodex in BTg has five nonnega-
tive parametersbase(x), ceil(x), he(x), tr(x), andtl(x)
with tl(x) ≤ tr(x), and each leaf hase(x) in addition,
where these parameters will be explained later. A leaf
x is calledactive if tl(x) < tr(x) and dummyother-
wise. The time intervals of a tableg correspond to the
active leaves ofBTg bijectively. We denote by#(BT)
the number of active leaves ofBT .

Initially (i.e., immediately after constructingBTg by
operationMAKETREE given below),BTg contains no
dummy leaf and hence there exists a one-to-one corre-
spondence between the time intervals ofg and leaves
of BTg. Moreover, for each leafx corresponding toIi

in (3), we havetl(x) = θi, tr(x) = θi+1, base(x) =
g(θi) and ceil(x) = +∞, and for each non-leafx,
tl(x)= miny∈Leaf (x) tl(y), tr(x)= maxy∈Leaf (x) tr(y),

2 For simplicity, we write the first intervalI0 as([−∞, θ1), 0) in-
stead of((−∞, θ1), 0).

研究会Temp
－12－

base(x) = 0 andceil(x) = +∞. Here,Leaf (x) de-
notes the set of all leaves which are descendants ofx.
Namely,tl(x) andtr(x), respectively, represent the start
and the end points of the interval corresponding tox, and
base(x) andceil(x), respectively, represent the flow rate
and the upper bound for the flow rate in the time interval
corresponding tox.

Operation MAKETREE(g: table)
Step 1: Let tbase := 0.
Step 2: Construct a binary balanced treeBTg whose leaves

xi correspond to the time intervalIi of g in such a way
that the leftmost leaf corresponds to the first intervalI0,
the next one corresponds to the second intervalI1, and so
on.

Step 3: For each leafxi corresponding to intervalIi =

[θi, θi+1), base(x) := g(θi), tl(x) := θi andtr(x) :=

θi+1.
Step 4: For each non-leafx, base(x) := 0, and tl(x) :=

miny∈Leaf (x) tl(y) andtr(x) := maxy∈Leaf (x) tr(y).
Step 5: For each nodex, ceil(x) := +∞.
Step 6: For each leafx, sete(x), and for each nodex, set

he(x), wheree(x) andhe(x) shall be explained later.2

We can easily compute a tableg from BTg con-
structed byMAKETREE. It should also be noted that
a binary treeBT g is not unique, i.e., distinct trees may
represent the same tableg.

As mentioned in this section,Shift-Tablecan easily
be handled by updatingtbase. We now considerAdd-
Table, i.e., constructing a tableg by adding two tables
g1 andg2, where we regard an addition ofk tables as
k − 1 successive additions of two tables. Let us assume
that #(BTg1) ≥ #(BTg2), that is,g1 has at least as
many intervals asg2. Our algorithm constructsBTg by
adding all intervals (corresponding to active leaves) of
BTg2 one by one toBTg1 . Each addition of an interval
([θ1, θ2), c) to BTg1 , denoted byADD(BT1; θ1, θ2, c),
can be performed as follows.

We first modifyBTg1 to B̃Tg1 that has (active) leaves
x andy such thattl(x) = θ1 andtr(y) = θ2 if there exist
no such leaves. We can see that the time interval[θ1, θ2)
can be represented by the union of disjoint maximal in-
tervals inB̃Tg1 , i.e., the set of incomparable nodes in
B̃Tg1 , denoted byrep(θ1, θ2) .We then updatebase of
B̃Tg1 as follows

base(x) := base(x) + c for all x ∈ rep(θ1, θ2).

By successively applying this procedure to new interval
treeB̃Tg1 and each of the remaining intervals inBTg2 ,
we can constructBTg with g = g1 + g2.

For an interval treeBT and an active leafx of BT ,
let y1(= x), y2, · · · , ys(= rBT) denote the path fromx
to the rootrBT . The procedure given above shows that
the height of an active leafx representing the flow rate
of the corresponding interval can be represented as

h(x) =
s∑

i=1

base(yi). (4)

Operation ADD(BTg1 ; θ1, θ2, c) can be handled in
O(log n) time, since|rep(θ1, θ2)| ≤ 2height (BTg1) =
O(log n). This means thatBTg can be constructed from
BTg1 andBTg2 in O(#(BTg2) log n) time. Moreover,
operationsAdd-Tablein Algorithm SINGLE-PHASE can
be performed inO(n log2 n) time in total, since we al-
ways add a smaller table to a larger one (see Section 4.3
for the details). ThusAdd-Tablecan be performed effi-
ciently.

However, operationsCeil - Table in Algorithm
SINGLE-PHASE requireΘ(n2) time in total, since the
algorithm containsΘ(n) Ceil-Table, each of which re-
quiresΘ(n) time, even if we use interval trees as data
structures for tables. Therefore, when we boundBT by
a constantc, we omit modifyingtl, tr, andbase, and
keepc asceil(rBT) = c. Clearly, this causes difficulties
to overcome as follows.

First, h(x) in (4) does not represent the actual height
any longer. We callh(x) thetentative heightof x in BT ,
and theactual height̂h(x) is computed as

ĥ(x) = h(x)−max
k
{0,

k∑

i=1

base(yi)− ceil(yk)}, (5)

wherey1(= x), y2, · · · , ys(= rBT) denotes the path
from x to rBT . Note thatceil(yk) has finite value, since
tables are added successively. Intuitively, for a nodeyk

in BT , ceil(yk) represents the upper bound of the height
of active leavesx ∈ Leaf (yk) within the subtree ofBT

whose root isyk. Thus
∑k

i=1 base(yi)− ceil(yk) has to
be subtracted from the heighth(x) if

∑k
i=1 base(yi) −

ceil(yk) > 0, and the actual height̂h(x) is obtained by
subtracting their maximum. Note thatĥ(x) = h(x)
holds for all active leavesx of a tree constructed by
MAKETREE.

We next note that there exists no ono-to-one corre-
spondence between active leaves inBT and time in-
tervals of the table thatBT represents, if we just set
ceil(rBT) = c. In this case, the table is updated
too drastically to efficiently handle the operations after-
wards. Thus by modifyingBT (as shown in the subse-
quent subsections), we always keep the one-to-one cor-
respondence, i.e., the property that any two consecutive
active leavesx andx′ satisfy

ĥ(x) 6= ĥ(x′). (6)
We finally note that, for an active leafx, tl(x) and

tr(x) do not represent the start and the end points of the
corresponding interval. Letx be an active leaf inBT
that does not correspond to the first interval or the last
interval. For such anx, let x− and x+ denote active
leaves inBT which are left-hand and right-hand neigh-
bors ofx, respectively, i.e.,

tr(x−) = tl(x), tl(x+) = tr(x).

Then the start and the end points of the corresponding
interval can be obtained by

研究会Temp
－13－

t̂r(x) = tbase + tr(x) +

(tr(x)− tl(x))× h(x)− ĥ(x)

ĥ(x)− ĥ(x+)
(7)

t̂l(x) = t̂r(x−) (8)

Here t̂r(x) and t̂l(x) are well-defined from (6). For ac-
tive leavesx andy corresponding to the first interval and
the last interval, we havêtl(x) = −∞, t̂r(x) = tl(x+),
t̂l(y) = t̂r(y) andt̂r(y) = +∞.

It follows from (5), (7), and (8) that̂h(x), t̂r(x), and
t̂l(x) can be computed frombase, ceil, tr(x), andtl(x)
in O(height(BT)) time. In order to check (6) efficiently,
each active leafx has

e(x) =





max{0, h(x)− h(x+)} × tr(x+)− tr(x)
tr(x+)− tl(x)

if x+ exists
+∞ otherwise

and each nodex has

he(x) = max
y∈Leaf A(x)

{
∑

z∈path(x,y)

base(z)− e(y)},

whereLeaf A(x) denotes the set of active leaves that
are descendants ofx, andpath(x, y) denotes the set of
nodes on the path fromx to y. We have the following
lemma.

Lemma 4.1: Let BT be a binary tree in whicĥh(x) 6=
ĥ(x+) holds for every active leafx. After boundingBT
by a constantc,

(i) ĥ(x) 6= ĥ(x+) holds for an active leafx if and only
if x satisfiesh(x)− e(x) < c,

(ii) all active leavesx in BT satisfyĥ(x) 6= ĥ(x+) if
and only ifhe(rBT) < c.

Moreover, we can compute an active leafx with ĥ(x) =
ĥ(x+) in O(height(BT)) time by scanninghe(x) from
the rootrBT . Note thathe(x) can be obtained by the
following bottom-up computation.

he(x)=





base(x)− e(x) if x is a leaf
max{he(x1), he(x2)}+ base(x)

otherwise,
(9)

wherex1 andx2 denote the children ofx. This means
that preparing and updatinghe’s can be handled effi-
ciently.

In summary, we always keep the following conditions
for binary treesBTg to represent tablesg. Note thatBT
satisfies the conditions.

(C0) For any nodex, BT maintains tl(x), tr(x),
ceil(x), base(x), andhe(x). For any leafx, BT
maintainse(x) in addition.

(C1) Any nodex satisfiestl(x) ≤ tr(x). Any non-leaf
x satisfiestl(x) = miny∈Leaf (x) tl(y), and tr(x)
= maxy∈Leaf (x) tr(y).

(C2) Any active leafx satisfiestr(x) = tl(x+).
(C3) Any active leafx satisfieŝh(x) 6= ĥ(x+),
(C4) Any active leafx satisfieŝh(x) ≥ h(x)− e(x).

A binary treeBT is calledvalid if it satisfies conditions
(C0)∼ (C4). For example, a binary treeBT constructed
by MAKETREE is valid.

4.2. OperationNORMALIZE

As discussed in Section 4.1, we represent a tableg as
a valid binary balanced treeBT . For an active leafx,
our algorithm sometimes need to updateBT to get one
havingaccuratex, i.e.,baseandceil are updated so that

base(y) :=
{

0 for a proper ancestory of x− or x

ĥ(y) for y = x− or x

ceil(y) := +∞ for an ancestory of x− or x (10)

tr(y) = tl(y+) := t̂r(y) for y = x− or x

For example, this can be performed before modifying
BT to keep (6).

The following operation, calledNORMALIZE, up-
datesBT as above, and also maintains the balance of
BT (i.e.,height(BT) = O(log n)).

Operation NORMALIZE(BT, x : an active leaf)
Step 1: Update base and ceil by the following top-

down computation along the path fromrBT to the
parent ofy for y = x− or x. For a nodez on the
path and its childrenz1 andz2,

base(zi) := base(zi) + base(z), base(z) := 0,
ceil(zi) := min{ceil(zi) + base(z), ceil(z)},
ceil(z) := +∞.

Step 2: If x was added toBT immediately before this
operation, then rotateBT in order to keep the bal-
ance ofBT .

Step 3: Fory = x, x−, if base(y) > ceil(y),
thentr(y) = tl(y+) := t̂r(y), base(y) := ceil(y),

otherwiseceil(y) := +∞.

Step 4: For y = x−, x, x+, updatetl, tr, e, andhe by
the bottom-up computation along the path fromy
to rBT . 2

Note that nodes may be added toBT (by operation
SPLIT in the next section), but are never removed from
BT , although some nodes become dummy. This simpli-
fies the analysis of the algorithm, since removing a node
from BT requires the rotation ofBT that is not easily
implemented.

It is not difficult to see that the treeBT ′ obtained by
NORMALIZE is valid, satisfies (10), and represents the

研究会Temp
－14－

same table asBT . Moreover, since the lengths of the
paths in Steps 1 and 4 areO(height(BT)), BT ′ can be
computed fromBT in O(height(BT)) time. Thus we
have the following lemma.

Lemma 4.2: Let BT be a valid binary balanced tree
representing a tableg, and letx be an active leaf of
BT . ThenBT ′ obtained byNORMALIZE(BT, x) is a
valid binary balanced tree that representsg and satis-
fies(10). Furthermore,BT ′ is computable fromBT in
O(height(BT)) time.

4.3. Add-Table

This section shows how to add two binary balanced
treesBTg1 andBTg2 for tablesg1 andg2. We have al-
ready mentioned an idea of our Add-Table after describ-
ing operationMAKETREE. Formally it can be written as
follows.

Input: Two valid binary balanced treesBTg1 andBTg2

for tablesg1 andg2.

Output: A valid binary balanced treeBTg for g = g1+
g2.

Step 1: If #(BTg1) ≥ #(BTg2), thenBT1 := BTg1

andBT2 := BTg2 . OtherwiseBT1 := BTg2 and
BT2 := BTg1 .

Step 2: For each active leafx ∈ BT2, computet̂l(x),
t̂r(x) and ĥ(x), and call operationADD for BT1,
t̂l(x), t̂r(x), andĥ(x). 2

Operation ADD(BT , θ1, θ2, c)

Step 1: Call SPLIT(BT , θ1 − tBT
base) and SPLIT (BT ,

θ2−tBT
base), wheretBT

base denotes the parametertbase

for BT .

Step 2: For a nodex in rep(θ1 − tBT
base, θ2 − tBT

base),
base(x) := base(x) + c, ceil(x) := ceil(x) + c,
andhe(x) := he(x) + c.

Step 3: For a nodex such thattl(x) = θ1 − tBT
base, call

NORMALIZE(BT, x).

If base(x−) = base(x) (i.e., ĥ(x−) = ĥ(x)), then
y := x−,

base(y) :=
1

tr(y+)− tl(y)

(
h(y)(tr(y)− tl(y))

+h(y+)(tr(y+)− tl(y+))
)

tr(y) := tr(y+) (11)

tl(y+) = tr(y+) (i.e.,y+ becomes dummy).

and call NORMALIZE(BT ,y) and NORMAL-
IZE(BT , y+).

Step 4: For a leafy such thattr(y) = θ2 − tBT
base, call

NORMALIZE(BT , y).

If base(y)=base(y+) (i.e., ĥ(y) = ĥ(y+)), then
update base(y), tr(y), tl(y+) and tr(y+) as
(11), and callNORMALIZE(BT, y) andNORMAL-
IZE(BT, y+). 2

Steps 3 and 4 are performed to keep (6). Note that
he(x) is updated in Step 2 for all nodes inrep(θ1 −
tBT
base, θ2 − tBT

base). It follows from (9) thathe(y) must
be updated for all proper ancestorsy of a node in
rep(θ1 − tBT

base, θ2 − tBT
base). Since a proper ancestory

of some node inrep(θ1 − tBT
base, θ2 − tBT

base) is a proper
ancestor of the nodex such thattl(x) = θ1 − tBT

base or
tr(x) = θ2− tBT

base, all suchhe(y)’s are updated in Steps
3 and 4 by operationNORMALIZE.

Operation SPLIT(BT, t : a nonnegative real)
Step 1: Find a nodex such thattl(x) ≤ t < tr(x).
Step 2: Call NORMALIZE(BT, x−) and NORMAL-

IZE(BT, x).
Step 3: If tl(x) = t, then halt.

Step 4: For the nodey ∈ {x−, x} such thattl(y) ≤
t < tr(y), construct the left childy1 with tl(y1) :=
tl(y), tr(y1) := t, base(y1) := 0 andceil(y1) :=
+∞, and construct the right childy2 with tl(y2) :=
t, tr(y2) := tr(y), base(y2) := 0 andceil(y2) :=
+∞.

Step 5: Call NORMALIZE(BT , y1) and NORMAL-
IZE(BT, y2). 2

We can see that the following two lemmas hold.

Lemma 4.3: Let BT be a valid binary balanced tree
representing a tableg, and lett be a nonnegative real.
ThenBT ′ obtained by operationSPLIT(BT, t) is a valid
binary balanced tree representingg. 2

Lemma 4.4: Let BT be a valid binary balanced tree
representing a tableg, and let I = ([θ1, θ2), c) be a
time interval. ThenADD(BT, θ1, θ2, c) produces a valid
binary balanced tree representing the tableg + I, and
moreover, it can be handled inO(height(BT)) time. 2

4.4. Operation Ceil-Table
This section considers operationCeil-Table. Let BT

be a a valid binary balanced tree representing a tableg
and letc be an upper bound ofBT . As mentioned in
Section 4.1, we setceil(rBT) = c, and modifyBT so
thatĥ(x) 6= ĥ(x+) holds for any two consecutive active
leavesx andx+.

Operation CEIL(BT, c : a positive real)

Step 1: Compute the leftmost active leafy such that
h(y) − e(y) ≥ c by usinghe. If BT has no such
node, then go to Step 5.

研究会Temp
－15－

Step 2: Call NORMALIZE(BT, y), and updatebase(y),
tr(y), tl(y+) andtr(y+) as (11).

Step 3: Call NORMALIZE(BT , y) and NORMAL-
IZE(BT , y+). Return to Step 1.

Step 4: For a rootrBT , ceil(rBT) := c. 2

Lemma 4.5: Let BT be a valid binary balanced tree
representing a tableg, and letc be a nonnegative real.
ThenBT ′ obtained by operationCEIL(BT, c) is a valid
binary balanced tree representing the table obtained
fromg by ceiling it byc. 2

Step 3 concatenates two consecutive active leavesx
andx+, wherex+ becomes dummy. We notice that the
active leafx (which has already been concatenated) may
further be concatenated. This means thatĥ(x) = ĥ(x+)
may hold after successive concatenations, even if origi-
nalBT satisfieŝh(x) 6= ĥ(x+).

5. Time complexity ofSINGLE-PHASE with
our data structures

In this section, we analyze the complexity of Algo-
rithm SINGLE-PHASE with our data structures. Recall
that the algorithm only applies to tablesAv and/orSv the
following three basic operations:Add-Table(i.e., adding
tables),Shift-Table(i.e., shifting a table), andCeil-Table
(i.e., ceiling a table by a prescribed capacityc).

Lemma 5.1: All Shift-Table’s in SINGLE-PHASE re-
quireO(n) time in total. 2

Lemma 5.2: All Add-Table’s in SINGLE-PHASE re-
quireO(n log2 n) time in total. 2

Lemma 5.3: All Ceil-Table’s in SINGLE-PHASE re-
quireO(n log n) time in total. 2

From lemmas above, we have the following result.

Theorem 5.4: The sink location problem on dynamic
tree networks can be solved inO(n log2 n) time. 2

If a given network is a tree and has a single sink, we
can show the following corollary.

Corollary 5.5: If a given network is tree and has a sin-
gle sink,SINGLE-PHASE can solve the quickest trans-
shipment problem inO(n log2 n) time. 2

6. Conclusions
In this paper, we have developed anO(n log2 n) time

algorithm for a sink location problem for dynamic flows
in a tree network. This improves upon an O(n2) time
algorithm in [12].

We have considered continuous-time dynamic flows
that allow intermediate storage at vertices. We note that

optimal sinks remain the same, even if we do not al-
low intermediate storage, and moreover, our algorithm
can also be applicable for discrete-time dynamic flows.
Therefore, our sink location problem is solvable in
O(n log2 n) time for dynamic continuous-time/discrete-
time flows with/without intermediate storage.

Acknowledgements
This research is partially supported by the Grant-in-

Aid for Creative Scientific Research of the Ministry of
Education, Culture, Sports, Science and Technology.

References
[1] K. Arata, S. Iwata, K. Makino and S. Fujishige: Locating sources

to meet flow demands in undirected networks,Journal of Algo-
rithms, 42 (2002) 54–68.

[2] J. E. Aronson: A survey of dynamic network flows,Annals of
Operations Research, 20 (1989) 1–66.

[3] L. G. Chalmet, R. L. Francis and P. B. Saunders: Network models
for building evacuation.Management Science, 28(1982) 86–105.

[4] L. Fleischer andÉ. Tardos: Efficient continuous-time dynamic
network flow algorithms,Operations Research Letters, 23 (1998)
71–80.

[5] L. R. Ford, Jr. and D. R. Fulkerson: Constructing maximal dy-
namic flows from static flows,Op. Res., 6 (1958) 419–433.

[6] L. R. Ford, Jr. and D. R. Fulkerson:Flows in Networks, (Prince-
ton University Press, Princeton, NJ, 1962).

[7] H. W. Hamacher and S.A.Tjandra: Mathematical modelling of
evacuation problems: A state of the art, In:Pedestrain and Evac-
uation Dynamics, Springer, (2002) 227–266.

[8] B. Hoppe andÉ. Tardos: Polynomial Time Algorithms for some
evacuation problems, In:Proc. of 5th Ann. ACM-SIAM Symp.
on Discrete Algorithms, (1994) 433–441.

[9] B. Hoppe andÉ. Tardos: The quickest transshipment problem,
Mathematics of Operations Research, 25 (2000) 36–62.

[10] S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial
strongly polynomial algorithm for minimizing submodular func-
tions,Journal of the ACM, 48 (2001) 761–777.

[11] H. Ito, H. Uehara and M. Yokoyama: A faster and flexible algo-
rithm for a location problem on undirected flow networks,IEICE
Trans. Fundamentals, E83-A (2000) 704–712.

[12] S. Mamada, K. Makino and S. Fujishige: Optimal sink location
problem for dynamic flows in a tree network,IEICE Trans. Fun-
damentals, E85-A (2002) 1020–1025.

[13] P. B. Mirchandani and R. L. Francis:Discrete Location Theory
(John Wile & Sons, Inc., 1989).

[14] W. B. Powell, P. Jaillet, and A. Odoni: Stochastic and dynamic
networks and routing, In:Network Routing, Handbooks in Op-
erations Research and Management Science8 (M. O. Ball, et al.,
eds, North-Holland, Amsterdam, The Netherlands, 1995), Chap-
ter 3, 141–295.

[15] A. Schrijver: A combinatorial algorithm minimizing submodular
functions in strongly polynomial time,J. Combinatorial Theory,
B80 (2000) 346–355.

[16] H. Tamura, M. Sengoku, S. Shinoda, and T. Abe: Some cover-
ing problems in location theory on flow networks,IEICE Trans.
Fundamentals, E75-A (1992) 678–683.

[17] H. Tamura, H. Sugawara, M. Sengoku, and S. Shinoda: Plural

cover problem on undirected flow networks,IEICE Trans. Fun-

damentals, J81-A (1998) 863–869 (in Japanese).

研究会Temp
－16－

