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Abstract

Let P be a subset of 2-dimensional integer lattice points P = {1,2,...,m}x{1,2,...,n} C
Z2. We consider the graph Gp with vertex set P satisfying that two vertices in P are adja-
cent if and only if Euclidean distance between the pair is less than or equal to v/2. Given a
non-negative vertex weight vector w € Zi , a multicoloring of (Gp,w) is an assignment of
colors to P such that each vertex v € P admits w(v) colors and every adjacent pair of two
vertices does not share a common color.

We show the NP-completeness of the problem to determine the existence of a multicolor-
ing of (G p, w) with strictly less than (4/3)w colors where w denotes the weight of a maximum
weight clique. We also propose an O(mn) time approximation algorithm for multicoloring
(Gp,w). Our algorithm finds a multicoloring with at most (4/3)w + 4 colors

Our algorithm based on the property that when n = 3, we can find a multicoloring of
(Gp,w) with w colors easily, since an undirected graph associated with (Gp,w) becomes a
perfect graph.

1 Introduction

Given a pair of positive integers m and n, P denotes the subset of 2-dimensional integer lattice
points defined by
P¥ 1,2, mx{12,...,n} C 7%

! Supported by Superrobust Computation Project of the 21st Century COE Program “Information Science
and Technology Strategic Core.”



Let Gp be an undirected graph with vertex set P satisfying that two vertices are adjacent if and
only if Euclidean distance between the pair is less than or equal to v/2. Given a non-negative
vertex weights w € Zf, the pair (Gp,w) is called a weighted lattice graph with diagonals and
abbreviated by WLGD.

Given an undirected graph H and a non-negative integer vertex weight w’ of H, a multi-
coloring of (H,w') is an assignment of colors to vertices of H such that each vertex v admits
w'(v) colors and every adjacent pair of two vertices does not share a common color. A multicol-
oring problem on (H,w’) finds a multicoloring of (H,w’) which minimizes the required number
of colors. The multicoloring problem is also known as weighted coloring [2], minimum integer
weighted coloring (7] or w-coloring [6]. A vertex subset V’ of an undirected graph is called a
clique if every pair of vertices in V' are adjacent. The weight of a clique is the sum total of
all the weights of vertices in the clique. We denote the weight of a maximum weight clique in
(H,w") by w(H,w'). Tt is clear that for any multicoloring of (H,w’), the required number of
colors is greater than or equal to w(H,w’).

In this paper, we study a fundamental class of graphs: lattice graphs with diagonals Gp. We
show the NP-completeness of the problem to determine the existence a multicoloring of (Gp, w)
with strictly less than (4/3)w(Gp,w) colors. We also propose an O(mn) time algorithm for
multicoloring (Gp,w) with at most (4/3)w(Gp,w) + 4 colors.

The multicoloring problem has been studied in several context. On triangular lattice graphs
it corresponds to the radio channel (frequency) assignment problem. McDiarmid and Reed [5]
showed that the multicoloring problem on triangular lattice graphs is NP-hard. Some authors [5,
6] independently gave approximation algorithms for this problem. In case that a given graph
H is a square lattice graph (without diagonal) and/or a hexagonal lattice graph, the graph
becomes bipartite and so we can obtain an optimal multicoloring of (H,w’) in polynomial time
(see [5] for example). Halldérsson and Kortsarz (3] studied planar graphs and partial k-trees.
For both classes, they gave a polynomial time approximation scheme (PTAS) for variations
of multicoloring problem with min-sum objectives. These objectives appear in the context of
multiprocessor task scheduling.

There is a natural graph H(w') associated with a pair (H, w’) as above, obtained by replacing
each vertex v of H by a complete graph on w'(v) vertices. Multicolorings of the pair (H,w’)
correspond to usual vertex colorings of the graph H(w’), and the multicoloring number of
(H,w') is equivalent to the coloring number of H(w’). Here we note that the input size of the
graph H(w') is bounded by a pseudo polynomial of that of (H,w'’) in general. We also show
that when n = 3, we can exactly solve the multicoloring problem on (Gp,w) in O(m) time. It
based on the property that the associated graph Gp(w) becomes a perfect graph. For (general)
perfect graphs, Grétschel, Lovész, and Schrijver [2] gave a polynomial time exact algorithm for
the coloring problem. Their algorithm based on the ellipsoid method.

2 Approximation Algorithm

In this section, we propose a linear time approximation algorithm for multicoloring a WLGD
(Gp,w). For any vertex (z,y) € P, we denote the corresponding vertex weight by w(z,y).

Theorem 1 There ezists an O(mn) time algorithm for finding a multicoloring of (Gp, w) which
uses at most (4/3)w(G,w) + 4 colors.

Before giving a proof of Theorem 1, let us consider a well-solvable case.



Lemma 1 When P = {1,...,m} x {1,2,3}, there ezists an O(m) time (ezact) algorithm for
multicoloring (Gp,w) with w(Gp,w) colors.

Proof: In the following, we express a multicoloring by an assignment of integers ¢ : P — 22+
such that [Vv € P, w(v) = |¢(v)|] and [for every adjacent pair of vertices v,w € P, c(v)Ne(w) = @
]. We describe an O(m) time algorithm explicitly.

First, we compute w(Gp, w) in O(m) time. For each odd number z € {1,...,m}, we set

c(z,1) = {ieZ:w(z,2) <i<w(z?2)+wx,l)}
oz,2) = {i€Z:1<i<w(z,2)},
oz,3) = {i€Z:w(z2) <i<w(z,?2)+w(3)},
and for each even number z € {1,...,m}, we set
c(z,1) = {i€Z:w(Gw)—w(z2) >i>w(Gw)—wk,2) - w(zl)},

c(z,2) {ieZ:w(Gw)=>1i>w(Gw)—w(?2)},
c(z,3) {i€Z:w(G,w)—w(z,?2)>i>wGw)—wx?2)—wx,3)}

Obviously, the above procedure requires O(m) time.

It remains to show that every adjacent pair of two vertices does not share a common color.
First, assume on the contrary that the edge between (x,1) and (z + 1, 1) violates the condition,
ie., c(z, 1)Ne(z+1,1) # 0. It follows that w(z, 1)+w(z, 2)+w(z+1,1)+w(z+1,2) > w(Gp,w).
Since the set of four vertices {(z,1),(z,2),(z + 1,1), (z + 1,2)} forms a clique of Gp, it is a
contradiction. For other edges, the correctness is proved analogously. g

From Lemma 1, the following result is now immediate.

Corollary 1 If P ={1,...,m} x{1,2,3}, the undirected graph Gp(w) associated with (Gp,w)
is perfect.

Proof: Every vertex induced subgraph G’ of Gp(w) is associated with a WLGD (Gp,w’),
satisfying that w'(v) denotes the number of vertices in G’ corresponding to the vertex v. 1

In case that every vertex weight is a multiple of 3, there exists a simple (4/3)-approximation
algorithm. In the following, we describe an outline of the algorithm. First, we construct four
vertex weights wj, for k € {0,1,2, 3} by setting

, 0, y = k (mod 4),
wi(@,y) = { w(z,y)/3, othervgise. )
Next, we exactly solve four multicoloring problems defined on four WLGDs (Gp,wy}) (k €
{0,1,2,3}) and obtain four multicolorings. We can solve the problems independently by applying
the procedure in the proof of Lemma 1 (we will describe later in detail). Here we assume that
four multicolorings use mutually disjoint sets of colors. Lastly, we output the direct sum of four
multicolorings. It is clear that max;c(q1,23) w(Gp, w;) < (1/3)w(Gp,w). Thus, the obtained
multicoloring uses at most (4/3)w(Gp,w) colors.

In the following, we consider the general case and describe a proof of Theorem 1.
Proof of Theorem 1: For each k € {0,1, 2,3}, we introduce a partition {Ag, Bg, Ck, Dg} of P
defined as follows:

Ay, = {(z,y) € P:y=k(mod4)},



By = {(z,y) € P:y=k+2(mod4)},

Cr = {(z,9) € P:y=k+1(mod4), zis odd}
U{(z,y) € P:y=k+3(mod4), z is even},

Dy = {(z,y) € P:y=k+1(mod4), z is even}
U{(z,y) € P:y =k + 3(mod4), z is odd}.

Then we construct vertex weights wy, for k € {0,1,2,3} by the following procedure. We put the
weight of every vertex in Ay to 0. For each vertex (z,y) € By, we set wg(x,y) = |w(z,y)/3]. If
(2,9) € Ci, we set

_ ] lw(=,9)/3, w(z,y) =0 (mod3),
“’"(x’y)‘{ lw(z,y)/3] +1, w(z,y) € {1,2} (mod3),

and in case that (z,y) € Dy, we set

wk(l,‘ y) = { |_U)(.”L‘, y)/3J’ w(“’,y) € {0, 1} (mOd 3),
’ |lw(z,y)/3] +1, w(z,y) =2 (mod3).

Clearly from the definition, the equality w = wg + w; + w3 + w3 holds. ‘

For each WLGD (Gp,wy) (k € {0,1,2,3}), we delete all the vertices in Ay and decompose
the graph into O(n) connected components. Then each connected component satisfies the condi-
tion in Lemma 1 and so the procedure in the proof of Lemma 1 finds a multicoloring of (Gp, wx)
using w(Gp,wg) colors in O(mn) time. Here we assume that four multicolorings use mutually
disjoint sets of colors. Then the direct sum of four multicoloring becomes a multicoloring of
original WLGD (Gp,w).

Lastly, we show that the algorithm finds a multicoloring with at most (4/3)w(Gp,w) + 4
colors. We only need to show the inequality w(Gp,wi) < (1/3)w(Gp,w) + 1 for all k €
{0,1,2,3}. Let V' be a clique of Gp and V} = e {(z,y) € V' : wi(z,y) = |w(z,y)/3] +1}. The
definition of weights wy, directly implies that |V}'] < 2, since [V'NC,| < 1 and |[V'NDg| < 1. We
denote the weight of the clique V' with respect to wy, or w by w(V’) or w(V'), respectively. If
Vi =0, we have done. When |V/'| = 1, the inequality w(V’) > 3(wi(V’)—1) = 3wy (V')—3 holds.
In case that |V)/| = 2, [V/'NCy| = |V’F1Dk[ =1 and so we have w(V') > 3(wk(V’) 2)+1+2=
3w (V') - 3. Thus we have the desired result. . 1

3 Hardness Result

In this section, we discuss the hardness of our problem.

Theorem 2 Given a WLGD (Gp,w), it is NP-complete to determine whether (Gp,w) is mul-
ticolorable with strictly less than (4/3)w(Gp,w) colors or not.

Proof: It is known to be NP-complete to determine the 3-colorability of a given planar graph
H with each vertex degree is either 3 or 4 (see [1] e.g.). We show a procedure to construct a
WLGD (Gp,w) such that (Gp,w) is 3-multicolorable if and only if H is 3-colorable. In the
following, We identify a WLGD (Gp,w) with the n x m integer matrix w € Z}*™ such that
rows and columns are indexed by {1,2,...,n} and {1,2,...,m} respectively.



First, we introduce 3 special WLGDs defined by the following matrices:

00100 0001000
02020 09320000000 0020200
Lo=110001|,L1=[10001212121|,L2= (1100101
02020 02020000000 0000020
00100 00100000000 0000000

The four elements of Lo indexed by {(1,3),(3,1),(3,5),(5,3)} are the “contact points” of Ly.
Observe that in any 3-multicoloring of Ly, all the contact points must have the same color.
Similarly, four elements of L; indexed by {(1,3),(3,1),(5,3),(3,11)} are the “contact points”
such that in any 3-multicoloring of L;, the contact points must have the same color. The
“contact pair” of Ly indexed by {(3,1),(3,7)} satisfies that in any 3-multicoloring of Lo, the
contact points have different colors.

Next, we embed the planar graph H (with each vertex degree is either 3 or 4) on the z—y
plain and obtain a plain graph H’ such that (1) H’ is a subdivision of H (H' is homeomorphic
to H), (2) every vertex of H' is an integer lattice point in {1,2,...,m'} x {1,2,...,n'}, (3)
every edge of H' is either a vertical or horizontal edge with unit length, and (4) m’ and n' are
bounded by a polynomial of the number of vertices of H. For each edge of H’', we insert 9
vertices and obtain a finer subdivision H” of H'. We put P = {1,2,...,10m’} x {1,2,...,10n'}
and construct Gp (a lattice graph with diagonals) from P. It is easy to see that H” is a subgraph
of Gp. Since there is a linear time algorithm for finding a planar embedding of a given graph or
deciding that it is not planar [4], the computational effort of the above procedure is obviously
bounded by a polynomial of the number of vertices in H.

Lastly, we construct the vertex weights w of Gp as follows. Initially, we put all the vertex
weights to 0. For each vertex v of H” whose degree is greater than 2, we replace the weights
of vertices in Gp whose (Euclidean) distances from v is less than or equal to 2v/2 by matrix
Lp. For each edge e in the original graph H, there exists a corresponding path P, in H”. We
denote the path P, by a sequence of vertices (vg,vy,...,v10k). Then we replace the weights of
vertices near the vertices in the subpath (vg,vs,...,vs) with the matrix Ls or its rotated image
satisfying that {vs,vs} becomes the contact pair of Ly. Here we note that the copies of Ly and
L, share five vertices. In case k > 2, we apply the following. For every ¥’ € {1,2,...,k—1}, we
replace the weights of vertices near the vertices in the subpath (vipr—2, Viok/—1, - - - , V10k'+8) bY
a copy of L or its rotated image satisfying that vigx_o corresponds to one of the elements of 1
indexed by (1,3),(3,1),(5,3) and viox’'+8 corresponds to the element indexed by (3,11). Similarly
to the above, consecutive pair of matrices shares five elements. :

From the definitions of Lg, L1, Lo, it is obvious that the WLGD (Gp, w) defined above satis-
fies w(Gp,w) = 3. The above procedure directly implies that the given graph H is 3-colorable if
and only if (Gp,w) is 3-multicolorable. Thus, NP-completeness of the original problem implies
that it is NP-complete to determine whether a given WLGD (Gp,w) is multicolorable with
strictly less than (4/3)w(Gp,w) colors. 1
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