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Adjacency of optimal region of Huffman tree
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Abstract: Huffman tree has been studied as useful data structure. For given keys and their weights,
the tree structure can be constructed easily. A extended binary tree with the weights is optimal if the
tree has smallest weighted external path length among all extended binary trees. Consider the weight
space and an extended binary tree. Optimal region of the extended binary tree is defined by a region
of the weight space such that the tree with any weight in the region is optimal.

In this paper we investigate properties of optimal regions. Huffman tree is expressed as level vector

which is defined by integer vector whose element is the path length to each node of the tree. We

show that each optimal region is non-empty and convex through level vector. Two Huffman trees are

adjacent if there is a weight such that the only two trees are optimal for the weight. We show that the

necessary and sufficient condition of adjacency is that 1) the difference of level between each leaf is at

most one; 2) the sum of two level vectors of trees is not equal to the sum of any other two level vectors.
1 Introduction several different binary trees for [. In this paper
these trees are regarded as the same. The set £,
of all n-dimensional level vector is defined by

Huffman tree is a fundamental and popular data
structure. The tree has many applications [2, pp.
402-406]. All leaves of Huffman tree are labelled.
In this paper Huffman tree is regarded as a positive
integer vector I = (l1,--- 1), called level vector.
There is an extended binary tree, denoted by T'(1),
corresponding to this vector if -, 27" = 1. Each
value of [; indicates that the leaf indexed by ¢ has
level [; in the binary tree. In some case there are

i2“:1},

L, = {l S/
i=1

where 77 | := {(21,...,2q)|%; € Z,x; > 0}. For
a given weight w > 0, a level vector 1 is optimal if
l-w <l'-w for any other I’ € £,,. This optimality
is the same as the optimality of corresponding tree,
which is a Huffman tree with w. For each I optimal
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region R(l) is defined by:
Rl)={w|l-w<l -w,Vl'eL,}.

Let W, := {w = (w1, ..., wy,) |w; € Ryw; > 0} be
the set of all weights, called weight space. All opti-
mal regions for every level vectors is a subdivision
of W, (see Figure 1(left)).

4

: decent direction @21

Figure 1: Optimal regions for Huffman trees with
3 leaves(left) and convex hull for £3(right)

We investigate properties of these regions. One
problem is which Is can be optimized simultane-
ously. Two I and I’ are said to be similar if there
exists a weight w such that I -w = I - w <
U - w, V1" € L,. Other problem is which Is
share their facet of R(l). Two I and I’ are said
to be adjacent if there exists a weight w such that
l-w=lw<l" wV"eL,.

This problem is regarded as optimization. Let
L, :={(z1, - ,z,) | z; € R} be the space contain-
ing all n dimensional level vectors. In L, a level
vector is regarded as a point and a weight is as a
decent direction. So, the computation of Huffman
tree under a weight w is equivalent to the following
optimization problem in L,:

min w - [.

lel,
In Figure 1(right) when the direction is w’, the level
vector (2,1, 2) is optimal.

The adjacency of optimal regions is easily under-
stood. That two optimal regions R(l) and R(l)
are adjacent is equivalent to that two level vectors
l and I’ are connected by an edge on the convex
hull. In Figure 1, optimal regions R((2,1,2)) and
R((2,2,1)) share a facet, while level vectors (2, 1, 2)
and (2,2, 1) are connected by an edge of convex hull
of ,Cg.

In Section 2, we describe some well-known results
about Huffman tree. Section 3 is main section and
some properties of optimal region are shown: non-
empty, convexity and adjacency. In Section 4, some
applications of these results are described.

2 Preliminaries

In this section we state some results about Huffman
tree.

We state conditions for a given tree T under
weight w to be optimal or not. In [4, p.25] the
following theorem is given.

Lemma A A weighted extended binary
tree on a sequence of weights wy, wa, ...,
wy, is optimal only if the following condi-
tions are settled for any level [:

1) the weight of any node at a level [ is
greater than or equal to the weight of any
node at level [ + 1;

2) for any three nodes a,b,c in level I,
w(c) < w(a) + w(b).

So, we can check the optimality by computing
maximum and two minimums weights in every lev-
els.

3 Properties of optimal region

In this section we describe properties of optimal
region. The optimal region of Huffman tree is non-
empty, convex. We show necessary and sufficient
condition of adjacency.

3.1 non-empty and convex

Firstly, we show that any optimal region is non-
empty. Let w(l) be the positive weight for I such
that its ith element is w; = 2% where I; is the
path length from the root node to the ith node in
T(l). We show that ! with w(l) is optimal.
Consider an extended binary tree T'(l). It is
shown that the T'(l) with w satisfies the condition
of optimality in Lemma A. In the highest level
L there are only leaf nodes and their weights are
equal to 27, In the next level L — 1, any internal
node exists and its weight is sum of the weight of
the child nodes. So, the weight of internal node is
equal to 27 L + 2L = 2-(L=1_ Leaf nodes in level
L — 1 also have the weight 2~ (=1, Thus every
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node in level I — 1 has the weight 2=(~1_ Since
this step repeats until level 0, it is shown that every
node has weight 27 in level I. So, it is evident that
the tree satisfies the condition 1) and 2) in Lemma
A. Thus each optimal region is non-empty.

Consider a weight w(l) + &€ where & :=
(e1,--+ ,&n) and |g;| < 2. Tt is similarly shown
that the level vector ! is optimal under w(l) + e.
Thus the optimal region has full dimension.

Moreover, we state that optimal region is convex.
Since the optimal region is defined by intersection
of halfspaces from the definition, the region is con-
vex cone.

Theorem 1 The optimal region of any level vec-
tor is non-empty and convexr. The region has full
dimension.

3.2

In this subsection we show that necessary and suf-
ficient condition of similarity.

Firstly, we show that there exists a weight such
that two level vectors I,I’ are optimal if I —1 €
{-1,0,1}"™

similarity

Lemma 1 Letl,l’ be two n-dimensional level vec-
tors with 1 — U € {=1,0,1}". Consider a weight
fw(l) + 2w(l'). The weight of any node in level |
of T(L) and T(I') is included in [3 271 3 .271].

Proof: We use induction by level of T'(I). Con-
sider the highest level L in the tree. At the level
only leaves exist. Since the difference of leaf level
between T'(I) and T'(l') is at most one, the pair of
levels is three types: (L,L —1),(L,L),(L,L+ 1).
So, their weights is only three cases: (271 +
2=y = 2.7k (27b 427 ly2 = 27k,
(27F 4+ 27(E=Dy/2 = 3. 2L At this level all
weights are included in [% .27k % . 2_L].

Assume that all weights are included in
[%2*1, %2’1] at level I. We show that the weight
of any node in the level [ — 1 is included in
[% L2 (=1, % . 2’(1*1)}. From the assumption, for
any two nodes a, b in level [ their weight w(a), w(b)
satisfies the following inequalities: % c27h <
w(a),w(b) < 2.27'. So the weight of internal
node is given by the sum of the weights of two child
nodes, the weight is bounded:

3 3
1 270D < w(a) + w(d) < 3 9~ (=1,

Moreover, it is similarly shown that the weight
of leaves in level [ — 1 is also bounded. Conse-

quently, all nodes in level | — 1 are included in
[% Lo (=1 % . 2*(171)]. O

By this lemma, we can check the condition in
Lemma A. Since the minimal weight in level [ is
- 270 and the maximal weight in level [ 4 1 is
2=+ "the condition 1) is settled for any level.
Second condition is also shown from the lemma.
It is enough to show only the most extreme
case. Since every weight at level [ is included in
[2.271, 3271, the extreme case is the smallest
weight w(a) = w(b) = 2.2 and the largest weight
w(c) = 2 - 27 The inequality w(c) < w(a) + w(b)
holds in the case.

From the discussion above, we show the following
lemma.

[M[SSN[eN)

Lemma 2 Letl, l' be level vectors such that l1—1" €
{=1,0,1}". Two extended binary trees T(l) and
T (V) with 3w(l) + 2w(l') are optimal.

Similarly, we can show that there exists a weight
such that several level vectors with the weight is
optimal.

Lemma 3 Let1*(1%,...,1%) (k=1,...,m) be level
vectors such that I¥ —17 € {—1,0,1}" for any k and
j. Let w(l},...,l™) be a weight whose ith compo-
nent is defined by

o

Any 1% with w(,...,I™) are optimal (k =
1,...,m).

2L (¥ = lf for any k, j)
i (21? + 25) (otherwise)

Proof: For each pair of I¥ and I’ the difference
of level of leaves is at most 1. The values of I¥s
are only two case: 1) all I¥ has the same value; 2)
the values of I¥s are divided into [ and [ + 1. Tt is
shown that T'(I%)s with w(l,...,I™) are optimal
by similar discussion as above. |

Secondly, we show the inverse of lemma 2.

Lemma 4 If two level vectors are similar, then the
difference of level of each nodes are at most 1.

Proof: Fix a level vector I and its Huffman tree
T(l), whose optimal region is denoted by R(1).

Consider the conditions in Lemma A, which are
necessary conditions for Huffman tree:
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1. for any three nodes a,b,c in level I, w(c) <

w(a) + w(b);

2. for any node z in level [ and y in level [ + 1,
w(z) > w(y).

We show that there exists a level vector I’ such that
-0V e {-1,0,1}" from each condition above.

Let L(a) be the set of leaves included in the sub-
tree with root node a. The weight of internal node
a is the sum of the weights of leaves in L(a).

Since L(a), L(b) and L(c) are disjoint, the first
condition becomes

> ms 3w T

i€L(c) i€L(a) i€L(b

(1)

When the inequality (1) is regarded as w - ¢ < 0,
each element of ¢ is 0 or £1. Without loss of gener-
ality, nodes a and b are sibling in T'(1). Let 7" be a
binary tree which is obtained by interchanging the
subtree with root node ¢ and the subtree with root
node the parent of a and b in T'(l) (see Figure 2).
This tree 7" is different from T'(1). Let I’ be a level
vector of T". Tt is shown that there exists 77 whose
level vector satisfies I —1' € {—1,0,1}".

The second condition also gives an inequality:

Z w; > Z w;. (2)

i€L(x) i€L(y)

When 2 is the parent of y, L(z) 2 L(y) is set-
tled, otherwise L(z) N L(y) = (). Consider the case
that x is parent of y. The inequality (2) becomes
D ierL(@)\L(y) Wi = 0- As every w; is positive, this
inequality gives trivial bound. Consider another
case. For the inequality (2), let 7" be a binary tree
which is obtained by interchanging the subtree x
and the subtree y in T'(I). Let I” be a level vector
of T” (see Figure 3). It is shown that there exists
T" whose level vector satisfies I — 1’ € {—1,0,1}™.

Huffman tree T(1) T

Figure 3: Huffman tree T'(l) and T”

Let R'(l) be a polytope determined by these in-
equalities (1), (2). Since R/(I) is defined by a part of
inequalities of R(l), non-empty and full dimension,
R'(l) contains R(l). The conditions in Lemma A
is necessary condition, the region R'(l) is subset of
R(l). Finally, R(l) is equal to R’(l). The optimal
region of I is defined only by these inequalities (1),
(2) whose level vectors satisty I — ' € {—1,0, 1}™.

O

[Remark] For one level vector [ there exist sev-
eral T'(l)s. Conversely, when a Huffman tree T' is
given, ! is uniquely determined.

Finally, the similarity can be characterized.

Theorem 2 Two level vector I and U are similar
if and only if 1 — 1" € {—1,0,1}™.

3.3 adjacency

Two level vectors are similar if and only if the dif-
ference of the level of each leaves is at most 1. In
this section we show necessary and sufficient con-
ditions that two level vectors are adjacent.

Firstly, we state non-adjacent condition.

Lemma 5 Consider level vector 1,1'. If there are
two level vectors m, m’ such that I +1' = m +m/’,
then I and I’ are not adjacent.

Proof: Consider any weight w such that [ - w =
V- w
Compute inner product I 41" and the weight w:
T+0U) w=
20-w=m-w+m - -w

(m+m') w

Since the every element of level vectors and weight
w are non-negative, I - w, m - w and m’ - w are
non-negative. Thus the following inequalities are
settled:

l-w>m-wor l-w>m'-w.
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When inequality is settled, [ is not optimal at w.
When equality is settled, I -w =m -w = m’ - w.
In this case, I’ - w has the same value as [ - w.
Thus the value of inner product between four level
vectors and w is the same. Since only ! and 1’ are
not only optimal, I and I’ is not adjacent. O

m (2,23,2,3)

m(2,3,2,3,2)

Figure 4: similar Huffman trees

Figure 4 shows four Huffman trees. These
Huffman trees are simultaneously optimal under
(1/4,3/16,3/16,3/16). In this case the pairs (I,
U), (m, m’) are non-adjacent. Other pairs are
adjacent. So, there is a hyperplane whose normal
vector is w such that the hyperplane is supporting
hyperplane of convex hull of £,,.

The following lemma is the inverse of Lemma 5.

Lemma 6 If level vector 1,lI' are non-adjacent,
then the either of the following holds:

13ist |l -1 > 2

2. Two level vectors Im,m’ such that 1 +1 =
m+m';

where 1; (1) is the ith component of L(l'), respec-
tively.

Proof: When the first statement does not hold, we
show that second statement holds.

Since statement 1 is not settled, for any i |l; —
;| < 1. From this and Theorem 2, I and I’ are
similar. So, there exists a weight w* such that
l-w* =1 -w*andl and I’ are optimal.

Since I and I’ are non-adjacent, there is another
level vector m such that m - w* =1 - w*. Since
1, and m are simultaneously optimal under w*,
the difference of each level of leaves is at most one.
The indices are divided into 4 types:

Il = {’L|l, :l; :mi},

]2 = {’L|l, :l;,mi :li:tl},

Vi ={i|l; # 13,1 = mi},
where m; is ith coordinate of m.

Firstly, we show that I is empty set. Consider
the optimality of I, I’ and m at w* := F{w(l) +

w(l')}.

l —1; -
CwF = A i
m-w Zmz 2( +2 )
=0
_ Mi (51, - mi (1, -
_27(2 +2 >+22(2 +2 )

i€l i€l
mi (-1 — mi (o, —
+Z7(2 +2 )+22(2 +271)
icVa i€ Va
li —1, m; 7.
— 2 (2 i+1 (2 li+1
25 S e
i€l i€la
Livoi, | ot Gi(oti | ot
— (274 2 i) l<2 i 2 1,)
+ Z 5 ( + + Z ; +
% i€Va
This value is equal to I - w* = > 1;/2

(2’” + 2*“-'). The following equality is shown:

Sl —mi)2 = S0 1) (24@' + 242) .

i€la i€Va
(3)

Next, we consider a weight w(l,1’, m) in Lemma
3. I, I and m with w(l,l’, m) are optimal simulta-
neously. If 7 is included in I7 or V; or V&, the weight
of ith coordinate is equal to w; in the weight w*.
If 4 is included in I3, then w; = % (2*“ + 2’"”).
From I - w(l,l'ym) =m - w(l,l',;m), the following
equation is shown:

S my o2y = S (242 ),

i€l i€ Va
(4)

We can get the following equality from equation
(3) and (4).

> (li—mi)2 ™ -2 =0

i€ls

()
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The I are divided into two sets.
L= {i|l; —m; = 1},
Iy ={ill; —m; = —1}.
Rewrite the equation (5):

0= Z (lz — mi)(Qimi

icly

_ 2*11)

+ ) (li—my) (2™ -2
iely
— Z —L;+1 71')_*_ Z 7(27li71727l1‘)
iely iely
ielf i€ly

The each term in the right hand of the equation
above is positive. So, IQ+ and I, are empty to sat-
isfy the equation. Thus, I = I,"UI, is also empty.

Secondly, we show that m' = (m/,...,m}) =
l+1 —mis a level vector of Huffman tree, i.e.
m -w=1 wand Yy, 27" = 1.

That the value of m/-w is equal to I - w is stated
from the definition of m/.

m w={l+1—

=l w+l - w—m- -w

m}-w

=1 -w.

Since 1,1’ and m correspond to Huffman trees,
for each trees the sum of 27% is equal to 1. Let
S(I,1) be the sum of 27! where i € I and [; is ith
coordinate of [. The equalities below are settled:

1=8(I,U)+ SOV, U) + S(Va,l)
= S(I1,0) + SOV, 1) + S(Va,U')
=S(I1,m)+ S(Vi,m) + S(Va,m)
= S(I1,1) + S(V1,1) + S(Va, 1)
From these equalities we get the following relations:
SV, 1) = S(V,l'), S(Vo,l) =S(Va,l').

Ifi € V4, then m} = l;++1;—m,; = [. So, an equation
S(Vi,m’) = S(V1,l') holds. Similarly, S(Va,m’) =
S(Va,1) also holds. Thus, we can show the following
equation:

22’"— (I;,m

(I, 1) +
(Ilal) +

N+ S(Vi,m') + S(Va, m’)

S(Vi, ') + S(Va,l)

S
S S(VA )+ S(Va,1) = 1

O

Finally we show the following theorem from
Lemma 5 and 6.

Theorem 3 Two n-dimensional level vector I and
U are adjacent if and only if

o l—1U'c{-1,0,1}

e for any other level vectors m and m/ 1 +1' #
m+m'.

4 Application

In this section we describe some applications of this
result.

4.1 computation of similar Huffman

trees

In this section we show the method of generation
of similar Huffman trees for a given Huffman tree
(level vector (I1,--- ,1y)).

The conditions of Huffman tree are given in
Lemma A.

e w(x) < w(y) for any node z in level [ + 1 and
yin [

e w(a)+w(b) > w(c) for any nodes a,b and ¢ in
the same level.

From these conditions similar binary trees are com-
puted. When select a pair of nodes or a triple of
nodes in the condition, we can get a similar binary
tree.

From the first condition the following inequality

is shown:
Z w; < Z w;-

i€L(x) JEL(y)

A similar level vector is computed by subtracting
one from the value [; (i € L(z)) and adding one to
the value [;(j € L(y)).

From the second condition similar binary trees
can be computed similarly. In this case the inequal-
ity becomes

Z w; + Z wj > Z Wi
i€L(a) JEL(b) keL(c)

for a,b and ¢ in the same level. For the given level
vector we change some parts: I + 1(k € L(c)) and
l; = 1(i € L(a) U L(D)).
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The number of similar binary trees of the given
tree can be counted. Let n; and m; be the numbers
of leaves and internal nodes in level [. The following
relation holds: m; = Zﬁ:lJrl ne2' =%, where L is
the maximum level of the given tree. So, from the
first condition the number of similar binary tree is
computed:

=1
L1 L L
= <m—|— Z nkZIk) <m+1+ Z nk2lk>

k=I+1 k=142

From the second condition the number is simi-
larly counted.

L

S (”l; 1) ~ O(Ln).

i=3

Finally, the total number of similar binary trees is
equal to the sum of numbers above:

O(Ln?).

4.2 enumeration by reverse search

Reverse search [1] is a method of enumeration of
all nodes of graph by a proper parent relation. In
this section we show that all binary tree can be
enumerated by reverse search.

Consider graph G = (V, E) s.t. V is aset £, 0f bi-
nary tree with n leaves and there is a edge between
binary trees if the trees are similar. Lexicographic
order is induced in £,, such that for level vector 1,1’
we defined order as follows:

<l eli=li=1,...,K),lxs1 <lg, ;.

For each nodes in the graph, parent relation is
defined as follows: parent of given vector ! is the
smallest level vector among all similar level vector
of I, denoted by parent(l). This relation is real-
ized by decreasing as many prefix ;(i = 1,...,5)
as possiblei.e. check the inequality with w;, we and
so on (candidates are computed by the method in
previous subsection).

Enumeration is performed as follows: consider
binary trees with n leaves. There is a binary tree
(1,2,-+-,n—1,n — 1), which is the smallest level

vector in L, called start node. All binary tree with
n leaves enumerates from the start node by parent
relation.

Suppose a binary tree [ is arrived in the enumer-
ation. There is two cases: first arrival and non-first
arrival.

First arrival:

Enumerate .

Select the largest level vector of I in the order
above:

Let k = 1;

while (k < n)

if Check the possibility of increasing [, then
Consider the set of inequalities

wy, + Z wl_zwjzoa

ieS+\{k} jES—

where ST = {i|l; — I; = +1},

ST ={i|l; -1, =—-1}.

Select one level vector from the set such that
ST is included small index as many as possible.

else
k:=k+1;
endif
endwhile

If there is no smaller child rather than I, move to
parent(l).
Non-first arrival: In case of return from child
node l’. Let I be the parent of I. Consider
the difference I’ — I. This difference becomes
(0,...,0,1,%,--- ,%). Since enumerate larger node

in the child nodes, the part of Os is not changed.
The following is performed .

1. the part of xs decrease.
2. change the first one to zero.

If these steps are not performed, there is no smaller
child rather than I’. Move to parent(l).

When there is no parent of current node, then the
enumeration is finished.

5 Conclusion

In this paper we deal with properties of optimal
region of Huffman tree. The tree is expressed by
level vector in this paper. The region of level vec-
tor is non-empty, convex and has full-dimension.
We characterize similarity and adjacency between
two regions: two regions are similar if and only
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if the difference of level vectors is contained in
{=1,0,1}™. Two regions of l,l’ are adjacent if and
only if two regions are similar and for any other
level vectors , m’ such that I +1' #m +m/.

Two applications are shown in this paper. The
former is used for dynamic Huffman tree. Consider
a weight w and a level vector I in £,, such that [ is
optimal under w. For this vector, there are O(Ln?)
similar level vectors, where L is the most largest
level of T'(I). Since each optimal region of similar
level vector and R(l) share a point, there exist only
these optimal regions around the R(l). If optimal
tree T'(1) is transformed to other extended binary
tree when w is slightly changed, the optimal tree is
included in T'(I’) where I’ is similar level vector of L.
It is possible that the number of considerable sim-
ilar tree is smaller than O(Ln?) for a given weight
w.

It is consider that conv(L,) has a relation with
permuto-associahedron KTI, 1([5, p.19]). The
polytope is defined by the combination of permuta-
hedron and associahedron. Each vertex of KTI,,_;
is a way of multiplication of n terms without com-
mutative law and associative law. For example,
KTI; has 12 vertices (see Figure 5). The vertex
also corresponds to a labeled extended binary tree
with n leaves. Level vector is defined for labeled ex-
tended binary tree. So, a projection from vertices
KII,, 4 to L, is defined. In Figure 5, the vertices
on KTIy by italic font map to a vertex (2,1,2) on
conv(Ly,).

13.2)  (1.3)2 (1,2.2)

1(2.3) (3.1.)2

(1.2)3 3(1.2)

(2.1)3 3(2.1)

2(1.3) (32)1

2(3.1)
Kn,

(2.3)1 (2.1,2) (22,1

conv(Ly,)

Figure 5: permuta-associahedron KTIy (left) and
conv(L3) (right)

The following conjecture is considered:

Conjecture 1 If there is an edge between two ver-
tices of KII,—1, corresponding vertices of L, are
one vertex or connected by an edge on conv(L,,).

Finally, we state about the relation between op-
timal region of Huffman tree and that of alphabetic

tree for one level vector. Alphabetic tree is also ex-
tended binary tree such that the labels of leaves
appear in alphabetic order from left to right if we
traverse the tree in inorder. Level vector of alpha-
betic tree is similarly defined with that of Huffman.
Let A, be the set of all level vectors of alphabetic
tree with n leaves. The definitions of A,, is similar
to that of £,,. Moreover , for A,, similar results of
this paper can be shown. The results will be ap-
peared in the other paper. In this paper, we state
a relation between optimal regions R(l) in £, and
S() in A,. Let l be a level vector in A,,. This
vector is also included in £,. Any point in £, is
optimal in A,,, but opposite is not. Then the fol-
lowing relation is shown:

In information theory it is shown that the average
length of code by Huffman tree becomes optimal
and by alphabetic tree is equal to optimal plus ex-
tra. This fact is suitable for the relation above.
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