oo oooooooboooo
IPSJ SIG Technical Report 20040 ALO 930 0 (2)
20040 10 30

000000000000 000000000000
O(nlogn)0 0000000

ooooo* oooot oooo* oootd
*00000000000000 00000000 foooooooooon

gb:boobobbobooboobooboobobooboobooboobobooboabod
googoboooboboobooboboobooboboobobooboobobooboobobo
gboooboooobwo0O0bO0000b000bO00obOo0ooocoboobooboooboooobooooon
poooooooooooooogoooooboooooobo11-0o0oOo0o0oooDooOoooOooboboboogo
gboooooooboboboobgoooobobooo 2[][IDDDDDDDDDDDO(nloan)DDDD
gooooOooooO (ooonOOoOoOoOOOO

An O(n log” n) Algorithm for the Optimal Sink Location Problem
on Dynamic Tree Networks

SatokoMAMADA * TakeakiUNoOf KazuhisaMAKINO* SatoruFUJISHIGE"
* Osaka University T National Institute of Informatics *Kyoto University

Abstract: In this paper, we consider a sink location in a dynamic network which consists of a graph with capacities
and transit times on its arcs. Given a dynamic network with initial supplies at vertices, the problem is to find a
vertexv as a sink in the network such that we can send all the initial supplieasoquick as possible. Motivated

by evacuation plans, we study dynamic networks of tree structure. We pres@fi&sg? n) time algorithm for

the sink location problem, whereis the number of vertices in the network.

1. Introduction the sink is as small as possible. In the setting of build-
ing evacuation, for example, the problem models the lo-
tation problem of an emergency exit together with the
evacuation plan for it.

We consider dynamic networks that include trans
times on arcs. Each archas the transit time(a) spec-
ifying the amount of time it takes for flow to travel from] o]
the tail to the head of. In contrast to the classicafatic ~ ©OUr Problem is a generalization of the following two
flows, flows in a dynamic network are callelgnamic prob-lems. First, it can be regarded as a o!ynaml_c flow
In the setting, the capacity of an arc limits the rate of th¥ersion of the 1-center problem [13]. In particular, if the
flow into the arc at each time instance. Dynamic flofaPacities are sufficiently large, our problem represents
problems were introduced by Ford and Fulkerson [6] i€ 1-center location problem. Secondly, our problem
late 1950s (see e.g. [5]). Since then, dynamic flows hal®an extension of the location problems based on flow

been studied extensively. One of the main reasons is t§gf Connectivity) requirements in static networks, which

dynamic flow problems arise in a number of applicahave received much attention recently [1, 11, 16, 17].

tions such as traffic control, evacuation plans, production We consider the sink location problem in dynarmée
systems, communication networks, and financial flowsetworks. This is motivated by evacuation plans [7, 8],
(see the surveys by Aronson [2] and Powell, Jaillet, arf@r example. In an emergency, everyone has to be evacu-
Odoni [14]). For example, for building evacuation [7],ated fairly and without confusion, and hence itis natural
verticesv € V model workplaces, hallways, stairwells,to assume that the possible evacuation routes form a tree.
and so on, and aras € A model the connection link Itis known [12] that the problem can be solved i(®3)
between the adjacent components of the building. F&me by using two-phase algorithm, wherelenotes the
anarca = (v, w), the capacity:(a) represents the num- number of vertices in a given network. We show that the
ber of people which can traverse the link correspondirgfoblem is solvable i) (n log® n) time.

to a per unit time, and-(a) denotes the time it takes to Qur algorithm is based on a simple single-phase pro-

traversen from v to w. cedure, but uses a new technique for implicit represen-
This paper addresses the sink location problem in dyation which allows us to quick update tablgse., sets

namic networks: given a dynamic network with the ini-of time intervals[f;, 62) with their heightg(6;) to per-

tial supplies at vertices, find a vertex, callediak such form three operation@dd Table (i.e., adding tables),

that the completion time to send all the initial supplies t&hift Table (i.e., shifting a table), anceil-Table (i.e.,

0on

研究会Temp
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
2004－AL－93　　(2)

研究会Temp
2004／1／30

研究会Temp
－9－

ceiling a table by a prescribed capacity). We geneFor any arce € E(t) and anyd € R, we denote by
alize interval trees (standard data structures for tableg)(#) the flow rate entering the arc at time 6 which
by attaching additional parameters and show that usirgrives at the head ef at time6 + 7(e). We call f.(9)
the data structures, we can efficiently handle the above-< E(t), # € R.,) acontinuous-time dynamic floiw
mentioned operations. Especially, we can merge tabl@gv*) (with a sinkv*) if it satisfies the following three
gi iIn O((32, di) log® (3", d;)) time, where we say that conditions, wheré* (v) ands~ (v) denote the set of all
tablesg; are mergedf g;'s are added into a single tablearcs leaving and entering, respectively.

g after shifting and ceiling tables are performed, ahd (a) (Capacity constraints): For any aroc E(t) and

denotes the number of intervalsgn This result implies 0cR.,

anO(nlog® n) time bound for the location problem. We '

mention that our data structures may be of independent 0 < fe(6) < c(e).

interest and useful for some other problems which mang) (Flow conservation): For any € V \ {v*} and
age tables. ©® € R,

We remark that our location problem for general dy- o
namic networks can be solved in polynomial time by ~}~ /fe(H)de >
solving the quickest transshipment problemtimes. ecst(v)”0 e€s—(v)
Here the quickest transshipment problem is to find a dy
namic flow that zeroes all given supplies and demand

.
/ Jo 0= 7N <10)

'gc) (Demand constraints): There exists atithe R,

within the minimum time, and is polynomially solvable such that o o

by an algorithm of Hoppe and Tardos [9]. However, fo(0 —7(e))db _Z /fs(g)dg
since their algorithm makes use of submodular function ecd—(ve)? () ccot(ve)”0
minimization [10, 15] as a subroutine, it requires poly-

nomial time of high degree. As a corollary of our result, = Z b(v). (1)

this paper shows that the quickest transshipment prob- veVA{v}

lem can be solved i0)(n log” n) time if a given network - As seen in (b), we allow intermediate storage (or hold-
is a tree and has a single sink. ing inventory) at each vertex. For a continuous-time dy-
The rest of the paper is organized as follows. The nesamic flow f, let §; be the minimum time satisfying
section provides some preliminaries and fixes notatio(i), which is called theompletion time for f. We fur-
Section 3 presents a simple single-phase algorithm fefer denote by’ (v*) the minimumd; among all contin-
the sink location problem, and Section 4 describes an@ys dynamic flows' in f(v*)_ We study the problem
discusses our data structures. In Section 5, we analy@pcomputing a sink* € V with the minimumcC'(v*).
the complexity of our single-phase algorithm with ourrhis problem can be regarded as a dynamic version of
data structures. Finally, we give some conclusions ihe 1-center location problem (for a tree) [13]. In partic-
Section 6. ular, if ¢(v, w) = +o0 (a sufficiently large real) for each

2. Definitions and Preliminaries edge{v,w} € E, our problem represents the 1-center

) location problem [13].
LetT = (V,) be a tree with a vertex sét and an \ye remark that dynamic flows can be restricted to
edge sef. Let N = (T, c, 7,b) be a dynamic flow net-

; , ! . those having no intermediate storage without chang-
work with the underlying undirected graph being thetreﬁ19 optimal sinks of our problem (see discussions in
T, wherec : E — R is a capacity function representl|6 9, 12], for example)

ing the least upper bound for the rate of flow throug
each edge per unit time; : E — R, a transit time 2.1. AnO(n?) algorithm given in [12]

function, andb : V' — R, a supply function. HereR ;. In this section, we review the outline of &n(n?) al-
denotes the set of all nonnegative reals and we assugwithm which has been proposed in [12], in order to
the number of vertices ifi’ is at least two. make our faster algorithm easily understood.

This paper addresses the problem of finding asisk ~ The algorithm consists of two phases, Phases | and Il.
V such that we can send given initial suppliés) (v € Phase | arbitrarily chooses a vertexe V' as a candi-
V'\ {t}) to sinkt as quick as possible. Suppose that wdate sink and compute the completion tifiét) and a
are given a sink in 7. Then,T is regarded as an in- dynamic flow f that completes irC(¢t). Then Phasell
tree with roott, i.e., each edge df' is oriented toward computes an optimal sink by repeatedly picking up a
the roott. Such an oriented tree with robis denoted by new candidate sinkthat is adjacent to the current ohe
T(t) = (V, E(t)). Each oriented edge ifi(t) is denoted and updating := { if C(f) < C(t).
by the ordered pair of its end vertices and is called an In both phases, we keep two table&triving Ta-
arc. For each edgéu,v} € E, we writec(u,v) and ble A, and Sending TableS, for each vertexv €
7(u,v) instead ofe({w, v}) andr({u, v}), respectively. V. Arriving Table A, represents the sum of the flow

g1o0

研究会Temp
－10－

rates arriving at vertex as a function of timé, i.e.,

ZeéE(t):e:(u,v) fe(e - T(e)) + o (’U), Wherefe(e) =0

holds for anye € E(t) andd < 0, andng(v) = 2 if

0 < 6 < A; otherwise 0. Here)\ denotes a sufficiently
small positive constant. Sending Talslgrepresents the

flow rate leaving vertex as a function of timé, i.e.,
o) (0), where(v, w) E(@®). Note that tablesd, and .S, can be constructed by

Let us consider a tablg : R, — R, , which rep- adding, shifting, and/or bounding the other tables. Now,

resents the flow rate in timé € R,. Here, we assume W€ more formally describe how to compute them.
g(0) = 0for & < 0. Since our problem can be solved N Step 1 of Phase |, Arriving Table, for a leafv of
by sending out as much amount of flow as possible frofi€ originalT'(¢) is given as

each vertex to its parent if a candidate sinis chosen ((—c0,0),0), ([0,A),b(v)/A), ([A,+00),0), (2)

in advance, we only consider the tallevhich is repre-
sentable as and Sending Table, for a leafv of 7" can be con-

structed fromA, as follows. LetA, be represented as

Step 2:
(2-1) If C(t) < C({), then returnt* = ¢ and halt.
(2-2) If C(t) > C(t) and the last flow reaches sirtk
from ¢, then returnt* = £ and halt.
(2-3) Otherwise, put «— ¢ and go to Step 0. ad

0 if 0 <6,
g(e): g(ﬁl) if 9; §6<91‘+1 forizl,«~,k—1 ((—00,91),0), ([eiaai-‘rl)ahi) (i:172""’k)7
0 if 0 > O, wheref,1 = +oo0 andhy = 0, and letR; = (h; —

whereb; < 6;,1 andg(6;) # g(0;41) fori =1,... k. c(v,w))(Oi1 — 0:).
Thus, we represent such tabledy a set of intervals Step 1: Output((—oo,61),0) andi := 1

(with their height), i.e., Step 2: If R; < 0, then output([f;,0:+1), h:), andi :=
—50,01),0), ([6;,0i41),9(0:) G =1, k), i + 1. Otherwise, leta be an integer such that
((=00,60),0), ([Bs,Be2), 9(60)) (¢) 7R >0forj <a-1land) , R, < 0and
wherefy 1 = +o0o andg(6,) = 0. Atime 6 is called let 3 = 0o + > o, Re/(c(v,w) — ha). Then output
a jump time of g if lim,__¢ g(0 + x) # lim,_ 4o ([0:,8), c(v,w)) and([B, Oa+1), ha), andi := a + 1.
g(0 +). Step 3: If i = k + 1, then halt. Otherwise, go to Step 2.
Let us now describe Phases | and Il as follows. Step 2 of Phase | computes Arriving Tablg, from
S, for childrenv’s of w and the initial supply ofv as

Algorithm DOUBLE-PHASE

(Phase I) -

Step 0: Choose a vertekarbitrarily. Putl” « T'(t).

Step 1: If T’ consists oft alone, then go to Step 3. For each

follows.
For a child v of w, let S, be represented as
((—007911’)70)’ ([9;}79;}+1),hf) (7’ = 1,2,“‘,]61,),

leaf v of ', construct Sending Tabl§, from Arriving Where 0 ., = oo and hy = 0, and let
Table A, by boundingA,, by c(v,w), wherew is a par- the initial supply of w be represented as in (2):
ent ofv in T". ((_0070)70)7 ([07b(w)/A)7A)7 ([b(W)/A,—i—OO),O)

Step 2: For each non-leafv whose children are all leaves, From these tables, we first sort all the elements in
construct Arriving Tabled,, from Sending Tables, of {6Y + 7(v,w) | v : achild ofw, i = 1,--- k, + 1} U
its childrenv by shifting A, right by 7(v, w) and adding {0, b(w)/A, 400} asf; < 0y < -+ < Oy (= +00),

all such shifted tables and the initial suppiy(w). and then output(—oo, 6,), 0) and
Remove all the leaves(# t) from T” and denote the re-
sultant tree by again. ([91‘7 0i+1), Z RY(0; — 7(v,w)) + hw(‘gi)),
Goto Step 1. v:a child ofw
Step 3: Compute the completion tim@(¢) from A,. where: = 1,2,---,k, h¥(0) and h*(0) denote the
(Phase II) height of the tables, and the initial supply ofv at time

Step 0: Find a childv of root¢ that sends the last flow (i.e., ¢, respectively.

the flow that arrives at timé’(t)). Putt — vand con- gy ysing similar methods, Phase Il computes the ta-
sidert as a new sink. . .) bles.
Step 1: C?jr.npmeblthe Cofn}rle“on time'(¢) and the corre- It was shown in [12] that AlgorithnDouBLE-PHASE

sponding tables as follows. correctly computes an optimal sink and it requirés.©)
from A, the table obtained frons; by shifting it time. The latter fol'lovvls from the.fact that each taple
right by 7(7, £). can be Cpmputed in time Ilneqr in the total number of

(1-2) Compute fromd, Sending Tables, to go through intervals in the _tables fro_m which is copstr_ucted_and
(t,1) (as in Step 1 of Phase). the number of intervals in each table is linearrirt

(1-3) Compute Arriving Tabled; by adding4; and the Namely, we have the following theorem.

table constructed fron$; by shifting it right by 1 |t was shown in [12] that the number of intervals is at miostor
7(¢,t). Compute the completion timé(t). discrete-timedynamic flows.

(1-1) Compute new Arriving Tabled, by subtracting

0110

研究会Temp
－11－

Theorem 2.1([12]): AlgorithmDouBLEPHASE solves Similarly as AlgorithmDoOUBLE-PHASE, it is not dif-

the sink location problem i®(n?) time. O ficult to see that AlgorithmSINGLE-PHASE requires
) . O(n?) time if we construct Arriving and Sending Tables
3. ASingle-Phase Algorithm explicitly. In Section 4, we present a method to represent

Algorithm DouUBLE-PHASE consists of two phases. these tables implicitly, and develop @x{n log? n) time
This section presents a simplEn?) algorithm with a algorithm for our location problem.
single phase. Because of the simplicity, it gives us a
good prospect to develop a faster algorithm. In fact, wé. Data Structure for Arriving and Send-
can construct ai®)(n) algorithm based on this frame- ing Tables
work, which is given in the next section.

Intuitively, our single-phase algorithm first constructs This section presents sophisticated data structures
Arriving Tables A, for all leavesv. Then the algorithm which can be used to represent Arriving/Sending Ta-
finds a leafv* such thafl” has an optimal sink other thanblesimplicitly. We adopt interval trees for them, which
v* and removes it fronT". If some vertexo becomes a are standard data structures for a set of intervals. Note
leaf of the modified tre@", then the algorithm computesthat SINGLE-PHASE only applies to tablesi, and/or
Arriving Table A,, for such a new leab by using Arriv- S, the following three basic operation&dd-Table(i.e.,
ing tables for the vertices that are adjacent ind have adding tables)Shift-Table(i.e., shifting a table), and
already been removed. The algorithm repeatedly appli€il-Table(i.e., ceiling a table by a prescribed capac-
this procedure t@ until T becomes a single vertgx ity). Itis known that interval trees can efficiently handle
and outputs such a vertexas an optimal sink. operationsAdd-Tableand Shift-Table(see Section 4.1).
Algorithm SINGLE-PHASE However, standard interval trees cannot efficiently han-
Step 0: Let W := V/, and letL be the set of all leaves gf. d|€ operatiorCeil-Table This paper develops new inter-

For eachv € L, construct Arriving Tabled,. val trees which efficiently handle all the three operations.
Step 1: For eachv € L, construct fromA, Sending Table,,

to go through(v, p(v)), wherep(v) is a vertex adjacent) }))
to v in 7. Compute the timdime(v, p(v)) at which the This section explains our interval trees for data struc-

flow based ors, is completely sent tp(v). tures of tablesd,, and.S,,. Our interval trees are imple-
Step 2: Compute a vertex* € L such thaflime (v*,p(v*)) mented by using binary balanced trees. § & a table
= minyer, Time(v,p(v)). LetW = W\ {v*} and represented as

4.1. Interval Trees

L:=L\{v*}. I. = (16,0, I’ i=0.1.--- k 3
If there exists a leaf of T[W] such that is not con- i = (B, 051), 9(6)) (P=0,L,--.k), ()
tained inL, wheretly = —o0, 0441 = +o0, andg(by) = g(6k) =
then: 0,2 and letBT, denote a binary tree fay. We denote
()LetL := LU {v}. the root byr®7 and the height of3T by heigh{ BT).

(2) Construct Arriving Tabled,, from the initial supplype(v) ~ The binary treeBT, has an additional parametgy, .
and Sending Tablé, for the vertices’ that are adja- to represent how much is shifted right. Thisty,s.
centtov in T'and have already been removed frovh is used for operatiorshift-Tableby updatingtyqs. to

(3) Compute from A, Sending TableS, to go through ¢, + , whereu denotes the time to shift the table
(v, p(v)) wherep(v) is a vertex adjacent toin T[W], right. Moreover, each nodein BT, has five nonnega-

and computdime(v, p(v)). tive parameterbaséz), ceil(x), he(z), t"(z), andt! ()
Step 3: If |W| = 1, then outputt € W as an optimal sink. with ¢/(z) < "(z), and each leaf hagz) in addition,
Otherwise, return to Step 2. 0 where these parameters will be explained later. A leaf

Here T[IW] denotes a subtree Gf induced by a vertex @ is calledactiveif #'(x) < #'(z) anddummyother-

rithm DOUBLE-PHASE. active leaves of3T}, bijectively. We denote by (BT)
Note that at most one leafof T[] is not contained the number of active leaves &7 _

in L in the if-statement of Step 2, andis always the Initially (i.e., immediately after constructing7, by

set of all leaves of [IW] before executing Step 2 in each®PErAlIONMAKETREE given below), BT, contains no
iteration. Denote byl}, ., the tree containing: and dummy leaf and hence there exists a one-to-one corre-

. . n spondence between the time intervalsgoéind leaves
obtained by removing edde, w) from 7', and byT(v,w) of BT,. Moreover, for each leaf corresponding td;

the trees obtaingd by addiﬂgé,,w) to edge(v, w). Then (3), we havet!(z) = 0;, t"(z) = 0,41, base(z) =
we can see thalime(v, p(v)) in Step 1 or 2 represents 4(g,) and ceil(z) = +oo, and for each non-leat,

the completion time fof* T oy (P(V). tH(2)= minye pear(z) (), t7(2)= MaXye Leas () T (),
Lemma 3.1 Algorithm SINGLE-PHASE outputs an op- 2 For simplicity, we write the first intervaly as([—oo, 61), 0) in-
timal sinkt. O stead of((—oo, 61),0).

0120

研究会Temp
－12－

base(x) = 0 andceil(z) = +oo. Here, Leaf (x) de- Operation ADD(BT,,;61,62,¢) can be handled in
notes the set of all leaves which are descendants of O(log n) time, since|rep(61,62)| < 2height (BT,,) =
Namely,t'(x) andt"(x), respectively, represent the starQ (log n). This means thaBT, can be constructed from
and the end points of the interval corresponding,tand BT,, and BT,, in O(#(BT,)log n) time. Moreover,
base(x) andceil (z), respectively, represent the flow rat peraﬂonsAdd-Tablein Algorithm SINGLE-PHASE can
gggégggﬁgﬁ;ﬁ;und for the flow rate in the time intervgj, performed irD(nlog® n) time in total, since we al-

' ways add a smaller table to a larger one (see Section 4.3

Operation MAKETREE(g: table) for the details). Thu#\dd-Tablecan be performed effi-
Step 1. Lettpase := 0. ciently

Step 2: Construct a binary balanced tré&l’, whose leaves
P nary s W v However, operationsCeil - Table in Algorithm

correspond to the time intervd] of g in such a wa
b J Y SINGLE-PHASE require ©(n?) time in total, since the

that the leftmost leaf corresponds to the first interial :] ')
the next one corresponds to the second intefvadnd so &lgorithm contain®(n) Ceil-Tablg each of which re-

on. quires©(n) time, even if we use interval trees as data
Step 3: For each leafz; corresponding to interval; = Structures for tables. Therefore, when we bouitid by

[0:,0i41), base(x) := g(0;), t'(z) := 0; andt"(z) := a constant, we omit modifyingt!, ¢, andbase, and

Oit1. keepc asceil(rBT) = c. Clearly, this causes difficulties
Step 4: For each non-leak, base(z) := 0, andt'(z) := to overcome as follows.

MiNye Leaf(x) t(y) ANAE" () 1= MaXye rear () ' (Y). First, h(x) in (4) does not represent the actual height

Step 5: For each node, ceil(z) := +o0.
Step 6: For each leafr, sete(z), and for each node, set
he(x), wheree(z) andh.(z) shall be explained latefa

We can easily compute a table from BT, con- h(z) = h(z) — maX{O Zbase yi) — ceil(yr)}, ()
structed byMAKETREE. It should also be noted that
a binary treeBT ; is not unique, i.e., distinct trees may
represent the same tahje

As mentioned in this sectior§hift-Tablecan easily
be handled by updating,,... We now consideAdd-
Table i.e., constructing a table by adding two tables
g1 and g2, where we regard an addition éftables as WhoSe rootig;. Thusy !, base(y;) — Cell(yk) has to
k — 1 successive additions of two tables. Let us assunf subtracted from the heightz) if Y"1, base(y;) —
that #(BT,,) > #(BT,,), thatis, g, has at least as ceil(yx) > 0, and the actual heiglit(z) is obtained by
many intervals ago. Our algorithm construct®8T, by subtracting their maximum. Note tha(z) = h(z)
adding all intervals (corresponding to active leaves) dfolds for all active leaves: of a tree constructed by
BT,, one by one taBT,,. Each addition of an interval MAKETREE.

([61,02),c) to BTy,, denoted byADD(BT1; 01, 6s,¢), We next note that there exists no ono-to-one corre-
can be performed as follows. spondence between active leavesBfi" and time in-

We first modify BT, to BT, that has (active) leaves tervals of the table thaBT' represents, if we just set
x andy such that! (z) = 6, andt” (y) = 6, ifthere exist ceil(rT) = c. In this case, the table is updated
no such leaves. We can see that the time intdtjab,) too drastically to efficiently handle the operations after-
can be represented by the union of disjoint maximal invards. Thus by modifying3T" (as shown in the subse-
tervals inBTy,, i.e., the set of incomparable nodes imuent subsections), we always keep the one-to-one cor-

3T,,, denoted byrep(6:,6;) .We then updatéase of respondence, i.e., the property that any two consecutive
BTg1 as follows active leaves: andz’ satisfy

base(x) := base(x) + ¢ forall x € rep(6;,02). i h(w) # h(z').) (6)

We finally note that, for an active leaf, t/(x) and

By successively applying this procedure to new interval (z) do not represent the start and the end points of the

treeJ}ﬁTg1 and each of the remaining intervals #7;,, corresponding interval. Let be an active leaf inlBT

we can construcBT, with g = g1 + ga. that does not correspond to the first interval or the last
For an interval treeBT and an active leaf of BT, interval. For such am, let z— andz™ denote active

lety; (=), y2,-- -, ys(= rBT) denote the path from leaves inBT" which are left-hand and right-hand neigh-

to the rootr®7. The procedure given above shows thabors ofz, respectively, i.e.,

the height of an active leaf representing the flow rate Fa) = @), Fat) = ().

of the corresponding interval can be represented as
B ® Then the start and the end points of the corresponding
o Zl base(ys). “) interval can be obtained by

any longer. We caMz(fc) thetentative heighof x in BT,
and theactual heighth(x) is computed as

wherey, (=), y2,- - -, yb(— rBT) denotes the path
from z to »B7. Note thatceil(y;,) has finite value, since
tables are added successively. Intuitively, for a nggde

in BT, ceil(yy) represents the upper bound of the height
of active leaves: € Leaf (yk) within the subtree oBT

0130

研究会Temp
－13－

tT(I) - tl;ase+tr(x)+

RN) T M

(@)~ @) x S B
i) = @) ®)

Herei” (z) and#!(x) are well-defined from (6). For ac- (C4) Any active leafr satisfiesh(x
tive leaves: andy corresponding to the first interval and

the last interval, we havé(z) = —oo, i"(x) = t!(z™T),
t'(y) = t"(y) andt" (y) = +o0.

It follows from (5), (7), and (8) thak(z), " (z), and
t'(z) can be computed fromase ceil, ¢"(z), andt(z)

in O(heigh{BT')) time. In order to check (6) efficiently,

each active leaf has

t(zt) = t"(2)

tr(z™) —t(z)
if x1 exists
otherwise

max{0, h(z) — h(zt)} x
e(z) =

—+00

and each node has

he(x) = max

Lomax {37 base(z) — e(w)).

z€path(x,y)

(C1) Any nodez satisfiest!(x) < t"(z). Any non-leaf
x satisfiest'(z) = mingye reqf(z) t'(y), andt™(z)
= IMaXye Leaf (x) tr(y)

(C2) Any active leafx satisfies” (z)

=ti(ah).
(C3) Any active leafx satisfiesh(x) #
) >

iz(a:“')
h(z) — e(z).
A binary treeBT is calledvalid if it satisfies conditions

(CO)~ (CA4). For example, a binary trde1’ constructed
by MAKETREEIs valid.

4.2. OperationNORMALIZE

As discussed in Section 4.1, we represent a talae
a valid binary balanced treBT'. For an active leaf,
our algorithm sometimes need to upd&té’ to get one
havingaccuratez, i.e.,baseandceil are updated so that

0 foraproper ancestarof 2~ orx
h(y) fory=z~ orx

base(s) = {

ceil(y) := +oo for an ancestoy of x~ orz
t"(y) =t'(y*) :=1"(y) fory=a— orzx

(10)

For example, this can be performed before modifying

where Leaf ,(z) denotes the set of active leaves thaB’ to keep (6).

are descendants aof andpath(z,y) denotes the set of

The following operation, calledNORMALIZE, up-

nodes on the path from to y. We have the following datesBT as above, and also maintains the balance of

lemma.

Lemma 4.1 Let BT be a binary tree in whiclh(z) #
h(x™) holds for every active leaf. After boundingBT
by a constant,

(i) h(z) # h(zt) holds for an active leaf if and only
if 2 satisfiesh(z) —e(z) < ¢,

(i) all active leaves: in BT satisfyh(z) # h(z") if
and only ifr. (rB7) < c.

Moreover, we can compute an active leakith i,(z) =

h(z™) in O(height(BT)) time by scanningi.(z) from

the rootr®7. Note thath.(x) can be obtained by the

following bottom-up computation.

base(x) — e(x if zis aleaf
he(z)=1<¢ max{hc(z1), he(z2)} + base(x) 9)
otherwise,

wherez; andxz, denote the children af. This means
that preparing and updatinig.'s can be handled effi-

ciently.

BT (i.e.,heigh{ BT) = O(logn)).

Operation NORMALIZE(BT, z : an active leaf

Step 1: Update base and ceil by the following top-
down computation along the path frorf” to the
parent ofy for y = x~ or x. For a nodez on the
path and its childrer; andz,,

base(z;) := base(z;) + base(z), base(z) :=0,
cetl(z;) := min{ceil(z;) + base(z), ceil(z)},
ceil(z) == +oo.

Step 2: If x was added td3T immediately before this
operation, then rotat87" in order to keep the bal-
ance of BT

Step 3: Fory = x, 2, if base(y) > ceil(y),
thent”(y) = t'(y) := t"(y), base(y) := ceil(y),
otherwiseceil(y) := +oo.

Step 4: Fory = z—,z,zt, updatet!,¢", e, andh,. by
the bottom-up computation along the path frgm
to rB7. O

Note that nodes may be added B (by operation

In summary, we always keep the following conditions>PLIT in the next section), but are never removed from

for binary treesBT,, to represent tableg Note thatBT
satisfies the conditions.

(CO) For any nodex, BT maintainst!(z), t"(x),
ceil(x), base(x), andhe(z). For any leafr, BT
maintainse(z) in addition.

BT, although some nodes become dummy. This simpli-
fies the analysis of the algorithm, since removing a node
from BT requires the rotation oBT that is not easily
implemented.

It is not difficult to see that the treBT’ obtained by
NORMALIZE is valid, satisfies (10), and represents the

0 140

研究会Temp
－14－

same table aBT. Moreover, since the lengths of theStep 4: For a leafy such that” (y)

paths in Steps 1 and 4 a@¥ height(BT)), BT’ can be
computed fromBT in O(height(BT)) time. Thus we
have the following lemma.

Lemma 4.2 Let BT be a valid binary balanced tree
representing a tabley, and letz be an active leaf of
BT. ThenBT’ obtained byNORMALIZE (BT, x) is a
valid binary balanced tree that representsand satis-
fies(10). Furthermore,BT" is computable fronBT in
O(height(BT)) time.

4.3. Add-Table

This section shows how to add two binary balancea

treesBT,, and BT, for tablesg; andg,. We have al-

ready mentioned an idea of our Add-Table after describ-

ing operationMAKE TREE. Formally it can be written as
follows.

Input: Two valid binary balanced tredsT,, andB1T,,
for tablesg; andgs,.

Output: A valid binary balanced treB7, for g = g1 +
g2-

Step 1: If #(BTy,) > #(BT,,), thenBT;, := BT,
and BT, := B1T,,. OtherwiseBT; := BT,, and
BT, := BT,,.

Step 2: For each active leat € BT, computet!(z),
t"(x) andh(zx), and call operatio\DD for BT,
t(z), t"(x), andh(z). O

Operation ADD(BT, 61, 0, ¢)
Step 1: Call SPLIT(BT, 6; — tBT

base) @Nd SPLIT (BT,
02 —tET), wheretEL denotes the parametgy, s.
for BT.

Step 2: For a nodex in rep(61 — tPL., 62 — tEL),
base(x) := base(x) + ¢, ceil(x) := ceil(x) + ¢,
andhe(z) := he(x) + c.

Step 3: For a noder such that!(z) = 6; — t2% , call
NORMALIZE(BT, x).

If base(z~) = base(z) (i.e., h(z~) = h(x)), then

Y=z,

b = ! h(y)(t" t!
wselv) = gy =g (MW W) ~)

Fhly)) — 1))

t"(y) =1"(y") (11)
t(y") = t"(y") (i.e.,yT becomes dummy)

and call NORMALIZE(BT,y) and NORMAL-

1IZE(BT, y™T).

0y — tBT_, call
NORMALIZE(BT, y).

If base(y)=base(y™) (i.e., h(y) = h(y')), then
update basdy), t"(y), t'(y*) and t"(y*) as
(11), and calNORMALIZE (BT, y) andNORMAL-
1IZE(BT, y™). O

Steps 3 and 4 are performed to keep (6). Note that
he(x) is updated in Step 2 for all nodes irep(6; —
tBT 6y — tBT). It follows from (9) thath.(y) must
be updated for all proper ancestogsof a node in
rep(0; — tEL 0o — tBT). Since a proper ancestgr
of some node imep(01 — tBL_ 6, — tB1) is a proper
ncestor of the node such that!(z) = 6; — t2L_ or
t"(z) = 02 —tBT_, all suchh,(y)'s are updated in Steps

3 and 4 by operatioNORMALIZE.

Operation SPLIT(BT,t : a nonnegative redl

Step 1: Find a noder such that!(z) < t < t"(z).

Step 2: Call NORMALIZE(BT,z~) and NORMAL-
1IZE(BT, x).

Step 3: If t!(x) = t, then halt.

Step 4: For the nodey € {z~,z} such thatt'(y)
t < t"(y), construct the left child; with ()
t'(y),t"(y1) = t, base(yy) := 0 and ceil(y;)
+00, and construct the right chilgh with ! (y5)
t,t"(y2) = t"(y), base(y2) := 0 and ceil(y2)

+00.
Step 5: Call NORMALIZE(BT, y;) and NORMAL-
1IZE(BT, y2). O

We can see that the following two lemmas hold.

Lemma 4.3 Let BT be a valid binary balanced tree
representing a tablg, and lett be a nonnegative real.
ThenBT” obtained by operatioSpLIT(BT,t) is a valid
binary balanced tree representing a

Lemma 4.4 Let BT be a valid binary balanced tree
representing a tablg, and letl = ([f1,62),c) be a
time interval. TheADD(BT, 6,4, 62, c¢) produces a valid
binary balanced tree representing the talle+ 7, and
moreover, it can be handled B (height(BT)) time. O

4.4. Operation Ceil-Table

This section considers operati@eil-Table Let BT
be a a valid binary balanced tree representing a table
and letc be an upper bound aB7T. As mentioned in
Section 4.1, we seteil(rB7) = ¢, and modify BT so
thath(z) # h(2z") holds for any two consecutive active
leavesr andzt.

Operation CEIL(BT, ¢ : a positive rea

Step 1: Compute the leftmost active leaf such that
h(y) — e(y) > c by usingh,. If BT has no such
node, then go to Step 5.

0 150

研究会Temp
－15－

Step 2: Call NORMALIZE (BT, y), and updatdase€y),
t"(y), t'(y*) andt"(y*) as (11).

Step 3: Call NORMALIZE(BT, y) and NORMAL-
1IZE(BT, y™). Return to Step 1.

optimal sinks remain the same, even if we do not al-
low intermediate storage, and moreover, our algorithm
can also be applicable for discrete-time dynamic flows.
Therefore, our sink location problem is solvable in
O(nlog? n) time for dynamic continuous-time/discrete-

Step 4: For a rootrB7, ceil(rBT) := c. O

time flows with/without intermediate storage.

Lemma 4.5 Let BT be a valid binary balanced tree Acknowledgements

representing a tablg, and letc be a nonnegative real.

This research is partially supported by the Grant-in-

ThenBT" obtained by operatio€EIL (BT, ¢) isavalid ~ Aig for Creative Scientific Research of the Ministry of
binary balanced tree representing the table Obta'”eéducation, Culture, Sports, Science and Technology.
O

from g by ceiling it bye.

References

Step 3 concatenates two consecutive active leavesii]
andz™, wherext becomes dummy. We notice that the
active leafr (which has already been concatenated) maE/2 :
further be concatenated. This means fh@at) = h(z™)
may hold after successive concatenations, even if origjs)
nal BT satisfiesh(z) # h(x™).

[4]
5. Time complexity of SINGLE-PHASE with

our data structures 5]

In this section, we analyze the complexity of Algo- (6]
rithm SINGLE-PHASE with our data structures. Recall
that the algorithm only applies to tabldg and/orS,, the
following three basic operationgdd-Tablg(i.e., adding
tables),Shift-Tablg(i.e., shifting a table), an@eil-Table
(i.e., ceiling a table by a prescribed capaeity

[7]

(8]

Lemmab5.L All Shift-Table’s in SINGLE-PHASE re-
quire O(n) time in total. |

19

[10]
Lemma 5.2 All Add-Table’s in SINGLE-PHASE re-

quire O(n log® n) time in total. O o

Lemma5.3 All Ceil-Table’s in SINGLE-PHASE re-

quire O(n logn) time in total. m| [12]

From lemmas above, we have the following result.

13
Theorem 5.4 The sink location problem on dynamic[]

tree networks can be solved@(n log” n) time. O 14

If a given network is a tree and has a single sink, we
can show the following corollary.

Corollary 5.5: If a given network is tree and has a sin-11°!
gle sink, SINGLE-PHASE can solve the quickest trans-
shipment problem i®(n log? n) time. O [

6. Conclusions

In this paper, we have developed @(n log? n) time
algorithm for a sink location problem for dynamic flows
in a tree network. This improves upon arfr®) time
algorithm in [12].

We have considered continuous-time dynamic flows
that allow intermediate storage at vertices. We note that

(17]

0 160

K. Arata, S. Iwata, K. Makino and S. Fujishige: Locating sources
to meet flow demands in undirected networlleurnal of Algo-
rithms 42 (2002) 54-68.

J. E. Aronson: A survey of dynamic network flow&nnals of
Operations ResearcP0 (1989) 1-66.

L. G. Chalmet, R. L. Francis and P. B. Saunders: Network models
for building evacuationManagement Scienc28(1982) 86—105.

L. Fleischer ancE. Tardos: Efficient continuous-time dynamic
network flow algorithmsQOperations Research Lette28 (1998)
71-80.

L. R. Ford, Jr. and D. R. Fulkerson: Constructing maximal dy-
namic flows from static flowsQp. Res.6 (1958) 419-433.

L. R. Ford, Jr. and D. R. Fulkersorlows in Networks(Prince-
ton University Press, Princeton, NJ, 1962).

H.W.Hamacher and S.A.Tjandra: Mathematical modelling of
evacuation problems: A state of the art, Pedestrain and Evac-
uation DynamicsSpringer, (2002) 227-266.

B. Hoppe ancE. Tardos: Polynomial Time Algorithms for some
evacuation problems, InProc. of 5th Ann. ACM-SIAM Symp.
on Discrete Algorithms(1994) 433-441.

B. Hoppe andE. Tardos: The quickest transshipment problem,
Mathematics of Operations Resear2h(2000) 36—62.

S. lwata, L. Fleischer, and S. Fujishige: A combinatorial
strongly polynomial algorithm for minimizing submodular func-
tions, Journal of the ACMA48 (2001) 761-777.

H. Ito, H. Uehara and M. Yokoyama: A faster and flexible algo-
rithm for a location problem on undirected flow networksiCE
Trans. Fundamental&83-A (2000) 704-712.

S. Mamada, K. Makino and S. Fujishige: Optimal sink location
problem for dynamic flows in a tree netwol§ICE Trans. Fun-
damentalsE85-A (2002) 1020-1025.

P. B. Mirchandani and R. L. Franci®iscrete Location Theory
(John Wile & Sons, Inc., 1989).

W. B. Powell, P. Jaillet, and A. Odoni: Stochastic and dynamic
networks and routing, InNetwork Routing Handbooks in Op-
erations Research and Management Sci8r{b& O. Ball, et al.,
eds, North-Holland, Amsterdam, The Netherlands, 1995), Chap-
ter 3, 141-295.

A. Schrijver: A combinatorial algorithm minimizing submodular
functions in strongly polynomial time]. Combinatorial Theory
B80(2000) 346-355.

H. Tamura, M. Sengoku, S. Shinoda, and T. Abe: Some cover-
ing problems in location theory on flow networkd&ICE Trans.
Fundamental|€75-A (1992) 678—683.

H. Tamura, H. Sugawara, M. Sengoku, and S. Shinoda: Plural
cover problem on undirected flow networl&ICE Trans. Fun-
damentalsJ81-A (1998) 863—-869 (in Japanese).

研究会Temp
－16－

