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Abstract

The Phylogenetic kth Root Problem (PRk)
is the problem of finding a (phylogenetic) tree T
from a given graph G = (V,E) such that (1) T has
no degree-2 internal nodes, (2) the external nodes
(i.e. leaves) of T are exactly the elements of V , and
(3) (u, v) ∈ E if and only if the distance between u
and v in tree T is at most k, where k is some fixed
threshold k. Such a tree T , if exists, is called a phy-
logenetic kth root of graph G. The computational
complexity of PRk is open, except for k ≤ 4. Re-
cently, Chen et al. investigated PRk under a nat-
ural restriction that the maximum degree of the
phylogenetic root is bounded from above by a con-
stant. They presented a linear-time algorithm that
determines if a given connected G has such a phy-
logenetic kth root, and if so, demonstrates one. In
this paper, we supplement their work by presenting
a linear-time algorithm for disconnected graphs.

1 Introduction

The reconstruction of evolutionary history for a
set of species from quantitative biological data has
long been a popular problem in computational bi-
ology. This evolutionary history is typically mod-
eled by an evolutionary tree or phylogeny. A phy-
logeny is a tree where the leaves are labeled by
species and each internal node represents a specia-
tion event whereby a hypothetical ancestral species
gives rise to two or more child species. Proximity
within a phylogeny in general corresponds to simi-
larity in evolutionary characteristics. Both rooted
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and unrooted trees have been used to describe phy-
logenies in the literature, although they are prac-
tically equivalent. In this paper, we will consider
only unrooted phylogenies for the convenience of
presentation. Note that each internal node in a
phylogeny has at least 3 neighbors.

Many approaches to phylogenetic reconstruction
have been proposed in the literature [8]. In par-
ticular, Lin et al. [4] recently suggested a graph-
theoretic approach for reconstructing phylogenies
from similarity data. Specifically, interspecies sim-
ilarity is represented by a graph G where the ver-
tices are the species and the adjacency relation
represents evidence of evolutionary similarity. A
phylogeny is then reconstructed from G such that
the leaves of the phylogeny are labeled by vertices
of G (i.e. species) and for any two vertices of G,
they are adjacent in G if and only if their corre-
sponding leaves in the phylogeny are at most dis-
tance k apart, where k is a predetermined prox-
imity threshold. This approach gives rise to the
following algorithmic problem [4]:

Phylogenetic kth Root Problem
(PRk):
Given a graph G = (V,E), find a phylogeny
T with leaves labeled by the elements of V
such that for each pair of vertices u, v ∈ V ,
(u, v) ∈ E if and only if dT (u, v) ≤ k, where
dT (u, v) is the number of edges on the path
between u and v in T .

Such a phylogeny T (if exists) is called a phyloge-
netic kth root, or a kth root phylogeny, of graph
G. Graph G is called the kth phylogenetic power
of T . For convenience, we denote the kth phylo-
genetic power of any phylogeny T as T k. That
is, T k = {(u, v) | u and v are leaves of T and
dT (u, v) ≤ k}. Thus, PRk asks for a phylogeny
T such that G = T k.
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1.1 Previous Results on PRk

PRk was first studied in [4] where linear-time al-
gorithms for PRk with k ≤ 4 were proposed. At
present, the complexity of PRk with k ≥ 5 is still
unknown.

The hardness of PRk for large k seems to come
from the unbounded degree of an internal node in
the output phylogeny. On the other hand, in the
practice of phylogeny reconstruction, most phylo-
genies considered are trees of degree 3 [8] because
speciation events are usually bifurcating events in
the evolutionary process. These motivated Chen
et al. [2] to consider a restricted version of PRk
where the output phylogeny is assumed to have
degree at most ∆, for some fixed constant ∆ ≥ 3.
We call this restricted version the Degree-∆ PRk
and denote it for short as ∆PRk.

Chen et al. [2] presented a linear-time algorithm
that determines, for any input connected graph G
and constant ∆ ≥ 3, if G has a kth root phylogeny
with degree at most ∆, and if so, demonstrates
one such phylogeny. Unfortunately, their algorithm
fails when the input graph G is disconnected. One
of their open questions asks for a polynomial-time
algorithm for disconnected graphs, because the dis-
connected case is real in biology.

1.2 Other Problems Related to PRk

A graph G is the kth power of a graph H (or equiv-
alently, H is a kth root of G), if vertices u and v are
adjacent in G if and only if they are at most dis-
tance k apart in H. An important special case of
graph power/root problems is the Tree kth Root
Problem (TRk): Given a graph G = (V,E), we
wish to find a tree T = (V,ET ) such that (u, v) ∈ E
if and only if dT (u, v) ≤ k. If T exists, then it is
called a tree kth root, or a kth root tree, of graph G.
There is rich literature on graph roots and powers
(see [1, Section 10.6] for an overview), but few re-
sults on phylogenetic/tree roots/powers. It is NP-
complete to recognize a graph power [6]; nonethe-
less, we can determine if a graph has a kth root
tree, for any fixed k, in cubic time [3]. In particular,
determining if a graph has a tree square root can
be done in linear time [5]. Moreover, Nishimura
et al. [7] presented a cubic time algorithm for a
variant of PRk with k ≤ 4, where internal nodes
of the output phylogeny are allowed to have degree
2.

1.3 Our Contribution

Our result is a linear-time algorithm that deter-
mines, for any input disconnected graph G and con-
stant ∆ ≥ 3, if G has a kth root phylogeny with
degree at most ∆, and if so, demonstrates one such
phylogeny. This answers an open question in [2].
Combining this algorithm with the algorithm in
[2] for connected graphs, we obtain the first linear-
time algorithm for ∆PRk for any constants ∆ ≥ 3
and k ≥ 2. Our algorithm is complicated and it
is based on hidden structures of phylogenetic kth
roots of disconnected graphs. Moreover, the al-
gorithm needs a linear-time subroutine for solving
a certain optimization problem on each connected
component of the input disconnected graph. The
subroutine is obtained by nontrivially refining the
algorithm in [2].

2 Preliminaries

We employ standard terminologies in graph theory.
In particular, the subgraph of a graph G induced
by a vertex set U of G is denoted by G[U ], the
degree of a vertex v in G is denoted by degG(v),
and the distance between two vertices u and v in
G is denoted by dG(u, v). Moreover, for a set W
of vertices in a graph G = (V,E), we write G −
W for G[V − W ]. Furthermore, in a rooted tree,
each vertex is both an ancestor and a descendant
of itself.

For clarity, if G = (V,E) is a graph and T =
(VT , ET ) is a kth root phylogeny of G for some k,
then we call the elements of V vertices and call
those of VT nodes.

In the remainder of this section, fix a graph G =
(V,E) and two integers k ≥ 4 and ∆ ≥ 3. A degree-
∆ kth root phylogeny ((∆, k)-phylogeny for short)
of G is a kth root phylogeny T of G such that the
maximum degree of a node in T is at most ∆.

A degree-∆ kth root quasi-phylogeny ((∆, k)-QP
for short) of G is a tree Q satisfying the following
conditions:

• Each vertex of G is a leaf of Q and appears
in Q exactly once. For convenience, we call
the leaves of Q that are also vertices of G true
leaves of Q, and call the other leaves of Q false
leaves of Q.

• The degree of each node in Q is at most ∆.
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• For every two vertices u and v in G, u and v
are adjacent in G if and only if dQ(u, v) ≤ k.

• For each node x of Q that is a degree-
2 node or a false leaf in Q, it holds that
minv∈V dQ(x, v) ≥ bk

2c.

• If Q has no false leaf, then it has at least one
node x such that 2 ≤ degQ(x) ≤ ∆ − 1 and
minv∈V dQ(x, v) ≥ bk

2c.

The cost of Q is max{1, a + 2b}, where a is the
number of degree-2 nodes in Q and b is the number
of false leaves in Q. Q is an optimal (∆, k)-QP of
G if its cost is minimized over all (∆, k)-QPs of G.

Lemma 2.1 Suppose that G = (V,E) is a con-
nected graph. Let Q be an optimal (∆, k)-QP of G.
Then, the following hold:

1. Q has no node x with minv∈V dQ(x, v) > bk
2c.

2. For each node x with degQ(x) = 2 or
degQ(x) > 3, each connected component of
Q− {x} contains at least one true leaf of Q.

We classify (∆, k)-QPs Q into four types as fol-
lows.

• Q is helpful if it has at most one degree-2 node
and has no false leaf.

• Q is moderate if it has no degree-2 node but
has exactly one false leaf.

• Q is troublesome if it has at least two degree-2
nodes but has no false leaf.

• Q is dangerous if it has at least one false
leaf and the total number of false leaves and
degree-2 nodes in Q is at least 2.

A (∆, k)-QP Q is unhelpful if it is not helpful.
For a (∆, k)-QP Q, we define its port nodes as

follows. If Q is not helpful, then its port nodes are
its false leaves and degree-2 nodes. If Q is helpful
and has no degree-2 node, then its port nodes are
those nodes x with minv∈V dQ(x, v) ≥ bk

2c. If Q is
helpful and has a degree-2 node, then it has only
one port node, namely, its unique degree-2 node.

A nonport node of a (∆, k)-QP Q is a node of Q
that is not a port node of Q.

3 Algorithm for Bounded-
Degree PRk

Throughout this section, fix two integers k ≥ 4
and ∆ ≥ 3. This section presents a linear-time
algorithm for solving ∆PRk.

Let G = (V,E) be the input graph. We assume
that G is disconnected; otherwise, the linear-time
algorithm in [2] solves the problem. Let G1, . . . , G`

be the connected components of G. For each inte-
ger with 1 ≤ i ≤ `, let Vi be the vertex set of Gi.

The next lemma can be proved by a complicated
dynamic programming.

Lemma 3.1 For every i ∈ {1, . . . , `}, we can de-
cide whether Gi has a (∆, k)-QP, in O(|Vi|) time.
Moreover, if Gi has a (∆, k)-QP, then we can com-
pute an optimal (∆, k)-QP of Gi in O(|Vi|) time.

Lemma 3.2 If for some i ∈ {1, . . . , `}, Gi has no
(∆, k)-QP, then G has no (∆, k)-phylogeny.

By Lemmas 3.1 and 3.2, we may assume that for
each i ∈ {1, . . . , `}, Gi has a (∆, k)-QP. For each
i ∈ {1, . . . , `}, let Qi be the optimal (∆, k)-QP of
Gi computed in Lemma 3.1.

Lemma 3.3 Suppose that G has a (∆, k)-
phylogeny. Then, G has a (∆, k)-phylogeny T such
that Q1, . . . , Q` all are subtrees of T .

In the remainder of this section, a (∆, k)-
phylogeny of G always means one in which
Q1, . . . , Q` are subtrees. By Lemma 3.3, we lose
no generality. For convenience, we call Q1, . . . , Q`

the unitary (∆, k)-QPs.
Let T be a (∆, k)-phylogeny T of G. A junc-

tion node of T is a node x of T such that no uni-
tary (∆, k)-QP contains x. A node x of T is over-
connected, if it satisfies one of the following condi-
tions:

(1) degT (x) > 3 and x is a junction node of T .

(2) degT (x) > 3 and x is a port node of some
unhelpful Qi (1 ≤ i ≤ `).

(3) x is a nonport node of some unhelpful Qi (1 ≤
i ≤ `) and degT (x) > degQi(x).

A helpful Qi (1 ≤ i ≤ `) is mis-connected in T ,
if (i) at least one nonport node of Qi is adjacent
to a node outside Qi in T , or (ii) there are two or
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more nodes x outside Qi such that x is adjacent to
a node of Qi in T .

A (∆, k)-phylogeny T of G is canonical, if it has
no over-connected node and no helpful Qi (1 ≤ i ≤
`) is mis-connected in T .

Lemma 3.4 If G has a (∆, k)-phylogeny, then it
has a canonical one.

In the remainder of this section, a (∆, k)-
phylogeny of G always means a canonical one. By
Lemma 3.4, we lose no generality.

3.1 The Case where k is Odd

Throughout this subsection, we assume that k is
odd. A doube (∆, k)-QP is a tree Ti,j obtained by
combining two helpful unitary (∆, k)-QPs Qi and
Qj as follows:

1. Select a port node xi of Qi, and select a port
node xj of Qj .

2. Introduce a junction node y, and connect it to
both xi and xj .

Note that Ti,j has exactly one degree-2 node
(namely, the junction node y) but has no false
leaf. So, Ti,j is a helpful (∆, k)-QP of G[Vi ∪ Vj ].
Moreover, the minimum distance from y to a true
leaf in Ti,j is exactly bk

2c + 1 (cf. Statement 1 in
Lemma 2.1).

Lemma 3.5 Suppose that each Qi (1 ≤ i ≤ `)
is helpful or moderate. Then, G has a (∆, k)-
phylogeny if and only if ` ≥ 2b + 3, where b is the
number of moderate (∆, k)-QPs among Q1, . . . , Q`.

In the sequel, we assume that at least one Qi

(1 ≤ i ≤ `) is troublesome or dangerous (since
otherwise Lemma 3.5 solves the problem).

Let T be a (∆, k)-phylogeny of G. For each dan-
gerous Qi (1 ≤ i ≤ `), we say that a false leaf x
of Qi is active in T , if no connected component
of T − {x} is a double (∆, k)-QP. A dangerous Qi

(1 ≤ i ≤ `) is active in T if at least one false leaf
of Qi is active in T .

Lemma 3.6 Suppose that G has a (∆, k)-
phylogeny. Then, G has a (∆, k)-phylogeny T such
that no dangerous Qi (1 ≤ i ≤ `) is active in T .

Let I be the set of all i ∈ {1, . . . , `} such that Qi

is dangerous. For each i ∈ I, let ti be the number of
false leaves in Qi. Let t =

∑
i∈I ti. By Lemma 3.6,

if G has a (∆, k)-phylogeny, then there are at least
2t helpful unitary (∆, k)-QPs. So, if there are less
than 2t helpful unitary (∆, k)-QPs, then G has no
(∆, k)-phylogeny. In the sequel, we assume that
there are at least 2t helpful unitary (∆, k)-QPs.
Without loss of generality, we may assume that
Q1, . . . , Q2t are helpful.

We connect Q1, . . . , Q2t to the dangerous unitary
(∆, k)-QPs as follows.

1. Introduce t junction nodes x1, . . . , xt, and con-
struct a one-to-one correspondence between
them and the t false leaves of the dangerous
unitary (∆, k)-QPs.

2. For each i ∈ {1, . . . , t}, add an edge from xi

to its corresponding false leaf, add an edge
from xi to an (arbitrarily chosen) port node
of Q2i−1, and add an edge from xi to an (ar-
bitrarily chosen) port node of Q2i.

The above modification extends each dangerous
unitary (∆, k)-QP Qi to a troublesome (∆, k)-QP
Ri. For convenience, let Ri = Qi for each i ∈
{2t + 1, . . . , `} such that Qi is not dangerous.

Now, we are left with R2t+1, . . . , R`; none of
them is dangerous. Let τ be the number of trouble-
some (∆, k)-QPs among R2t+1, . . . , R`. Note that
τ = |i ∈ {1, . . . , `} | Qi is troublesome or danger-
ous}. So, τ ≥ 1. Without loss of generality, we may
assume that R2t+1, . . . , R2t+τ are troublesome.

By Lemma 3.6, if G has a (∆, k)-phylogeny, then
it has one in which R2t+1, . . . , R` are subtrees. So,
in the remainder of this section, a (∆, k)-phylogeny
of G always means one in which R2t+1, . . . , R` are
subtrees.

A bridging node in a (∆, k)-phylogeny T of G is
a node x of T such that no Ri with 2t + 1 ≤ i ≤ `
contains x. For each (∆, k)-phylogeny T of G and
for each Ri with 2t+1 ≤ i ≤ `, each degree-2 node
x of Ri is adjacent to exactly one bridging node y
in T (by the canonicity of T ); we call y the bridging
neighbor of x in T .

For each (∆, k)-phylogeny T of G, let M(T ) de-
note the tree obtained by modifying T by merging
each Ri with 2t + 1 ≤ i ≤ ` into a super-node. For
convenience, we abuse the notation to let each Ri

also denote the super-node of M(T ) corresponding
to Ri. Note that each bridging node of T remains
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to be an internal node in M(T ) and the leaves of
M(T ) one-to-one correspond to the helpful unitary
(∆, k)-QPs among R2t+1, . . . , R`. Moreover, by the
canonicity of T and Statement 1 in Lemma 2.1, no
two super-nodes can be adjacent in M(T ).

Lemma 3.7 If G has a (∆, k)-phylogeny, then it
has one T such that there is a path q in M(T ) on
which R2t+1, . . . , R2t+τ appear.

Lemma 3.8 If G has a (∆, k)-phylogeny, then it
has one T such that some path q in M(T ) satisfies
the following three conditions:

1. R2t+1, . . . , R2t+τ and exactly τ − 1 bridging
nodes appear on q.

2. No two bridging nodes on q are adjacent in T .

3. For each bridging node x on q, there is a help-
ful unitary (∆, k)-QP Ri such that x is adja-
cent to a port node of Ri in T .

In the remainder of this section, a (∆, k)-
phylogeny of G always means one T such that some
path q in M(T ) satisfies the three conditions in
Lemma 3.8. We call q the spine of M(T ). The fol-
lowing corollary shows that it does not matter in
which order R2t+1, . . . , R2t+τ appear on the spine.

Corollary 3.9 Let T be a (∆, k)-phylogeny of G.
Then, for every pair (Ri, Rj) of troublesome (∆, k)-
QPs, there is another (∆, k)-phylogeny T ′ of G
such that the spine of M(T ′) can be obtained from
that of M(T ) by exchanging the positions of Ri and
Rj.

The following corollary is obvious and shows that
it does not matter via which degree-2 nodes each
troublesome Ri is connected to the spine.

Corollary 3.10 Let T be a (∆, k)-phylogeny of G.
Then, for every troublesome Ri and for every pair
(x1, x2) of degree-2 nodes of Ri, we can obtain an-
other (∆, k)-phylogeny T ′ of G by deleting edges
(x1, y1) and (x2, y2) and adding edges (x1, y2) and
(x2, y1), where y1 (respectively, y2) is the bridging
neighbor of x1 (respectively, x2) in T . Moreover,
the spines of M(T ) and M′(T ) are the same.

By Lemma 3.8, if G has a (∆, k)-phylogeny, then
there are at least τ − 1 helpful unitary (∆, k)-
QPs among R2t+τ+1, . . . , R`. So, if there are

less than τ − 1 helpful unitary (∆, k)-QPs among
R2t+τ+1, . . . , R`, then G has no (∆, k)-phylogeny.
In the sequel, we assume that there are at least τ−1
helpful unitary (∆, k)-QPs among R2t+τ+1, . . . , R`.
Without loss of generality, we may assume that
R2t+τ+1, . . . , R2t+2τ−1 are helpful unitary (∆, k)-
QPs.

If τ ≥ 2, then we connect R2t+1, . . . , R2t+2τ−1

into a single (∆, k)-QP R as follows.

1. Introduce τ − 1 bridging nodes x1, . . . , xτ−1.

2. Select a degree-2 node y2t+1 of R2t+1, and se-
lect a degree-2 node z2t+τ of R2t+τ .

3. For each i with 2t + 2 ≤ i ≤ 2t + τ − 1, select
two degree-2 nodes zi and yi of Ri.

4. For each i with 1 ≤ i ≤ τ − 1, add edges
(xi, y2t+i) and (xi, z2t+i+1), and add an edge
from xi to an (arbitrarily chosen) port node of
R2t+τ+i.

If τ = 1, we let R = R2t+1.
Note that R is a troublesome (∆, k)-QP. By

Lemma 3.8 and Corollaries 3.9 and 3.10, if G has
a (∆, k)-phylogeny, then G has one T such that
R, R2t+2τ , . . . , R` are subtrees of T . In the re-
mainder of this section, a (∆, k)-phylogeny of G
always means such a tree T . Let h be the num-
ber of degree-2 nodes in R. Let x1, . . . , xh be the
degree-2 nodes of R.

Lemma 3.11 If G has a (∆, k)-phylogeny, then
it has one T such that for all but one xi ∈
{x1, . . . , xh}, the connected component of T −{xi}
containing no node of R is a double (∆, k)-QP.

By Lemma 3.11, if G has a (∆, k)-phylogeny,
then there are at least 2h − 2 helpful unitary
(∆, k)-QPs among R2t+2τ , . . . , R`. So, if there
are less than 2h − 2 helpful unitary (∆, k)-QPs
among R2t+2τ , . . . , R`, then G has no (∆, k)-
phylogeny. In the sequel, we assume that there
are at least 2h − 2 helpful unitary (∆, k)-QPs
among R2t+2τ , . . . , R`. We may further assume
that R2t+2τ , . . . , R2t+2τ+2h−3 are helpful unitary
(∆, k)-QPs. For each i ∈ {2t + 2τ, . . . , 2t + 2τ +
2h− 3}, let zi be an (arbitrarily chosen) port node
of Ri.

We connect R, R2t+2τ , . . . , R2t+2τ+2h−3 into a
single (helpful) (∆, k)-QP R′ by performing the
following steps:
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1. Introduce h− 1 bridging nodes s1, . . . , sh−1.

2. For each i ∈ {1, . . . , h − 1}, add edges
(si, z2t+2τ+2i−2), (si, z2t+2τ+2i−1), and (si, xi).

Now, we are left with R′, R2t+2τ+2h−2, . . . , R`

each of which is helpful or moderate. Moreover, by
Lemma 3.11, if G has a (∆, k)-phylogeny, then it
has one in which R′, R2t+2τ+2h−2, . . . , R` are sub-
trees. So, we can modify the proof of Lemma 3.5
to show that G has a (∆, k)-phylogeny if and only
if a′ ≥ b′+3, where a′ (respectively, b′) is the num-
ber of helpful (respectively, moderate) (∆, k)-QPs
among R′, R2t+2τ+2h−2, . . . , R`.

In summary, we have the following:

Theorem 3.12 Suppose that k is odd. Then, we
can decide if G has a (∆, k)-phylogeny, and con-
struct one if so, in linear time.

3.2 The Case where k is Even

Throughout this subsection, we assume that k is
even. The contents in this subsection are very
similar to those in the last subsection. In par-
ticular, the lemmas in this subsection one-to-one
correspond to the lemmas in the last subsection.
Moreover, the proof of each lemma in this subsec-
tion is very similar to (indeed a bit simpler than)
its corresponding lemma in the last subsection.

Lemma 3.13 Suppose that each Qi (1 ≤ i ≤ `)
is helpful or moderate. Then, G has a (∆, k)-
phylogeny if and only if a ≥ 2, where a is the num-
ber of helpful (∆, k)-QPs among Q1, . . . , Q`.

In the sequel, we assume that at least one Qi

(1 ≤ i ≤ `) is troublesome or dangerous (since
otherwise Lemma 3.13 solves the problem).

Let T be a (∆, k)-phylogeny of G. For each dan-
gerous Qi (1 ≤ i ≤ `), we say that a false leaf x
of Qi is active in T , if no connected components of
T − {x} is a helpful unitary (∆, k)-QP. A danger-
ous Qi (1 ≤ i ≤ `) is active in T if at least one false
leaf of Qi is active in T .

Lemma 3.14 Suppose that G has a (∆, k)-
phylogeny. Then, G has a (∆, k)-phylogeny T such
that no dangerous unitary (∆, k)-QP is active in
T .

Let I be the set of all i ∈ {1, . . . , `} such that Qi

is dangerous. For each i ∈ I, let ti be the number of
false leaves in Qi. Let t =

∑
i∈I ti. By Lemma 3.14,

if G has a (∆, k)-phylogeny, then there are at least
t helpful unitary (∆, k)-QPs. So, if there are less
than t helpful unitary (∆, k)-QPs, then G has no
(∆, k)-phylogeny. In the sequel, we assume that
there are at least t helpful unitary (∆, k)-QPs.
Without loss of generality, we may assume that
Q1, . . . , Qt are helpful.

We connect Q1, . . . , Qt to the dangerous unitary
(∆, k)-QPs as follows.

1. Construct a one-to-one correspondence be-
tween Q1, . . . , Qt and the t false leaves of the
dangerous unitary (∆, k)-QPs.

2. For each i ∈ {1, . . . , t}, add an edge from an
(arbitrarily chosen) port node of Qi to the
false leaf corresponding to Qi.

The above modification extends each dangerous
unitary (∆, k)-QP Qi to a troublesome (∆, k)-QP
Ri. For convenience, let Ri = Qi for each i ∈
{t + 1, . . . , `} such that Qi is not dangerous.

Now, we are left with Rt+1, . . . , R`; none of them
is dangerous. Let τ be the number of troublesome
(∆, k)-QPs among Rt+1, . . . , R`. Note that τ =
|i ∈ {1, . . . , `} | Qi is troublesome or dangerous}.
So, τ ≥ 1. Without loss of generality, we may
assume that Rt+1, . . . , Rt+τ are troublesome.

By Lemma 3.14, if G has a (∆, k)-phylogeny,
then it has one in which Rt+1, . . . , R` are sub-
trees. So, in the remainder of this section, a
(∆, k)-phylogeny of G always means one in which
Rt+1, . . . , R` are subtrees.

For each (∆, k)-phylogeny T of G, let M(T ) de-
note the tree obtained by modifying T by merging
each Ri with t + 1 ≤ i ≤ ` into a super-node. For
convenience, we abuse the notation to let each Ri

also denote the super-node corresponding to Ri in
M(T ).

Lemma 3.15 If G has a (∆, k)-phylogeny, then it
has one T such that there is a path in M(T ) on
which Rt+1, . . . , Rt+τ appear.

Lemma 3.16 If G has a (∆, k)-phylogeny, then it
has one T such that there is a path in M(T ) whose
nodes are exactly Rt+1, . . . , Rt+τ .

In the remainder of this section, a (∆, k)-
phylogeny of G always means one T such that

6

研究会Temp 
－32－



there is a path q in M(T ) whose nodes are exactly
Rt+1, . . . , Rt+τ . We call q the spine of M(T ). Ob-
viously, Corollaries 3.9 and 3.10 still hold even if k
is even.

If τ ≥ 2, then we connect Rt+1, . . . , Rt+τ into a
single (∆, k)-QP R as follows.

1. Select a degree-2 node yt+1 of Rt+1, and select
a degree-2 node zt+τ of Rt+τ .

2. For each i with t + 2 ≤ i ≤ t + τ − 1, select
two degree-2 nodes zi and yi of Ri.

3. For each i with t+1 ≤ i ≤ t+ τ − 1, add edge
(yi, zi+1).

If τ = 1, we let R = Rt+1.
Note that R is a troublesome (∆, k)-QP. By

Lemma 3.16 and Corollaries 3.9 and 3.10, if G has
a (∆, k)-phylogeny, then G has one T such that
R, Rt+τ+1, . . . , R` are subtrees of T . In the re-
mainder of this section, a (∆, k)-phylogeny of G
always means such a tree T . Let h be the num-
ber of degree-2 nodes in R. Let x1, . . . , xh be the
degree-2 nodes of R.

Lemma 3.17 If G has a (∆, k)-phylogeny, then
it has one T such that for all but one xi ∈
{x1, . . . , xh}, the connected component of T −{xi}
containing no node of R is a helpful unitary (∆, k)-
QP.

By Lemma 3.17, if G has a (∆, k)-phylogeny,
then there are at least h − 1 helpful unitary
(∆, k)-QPs among Rt+τ+1, . . . , R`. So, if there are
less than h − 1 helpful unitary (∆, k)-QPs among
Rt+τ+1, . . . , R`, then G has no (∆, k)-phylogeny. In
the sequel, we assume that there are at least h− 1
helpful unitary (∆, k)-QPs among Rt+τ+1, . . . , R`.
We may further assume that Rt+τ+1, . . . , Rt+τ+h−1

are helpful unitary (∆, k)-QPs. For each i ∈
{t+τ +1, . . . , t+τ +h−1}, let zi be an (arbitrarily
chosen) port node of Ri.

We connect R, Rt+τ+1, . . . , Rt+τ+h−1 into a
single (helpful) (∆, k)-QP R′ by adding edges
(x1, zt+τ+1), . . ., (xh−1, zt+τ+h−1).

Now, we are left with R′, Rt+τ+h, . . . , R` each
of which is helpful or moderate. Moreover, by
Lemma 3.17, if G has a (∆, k)-phylogeny, then it
has one in which R′, Rt+τ+h, . . . , R` are subtrees.
So, we can modify the proof of Lemma 3.13 to
show that G has a (∆, k)-phylogeny if and only

if a′ ≥ 2, where a′ is the number of helpful (∆, k)-
QPs among R′, Rt+τ+h, . . . , R`.

In summary, we have the following:

Theorem 3.18 Suppose that k is even. Then, we
can decide if G has a (∆, k)-phylogeny, and con-
struct one if so, in linear time.

References
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