# Computing Bounded－Degree Phylogenetic Roots of Disconnected Graphs 

Zhi－Zhong Chen＊Tatsuie Tsukiji ${ }^{\dagger}$


#### Abstract

The Phylogenetic $k$ th Root Problem（ $\mathrm{PR} k$ ） is the problem of finding a（phylogenetic）tree $T$ from a given graph $G=(V, E)$ such that（1）$T$ has no degree－2 internal nodes，（2）the external nodes （i．e．leaves）of $T$ are exactly the elements of $V$ ，and （3）$(u, v) \in E$ if and only if the distance between $u$ and $v$ in tree $T$ is at most $k$ ，where $k$ is some fixed threshold $k$ ．Such a tree $T$ ，if exists，is called a phy－ logenetic $k$ th root of graph $G$ ．The computational complexity of $\mathrm{PR} k$ is open，except for $k \leq 4$ ．Re－ cently，Chen et al．investigated PR $k$ under a nat－ ural restriction that the maximum degree of the phylogenetic root is bounded from above by a con－ stant．They presented a linear－time algorithm that determines if a given connected $G$ has such a phy－ logenetic $k$ th root，and if so，demonstrates one．In this paper，we supplement their work by presenting a linear－time algorithm for disconnected graphs．


## 1 Introduction

The reconstruction of evolutionary history for a set of species from quantitative biological data has long been a popular problem in computational bi－ ology．This evolutionary history is typically mod－ eled by an evolutionary tree or phylogeny．A phy－ logeny is a tree where the leaves are labeled by species and each internal node represents a specia－ tion event whereby a hypothetical ancestral species gives rise to two or more child species．Proximity within a phylogeny in general corresponds to simi－ larity in evolutionary characteristics．Both rooted

[^0]and unrooted trees have been used to describe phy－ logenies in the literature，although they are prac－ tically equivalent．In this paper，we will consider only unrooted phylogenies for the convenience of presentation．Note that each internal node in a phylogeny has at least 3 neighbors．

Many approaches to phylogenetic reconstruction have been proposed in the literature［8］．In par－ ticular，Lin et al．［4］recently suggested a graph－ theoretic approach for reconstructing phylogenies from similarity data．Specifically，interspecies sim－ ilarity is represented by a graph $G$ where the ver－ tices are the species and the adjacency relation represents evidence of evolutionary similarity．A phylogeny is then reconstructed from $G$ such that the leaves of the phylogeny are labeled by vertices of $G$（i．e．species）and for any two vertices of $G$ ， they are adjacent in $G$ if and only if their corre－ sponding leaves in the phylogeny are at most dis－ tance $k$ apart，where $k$ is a predetermined prox－ imity threshold．This approach gives rise to the following algorithmic problem［4］：

## Phylogenetic $k$ th Root Problem

 （PRk）：Given a graph $G=(V, E)$ ，find a phylogeny $T$ with leaves labeled by the elements of $V$ such that for each pair of vertices $u, v \in V$ ， $(u, v) \in E$ if and only if $d_{T}(u, v) \leq k$ ，where $d_{T}(u, v)$ is the number of edges on the path between $u$ and $v$ in $T$ ．

Such a phylogeny $T$（if exists）is called a phyloge－ netic $k$ th root，or a $k$ th root phylogeny，of graph $G$ ．Graph $G$ is called the $k$ th phylogenetic power of $T$ ．For convenience，we denote the $k$ th phylo－ genetic power of any phylogeny $T$ as $T^{k}$ ．That is，$T^{k}=\{(u, v) \mid u$ and $v$ are leaves of $T$ and $\left.d_{T}(u, v) \leq k\right\}$ ．Thus，PR $k$ asks for a phylogeny $T$ such that $G=T^{k}$ ．

### 1.1 Previous Results on $\mathrm{PR} k$

$\mathrm{PR} k$ was first studied in [4] where linear-time algorithms for $\mathrm{PR} k$ with $k \leq 4$ were proposed. At present, the complexity of $\mathrm{PR} k$ with $k \geq 5$ is still unknown.

The hardness of $\mathrm{PR} k$ for large $k$ seems to come from the unbounded degree of an internal node in the output phylogeny. On the other hand, in the practice of phylogeny reconstruction, most phylogenies considered are trees of degree 3 [8] because speciation events are usually bifurcating events in the evolutionary process. These motivated Chen et al. [2] to consider a restricted version of $\mathrm{PR} k$ where the output phylogeny is assumed to have degree at most $\Delta$, for some fixed constant $\Delta \geq 3$. We call this restricted version the Degree- $\Delta \mathrm{PR} k$ and denote it for short as $\triangle \mathrm{PR} k$.

Chen et al. [2] presented a linear-time algorithm that determines, for any input connected graph $G$ and constant $\Delta \geq 3$, if $G$ has a $k$ th root phylogeny with degree at most $\Delta$, and if so, demonstrates one such phylogeny. Unfortunately, their algorithm fails when the input graph $G$ is disconnected. One of their open questions asks for a polynomial-time algorithm for disconnected graphs, because the disconnected case is real in biology.

### 1.2 Other Problems Related to PR $k$

A graph $G$ is the $k$ th power of a graph $H$ (or equivalently, $H$ is a $k$ th root of $G$ ), if vertices $u$ and $v$ are adjacent in $G$ if and only if they are at most distance $k$ apart in $H$. An important special case of graph power/root problems is the Tree $k$ th Root Problem (TR $k$ ): Given a graph $G=(V, E)$, we wish to find a tree $T=\left(V, E_{T}\right)$ such that $(u, v) \in E$ if and only if $d_{T}(u, v) \leq k$. If $T$ exists, then it is called a tree $k$ th root, or a $k$ th root tree, of graph $G$. There is rich literature on graph roots and powers (see [1, Section 10.6] for an overview), but few results on phylogenetic/tree roots/powers. It is NPcomplete to recognize a graph power [6]; nonetheless, we can determine if a graph has a $k$ th root tree, for any fixed $k$, in cubic time [3]. In particular, determining if a graph has a tree square root can be done in linear time [5]. Moreover, Nishimura et al. [7] presented a cubic time algorithm for a variant of $\mathrm{PR} k$ with $k \leq 4$, where internal nodes of the output phylogeny are allowed to have degree 2.

### 1.3 Our Contribution

Our result is a linear-time algorithm that determines, for any input disconnected graph $G$ and constant $\Delta \geq 3$, if $G$ has a $k$ th root phylogeny with degree at most $\Delta$, and if so, demonstrates one such phylogeny. This answers an open question in [2]. Combining this algorithm with the algorithm in [2] for connected graphs, we obtain the first lineartime algorithm for $\Delta \mathrm{PR} k$ for any constants $\Delta \geq 3$ and $k \geq 2$. Our algorithm is complicated and it is based on hidden structures of phylogenetic $k$ th roots of disconnected graphs. Moreover, the algorithm needs a linear-time subroutine for solving a certain optimization problem on each connected component of the input disconnected graph. The subroutine is obtained by nontrivially refining the algorithm in [2].

## 2 Preliminaries

We employ standard terminologies in graph theory. In particular, the subgraph of a graph $G$ induced by a vertex set $U$ of $G$ is denoted by $G[U]$, the degree of a vertex $v$ in $G$ is denoted by $\operatorname{deg}_{G}(v)$, and the distance between two vertices $u$ and $v$ in $G$ is denoted by $d_{G}(u, v)$. Moreover, for a set $W$ of vertices in a graph $G=(V, E)$, we write $G-$ $W$ for $G[V-W]$. Furthermore, in a rooted tree, each vertex is both an ancestor and a descendant of itself.

For clarity, if $G=(V, E)$ is a graph and $T=$ $\left(V_{T}, E_{T}\right)$ is a $k$ th root phylogeny of $G$ for some $k$, then we call the elements of $V$ vertices and call those of $V_{T}$ nodes.
In the remainder of this section, fix a graph $G=$ $(V, E)$ and two integers $k \geq 4$ and $\Delta \geq 3$. A degree$\Delta$ kth root phylogeny $((\Delta, k)$-phylogeny for short) of $G$ is a $k$ th root phylogeny $T$ of $G$ such that the maximum degree of a node in $T$ is at most $\Delta$.

A degree- $\Delta k$ th root quasi-phylogeny $((\Delta, k)$-QP for short) of $G$ is a tree $Q$ satisfying the following conditions:

- Each vertex of $G$ is a leaf of $Q$ and appears in $Q$ exactly once. For convenience, we call the leaves of $Q$ that are also vertices of $G$ true leaves of $Q$, and call the other leaves of $Q$ false leaves of $Q$.
- The degree of each node in $Q$ is at most $\Delta$.
- For every two vertices $u$ and $v$ in $G, u$ and $v$ are adjacent in $G$ if and only if $d_{Q}(u, v) \leq k$.
- For each node $x$ of $Q$ that is a degree2 node or a false leaf in $Q$, it holds that $\min _{v \in V} d_{Q}(x, v) \geq\left\lfloor\frac{k}{2}\right\rfloor$.
- If $Q$ has no false leaf, then it has at least one node $x$ such that $2 \leq \operatorname{deg}_{Q}(x) \leq \Delta-1$ and $\min _{v \in V} d_{Q}(x, v) \geq\left\lfloor\frac{k}{2}\right\rfloor$.

The cost of $Q$ is $\max \{1, a+2 b\}$, where $a$ is the number of degree- 2 nodes in $Q$ and $b$ is the number of false leaves in $Q . Q$ is an optimal $(\Delta, k)$-QP of $G$ if its cost is minimized over all $(\Delta, k)$-QPs of $G$.

Lemma 2.1 Suppose that $G=(V, E)$ is a connected graph. Let $Q$ be an optimal $(\Delta, k)$-QP of $G$. Then, the following hold:

1. $Q$ has no node $x$ with $\min _{v \in V} d_{Q}(x, v)>\left\lfloor\frac{k}{2}\right\rfloor$.
2. For each node $x$ with $\operatorname{deg}_{Q}(x)=2$ or $\operatorname{deg}_{Q}(x)>3$, each connected component of $Q-\{x\}$ contains at least one true leaf of $Q$.

We classify $(\Delta, k)$-QPs $Q$ into four types as follows.

- $Q$ is helpful if it has at most one degree-2 node and has no false leaf.
- $Q$ is moderate if it has no degree- 2 node but has exactly one false leaf.
- $Q$ is troublesome if it has at least two degree-2 nodes but has no false leaf.
- $Q$ is dangerous if it has at least one false leaf and the total number of false leaves and degree-2 nodes in $Q$ is at least 2.

A $(\Delta, k)$-QP $Q$ is unhelpful if it is not helpful.
For a $(\Delta, k)$-QP $Q$, we define its port nodes as follows. If $Q$ is not helpful, then its port nodes are its false leaves and degree-2 nodes. If $Q$ is helpful and has no degree-2 node, then its port nodes are those nodes $x$ with $\min _{v \in V} d_{Q}(x, v) \geq\left\lfloor\frac{k}{2}\right\rfloor$. If $Q$ is helpful and has a degree-2 node, then it has only one port node, namely, its unique degree-2 node.

A nonport node of a $(\Delta, k)$-QP $Q$ is a node of $Q$ that is not a port node of $Q$.

## 3 Algorithm for BoundedDegree PR $k$

Throughout this section, fix two integers $k \geq 4$ and $\Delta \geq 3$. This section presents a linear-time algorithm for solving $\triangle \mathrm{PR} k$.

Let $G=(V, E)$ be the input graph. We assume that $G$ is disconnected; otherwise, the linear-time algorithm in [2] solves the problem. Let $G_{1}, \ldots, G_{\ell}$ be the connected components of $G$. For each integer with $1 \leq i \leq \ell$, let $V_{i}$ be the vertex set of $G_{i}$.

The next lemma can be proved by a complicated dynamic programming.

Lemma 3.1 For every $i \in\{1, \ldots, \ell\}$, we can decide whether $G_{i}$ has a $(\Delta, k)-\mathrm{QP}$, in $O\left(\left|V_{i}\right|\right)$ time. Moreover, if $G_{i}$ has a $(\Delta, k)$-QP, then we can compute an optimal $(\Delta, k)$-QP of $G_{i}$ in $O\left(\left|V_{i}\right|\right)$ time.

Lemma 3.2 If for some $i \in\{1, \ldots, \ell\}, G_{i}$ has no $(\Delta, k)$ - QP, then $G$ has no ( $\Delta, k$ )-phylogeny.

By Lemmas 3.1 and 3.2, we may assume that for each $i \in\{1, \ldots, \ell\}, G_{i}$ has a $(\Delta, k)$-QP. For each $i \in\{1, \ldots, \ell\}$, let $Q_{i}$ be the optimal $(\Delta, k)-\mathrm{QP}$ of $G_{i}$ computed in Lemma 3.1.

Lemma 3.3 Suppose that $G$ has $a(\Delta, k)$ phylogeny. Then, $G$ has $a(\Delta, k)$-phylogeny $T$ such that $Q_{1}, \ldots, Q_{\ell}$ all are subtrees of $T$.

In the remainder of this section, a $(\Delta, k)$ phylogeny of $G$ always means one in which $Q_{1}, \ldots, Q_{\ell}$ are subtrees. By Lemma 3.3, we lose no generality. For convenience, we call $Q_{1}, \ldots, Q_{\ell}$ the unitary $(\Delta, k)$-QPs.

Let $T$ be a $(\Delta, k)$-phylogeny $T$ of $G$. A junction node of $T$ is a node $x$ of $T$ such that no unitary $(\Delta, k)$-QP contains $x$. A node $x$ of $T$ is overconnected, if it satisfies one of the following conditions:
(1) $\operatorname{deg}_{T}(x)>3$ and $x$ is a junction node of $T$.
(2) $\operatorname{deg}_{T}(x)>3$ and $x$ is a port node of some unhelpful $Q_{i}(1 \leq i \leq \ell)$.
(3) $x$ is a nonport node of some unhelpful $Q_{i}(1 \leq$ $i \leq \ell)$ and $\operatorname{deg}_{T}(x)>\operatorname{deg}_{Q_{i}}(x)$.
A helpful $Q_{i}(1 \leq i \leq \ell)$ is mis-connected in $T$, if (i) at least one nonport node of $Q_{i}$ is adjacent to a node outside $Q_{i}$ in $T$, or (ii) there are two or
more nodes $x$ outside $Q_{i}$ such that $x$ is adjacent to a node of $Q_{i}$ in $T$.

A $(\Delta, k)$-phylogeny $T$ of $G$ is canonical, if it has no over-connected node and no helpful $Q_{i}(1 \leq i \leq$ $\ell$ ) is mis-connected in $T$.

Lemma 3.4 If $G$ has a $(\Delta, k)$-phylogeny, then it has a canonical one.

In the remainder of this section, a $(\Delta, k)$ phylogeny of $G$ always means a canonical one. By Lemma 3.4, we lose no generality.

### 3.1 The Case where $k$ is Odd

Throughout this subsection, we assume that $k$ is odd. A doube $(\Delta, k)$-QP is a tree $T_{i, j}$ obtained by combining two helpful unitary ( $\Delta, k$ )-QPs $Q_{i}$ and $Q_{j}$ as follows:

1. Select a port node $x_{i}$ of $Q_{i}$, and select a port node $x_{j}$ of $Q_{j}$.
2. Introduce a junction node $y$, and connect it to both $x_{i}$ and $x_{j}$.

Note that $T_{i, j}$ has exactly one degree- 2 node (namely, the junction node $y$ ) but has no false leaf. So, $T_{i, j}$ is a helpful $(\Delta, k)$-QP of $G\left[V_{i} \cup V_{j}\right]$. Moreover, the minimum distance from $y$ to a true leaf in $T_{i, j}$ is exactly $\left\lfloor\frac{k}{2}\right\rfloor+1$ (cf. Statement 1 in Lemma 2.1).

Lemma 3.5 Suppose that each $Q_{i}(1 \leq i \leq \ell)$ is helpful or moderate. Then, $G$ has a $(\Delta, k)$ phylogeny if and only if $\ell \geq 2 b+3$, where $b$ is the number of moderate $(\Delta, k)-\mathrm{QP} s$ among $Q_{1}, \ldots, Q_{\ell}$.

In the sequel, we assume that at least one $Q_{i}$ ( $1 \leq i \leq \ell$ ) is troublesome or dangerous (since otherwise Lemma 3.5 solves the problem).

Let $T$ be a $(\Delta, k)$-phylogeny of $G$. For each dangerous $Q_{i}(1 \leq i \leq \ell)$, we say that a false leaf $x$ of $Q_{i}$ is active in $T$, if no connected component of $T-\{x\}$ is a double ( $\Delta, k)$-QP. A dangerous $Q_{i}$ ( $1 \leq i \leq \ell$ ) is active in $T$ if at least one false leaf of $Q_{i}$ is active in $T$.

Lemma 3.6 Suppose that $G$ has $a(\Delta, k)$ phylogeny. Then, $G$ has $a(\Delta, k)$-phylogeny $T$ such that no dangerous $Q_{i}(1 \leq i \leq \ell)$ is active in $T$.

Let $I$ be the set of all $i \in\{1, \ldots, \ell\}$ such that $Q_{i}$ is dangerous. For each $i \in I$, let $t_{i}$ be the number of false leaves in $Q_{i}$. Let $t=\sum_{i \in I} t_{i}$. By Lemma 3.6, if $G$ has a $(\Delta, k)$-phylogeny, then there are at least $2 t$ helpful unitary $(\Delta, k)$-QPs. So, if there are less than $2 t$ helpful unitary $(\Delta, k)$-QPs, then $G$ has no $(\Delta, k)$-phylogeny. In the sequel, we assume that there are at least $2 t$ helpful unitary $(\Delta, k)$-QPs. Without loss of generality, we may assume that $Q_{1}, \ldots, Q_{2 t}$ are helpful.

We connect $Q_{1}, \ldots, Q_{2 t}$ to the dangerous unitary $(\Delta, k)$-QPs as follows.

1. Introduce $t$ junction nodes $x_{1}, \ldots, x_{t}$, and construct a one-to-one correspondence between them and the $t$ false leaves of the dangerous unitary ( $\Delta, k$ )-QPs.
2. For each $i \in\{1, \ldots, t\}$, add an edge from $x_{i}$ to its corresponding false leaf, add an edge from $x_{i}$ to an (arbitrarily chosen) port node of $Q_{2 i-1}$, and add an edge from $x_{i}$ to an (arbitrarily chosen) port node of $Q_{2 i}$.

The above modification extends each dangerous unitary $(\Delta, k)$-QP $Q_{i}$ to a troublesome $(\Delta, k)$-QP $R_{i}$. For convenience, let $R_{i}=Q_{i}$ for each $i \in$ $\{2 t+1, \ldots, \ell\}$ such that $Q_{i}$ is not dangerous.

Now, we are left with $R_{2 t+1}, \ldots, R_{\ell}$; none of them is dangerous. Let $\tau$ be the number of troublesome $(\Delta, k)$-QPs among $R_{2 t+1}, \ldots, R_{\ell}$. Note that $\tau=|i \in\{1, \ldots, \ell\}| Q_{i}$ is troublesome or dangerous $\}$. So, $\tau \geq 1$. Without loss of generality, we may assume that $R_{2 t+1}, \ldots, R_{2 t+\tau}$ are troublesome.

By Lemma 3.6, if $G$ has a $(\Delta, k)$-phylogeny, then it has one in which $R_{2 t+1}, \ldots, R_{\ell}$ are subtrees. So, in the remainder of this section, a $(\Delta, k)$-phylogeny of $G$ always means one in which $R_{2 t+1}, \ldots, R_{\ell}$ are subtrees.
A bridging node in a $(\Delta, k)$-phylogeny $T$ of $G$ is a node $x$ of $T$ such that no $R_{i}$ with $2 t+1 \leq i \leq \ell$ contains $x$. For each $(\Delta, k)$-phylogeny $T$ of $G$ and for each $R_{i}$ with $2 t+1 \leq i \leq \ell$, each degree- 2 node $x$ of $R_{i}$ is adjacent to exactly one bridging node $y$ in $T$ (by the canonicity of $T$ ); we call $y$ the bridging neighbor of $x$ in $T$.

For each ( $\Delta, k$ )-phylogeny $T$ of $G$, let $\mathcal{M}(T)$ denote the tree obtained by modifying $T$ by merging each $R_{i}$ with $2 t+1 \leq i \leq \ell$ into a super-node. For convenience, we abuse the notation to let each $R_{i}$ also denote the super-node of $\mathcal{M}(T)$ corresponding to $R_{i}$. Note that each bridging node of $T$ remains
to be an internal node in $\mathcal{M}(T)$ and the leaves of $\mathcal{M}(T)$ one-to-one correspond to the helpful unitary $(\Delta, k)$-QPs among $R_{2 t+1}, \ldots, R_{\ell}$. Moreover, by the canonicity of $T$ and Statement 1 in Lemma 2.1, no two super-nodes can be adjacent in $\mathcal{M}(T)$.

Lemma 3.7 If $G$ has a $(\Delta, k)$-phylogeny, then it has one $T$ such that there is a path $q$ in $\mathcal{M}(T)$ on which $R_{2 t+1}, \ldots, R_{2 t+\tau}$ appear.

Lemma 3.8 If $G$ has a $(\Delta, k)$-phylogeny, then it has one $T$ such that some path $q$ in $\mathcal{M}(T)$ satisfies the following three conditions:

1. $R_{2 t+1}, \ldots, R_{2 t+\tau}$ and exactly $\tau-1$ bridging nodes appear on $q$.
2. No two bridging nodes on $q$ are adjacent in $T$.
3. For each bridging node $x$ on $q$, there is a helpful unitary $(\Delta, k)-Q P R_{i}$ such that $x$ is adjacent to a port node of $R_{i}$ in $T$.

In the remainder of this section, a $(\Delta, k)$ phylogeny of $G$ always means one $T$ such that some path $q$ in $\mathcal{M}(T)$ satisfies the three conditions in Lemma 3.8. We call $q$ the spine of $\mathcal{M}(T)$. The following corollary shows that it does not matter in which order $R_{2 t+1}, \ldots, R_{2 t+\tau}$ appear on the spine.

Corollary 3.9 Let $T$ be a $(\Delta, k)$-phylogeny of $G$. Then, for every pair $\left(R_{i}, R_{j}\right)$ of troublesome $(\Delta, k)$ $\mathrm{QP} s$, there is another $(\Delta, k)$-phylogeny $T^{\prime}$ of $G$ such that the spine of $\mathcal{M}\left(T^{\prime}\right)$ can be obtained from that of $\mathcal{M}(T)$ by exchanging the positions of $R_{i}$ and $R_{j}$.

The following corollary is obvious and shows that it does not matter via which degree-2 nodes each troublesome $R_{i}$ is connected to the spine.

Corollary 3.10 Let $T$ be a $(\Delta, k)$-phylogeny of $G$. Then, for every troublesome $R_{i}$ and for every pair $\left(x_{1}, x_{2}\right)$ of degree-2 nodes of $R_{i}$, we can obtain another $(\Delta, k)$-phylogeny $T^{\prime}$ of $G$ by deleting edges $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ and adding edges $\left(x_{1}, y_{2}\right)$ and $\left(x_{2}, y_{1}\right)$, where $y_{1}$ (respectively, $y_{2}$ ) is the bridging neighbor of $x_{1}$ (respectively, $x_{2}$ ) in $T$. Moreover, the spines of $\mathcal{M}(T)$ and $\mathcal{M}^{\prime}(T)$ are the same.

By Lemma 3.8, if $G$ has a $(\Delta, k)$-phylogeny, then there are at least $\tau-1$ helpful unitary $(\Delta, k)$ QPs among $R_{2 t+\tau+1}, \ldots, R_{\ell}$. So, if there are
less than $\tau-1$ helpful unitary $(\Delta, k)$-QPs among $R_{2 t+\tau+1}, \ldots, R_{\ell}$, then $G$ has no $(\Delta, k)$-phylogeny. In the sequel, we assume that there are at least $\tau-1$ helpful unitary $(\Delta, k)$-QPs among $R_{2 t+\tau+1}, \ldots, R_{\ell}$. Without loss of generality, we may assume that $R_{2 t+\tau+1}, \ldots, R_{2 t+2 \tau-1}$ are helpful unitary $(\Delta, k)$ QPs.

If $\tau \geq 2$, then we connect $R_{2 t+1}, \ldots, R_{2 t+2 \tau-1}$ into a single ( $\Delta, k$ )-QP $\mathcal{R}$ as follows.

1. Introduce $\tau-1$ bridging nodes $x_{1}, \ldots, x_{\tau-1}$.
2. Select a degree-2 node $y_{2 t+1}$ of $R_{2 t+1}$, and select a degree- 2 node $z_{2 t+\tau}$ of $R_{2 t+\tau}$.
3. For each $i$ with $2 t+2 \leq i \leq 2 t+\tau-1$, select two degree- 2 nodes $z_{i}$ and $y_{i}$ of $R_{i}$.
4. For each $i$ with $1 \leq i \leq \tau-1$, add edges $\left(x_{i}, y_{2 t+i}\right)$ and $\left(x_{i}, z_{2 t+i+1}\right)$, and add an edge from $x_{i}$ to an (arbitrarily chosen) port node of $R_{2 t+\tau+i}$.

If $\tau=1$, we let $\mathcal{R}=R_{2 t+1}$.
Note that $\mathcal{R}$ is a troublesome $(\Delta, k)$-QP. By Lemma 3.8 and Corollaries 3.9 and 3.10 , if $G$ has a $(\Delta, k)$-phylogeny, then $G$ has one $T$ such that $\mathcal{R}, R_{2 t+2 \tau}, \ldots, R_{\ell}$ are subtrees of $T$. In the remainder of this section, a $(\Delta, k)$-phylogeny of $G$ always means such a tree $T$. Let $h$ be the number of degree- 2 nodes in $\mathcal{R}$. Let $x_{1}, \ldots, x_{h}$ be the degree- 2 nodes of $\mathcal{R}$.

Lemma 3.11 If $G$ has a $(\Delta, k)$-phylogeny, then it has one $T$ such that for all but one $x_{i} \in$ $\left\{x_{1}, \ldots, x_{h}\right\}$, the connected component of $T-\left\{x_{i}\right\}$ containing no node of $\mathcal{R}$ is a double $(\Delta, k)$-QP.

By Lemma 3.11, if $G$ has a $(\Delta, k)$-phylogeny, then there are at least $2 h-2$ helpful unitary $(\Delta, k)$-QPs among $R_{2 t+2 \tau}, \ldots, R_{\ell}$. So, if there are less than $2 h-2$ helpful unitary $(\Delta, k)$-QPs among $R_{2 t+2 \tau}, \ldots, R_{\ell}$, then $G$ has no $(\Delta, k)$ phylogeny. In the sequel, we assume that there are at least $2 h-2$ helpful unitary $(\Delta, k)$-QPs among $R_{2 t+2 \tau}, \ldots, R_{\ell}$. We may further assume that $R_{2 t+2 \tau}, \ldots, R_{2 t+2 \tau+2 h-3}$ are helpful unitary $(\Delta, k)$-QPs. For each $i \in\{2 t+2 \tau, \ldots, 2 t+2 \tau+$ $2 h-3\}$, let $z_{i}$ be an (arbitrarily chosen) port node of $R_{i}$.

We connect $\mathcal{R}, R_{2 t+2 \tau}, \ldots, R_{2 t+2 \tau+2 h-3}$ into a single (helpful) $(\Delta, k)$-QP $\mathcal{R}^{\prime}$ by performing the following steps:

1. Introduce $h-1$ bridging nodes $s_{1}, \ldots, s_{h-1}$.
2. For each $i \in\{1, \ldots, h-1\}$, add edges $\left(s_{i}, z_{2 t+2 \tau+2 i-2}\right),\left(s_{i}, z_{2 t+2 \tau+2 i-1}\right)$, and $\left(s_{i}, x_{i}\right)$.

Now, we are left with $\mathcal{R}^{\prime}, R_{2 t+2 \tau+2 h-2}, \ldots, R_{\ell}$ each of which is helpful or moderate. Moreover, by Lemma 3.11, if $G$ has a $(\Delta, k)$-phylogeny, then it has one in which $\mathcal{R}^{\prime}, R_{2 t+2 \tau+2 h-2}, \ldots, R_{\ell}$ are subtrees. So, we can modify the proof of Lemma 3.5 to show that $G$ has a ( $\Delta, k$ )-phylogeny if and only if $a^{\prime} \geq b^{\prime}+3$, where $a^{\prime}$ (respectively, $b^{\prime}$ ) is the number of helpful (respectively, moderate) $(\Delta, k)$-QPs among $\mathcal{R}^{\prime}, R_{2 t+2 \tau+2 h-2}, \ldots, R_{\ell}$.

In summary, we have the following:

Theorem 3.12 Suppose that $k$ is odd. Then, we can decide if $G$ has a $(\Delta, k)$-phylogeny, and construct one if so, in linear time.

### 3.2 The Case where $k$ is Even

Throughout this subsection, we assume that $k$ is even. The contents in this subsection are very similar to those in the last subsection. In particular, the lemmas in this subsection one-to-one correspond to the lemmas in the last subsection. Moreover, the proof of each lemma in this subsection is very similar to (indeed a bit simpler than) its corresponding lemma in the last subsection.

Lemma 3.13 Suppose that each $Q_{i}(1 \leq i \leq \ell)$ is helpful or moderate. Then, $G$ has a $(\Delta, k)$ phylogeny if and only if $a \geq 2$, where $a$ is the number of helpful $(\Delta, k)-\mathrm{QP} s$ among $Q_{1}, \ldots, Q_{\ell}$.

In the sequel, we assume that at least one $Q_{i}$ ( $1 \leq i \leq \ell$ ) is troublesome or dangerous (since otherwise Lemma 3.13 solves the problem).

Let $T$ be a $(\Delta, k)$-phylogeny of $G$. For each dangerous $Q_{i}(1 \leq i \leq \ell)$, we say that a false leaf $x$ of $Q_{i}$ is active in $T$, if no connected components of $T-\{x\}$ is a helpful unitary $(\Delta, k)$-QP. A dangerous $Q_{i}(1 \leq i \leq \ell)$ is active in $T$ if at least one false leaf of $Q_{i}$ is active in $T$.

Lemma 3.14 Suppose that $G$ has $a(\Delta, k)$ phylogeny. Then, $G$ has $a(\Delta, k)$-phylogeny $T$ such that no dangerous unitary $(\Delta, k)$-QP is active in $T$.

Let $I$ be the set of all $i \in\{1, \ldots, \ell\}$ such that $Q_{i}$ is dangerous. For each $i \in I$, let $t_{i}$ be the number of false leaves in $Q_{i}$. Let $t=\sum_{i \in I} t_{i}$. By Lemma 3.14, if $G$ has a $(\Delta, k)$-phylogeny, then there are at least $t$ helpful unitary $(\Delta, k)$-QPs. So, if there are less than $t$ helpful unitary $(\Delta, k)$-QPs, then $G$ has no $(\Delta, k)$-phylogeny. In the sequel, we assume that there are at least $t$ helpful unitary $(\Delta, k)$-QPs. Without loss of generality, we may assume that $Q_{1}, \ldots, Q_{t}$ are helpful.

We connect $Q_{1}, \ldots, Q_{t}$ to the dangerous unitary $(\Delta, k)$-QPs as follows.

1. Construct a one-to-one correspondence between $Q_{1}, \ldots, Q_{t}$ and the $t$ false leaves of the dangerous unitary $(\Delta, k)$-QPs.
2. For each $i \in\{1, \ldots, t\}$, add an edge from an (arbitrarily chosen) port node of $Q_{i}$ to the false leaf corresponding to $Q_{i}$.
The above modification extends each dangerous unitary $(\Delta, k)$-QP $Q_{i}$ to a troublesome $(\Delta, k)$-QP $R_{i}$. For convenience, let $R_{i}=Q_{i}$ for each $i \in$ $\{t+1, \ldots, \ell\}$ such that $Q_{i}$ is not dangerous.

Now, we are left with $R_{t+1}, \ldots, R_{\ell}$; none of them is dangerous. Let $\tau$ be the number of troublesome $(\Delta, k)$-QPs among $R_{t+1}, \ldots, R_{\ell}$. Note that $\tau=$ $|i \in\{1, \ldots, \ell\}| Q_{i}$ is troublesome or dangerous $\}$. So, $\tau \geq 1$. Without loss of generality, we may assume that $R_{t+1}, \ldots, R_{t+\tau}$ are troublesome.

By Lemma 3.14, if $G$ has a $(\Delta, k)$-phylogeny, then it has one in which $R_{t+1}, \ldots, R_{\ell}$ are subtrees. So, in the remainder of this section, a ( $\Delta, k$ )-phylogeny of $G$ always means one in which $R_{t+1}, \ldots, R_{\ell}$ are subtrees.

For each $(\Delta, k)$-phylogeny $T$ of $G$, let $\mathcal{M}(T)$ denote the tree obtained by modifying $T$ by merging each $R_{i}$ with $t+1 \leq i \leq \ell$ into a super-node. For convenience, we abuse the notation to let each $R_{i}$ also denote the super-node corresponding to $R_{i}$ in $\mathcal{M}(T)$.

Lemma 3.15 If $G$ has a $(\Delta, k)$-phylogeny, then it has one $T$ such that there is a path in $\mathcal{M}(T)$ on which $R_{t+1}, \ldots, R_{t+\tau}$ appear.

Lemma 3.16 If $G$ has a $(\Delta, k)$-phylogeny, then it has one $T$ such that there is a path in $\mathcal{M}(T)$ whose nodes are exactly $R_{t+1}, \ldots, R_{t+\tau}$.

In the remainder of this section, a $(\Delta, k)$ phylogeny of $G$ always means one $T$ such that
there is a path $q$ in $\mathcal{M}(T)$ whose nodes are exactly $R_{t+1}, \ldots, R_{t+\tau}$. We call $q$ the spine of $\mathcal{M}(T)$. Obviously, Corollaries 3.9 and 3.10 still hold even if $k$ is even.

If $\tau \geq 2$, then we connect $R_{t+1}, \ldots, R_{t+\tau}$ into a single ( $\Delta, k$ )-QP $\mathcal{R}$ as follows.

1. Select a degree-2 node $y_{t+1}$ of $R_{t+1}$, and select a degree-2 node $z_{t+\tau}$ of $R_{t+\tau}$.
2. For each $i$ with $t+2 \leq i \leq t+\tau-1$, select two degree-2 nodes $z_{i}$ and $y_{i}$ of $R_{i}$.
3. For each $i$ with $t+1 \leq i \leq t+\tau-1$, add edge $\left(y_{i}, z_{i+1}\right)$.

If $\tau=1$, we let $\mathcal{R}=R_{t+1}$.
Note that $\mathcal{R}$ is a troublesome $(\Delta, k)$-QP. By Lemma 3.16 and Corollaries 3.9 and 3.10 , if $G$ has a ( $\Delta, k$ )-phylogeny, then $G$ has one $T$ such that $\mathcal{R}, R_{t+\tau+1}, \ldots, R_{\ell}$ are subtrees of $T$. In the remainder of this section, a $(\Delta, k)$-phylogeny of $G$ always means such a tree $T$. Let $h$ be the number of degree- 2 nodes in $\mathcal{R}$. Let $x_{1}, \ldots, x_{h}$ be the degree- 2 nodes of $\mathcal{R}$.

Lemma 3.17 If $G$ has a $(\Delta, k)$-phylogeny, then it has one $T$ such that for all but one $x_{i} \in$ $\left\{x_{1}, \ldots, x_{h}\right\}$, the connected component of $T-\left\{x_{i}\right\}$ containing no node of $\mathcal{R}$ is a helpful unitary ( $\Delta, k$ )QP.

By Lemma 3.17, if $G$ has a $(\Delta, k)$-phylogeny, then there are at least $h-1$ helpful unitary ( $\Delta, k$ )-QPs among $R_{t+\tau+1}, \ldots, R_{\ell}$. So, if there are less than $h-1$ helpful unitary ( $\Delta, k$ )-QPs among $R_{t+\tau+1}, \ldots, R_{\ell}$, then $G$ has no ( $\Delta, k$ )-phylogeny. In the sequel, we assume that there are at least $h-1$ helpful unitary $(\Delta, k)$-QPs among $R_{t+\tau+1}, \ldots, R_{\ell}$. We may further assume that $R_{t+\tau+1}, \ldots, R_{t+\tau+h-1}$ are helpful unitary $(\Delta, k)$-QPs. For each $i \in$ $\{t+\tau+1, \ldots, t+\tau+h-1\}$, let $z_{i}$ be an (arbitrarily chosen) port node of $R_{i}$.

We connect $\mathcal{R}, R_{t+\tau+1}, \ldots, R_{t+\tau+h-1}$ into a single (helpful) $(\Delta, k)$-QP $\mathcal{R}^{\prime}$ by adding edges $\left(x_{1}, z_{t+\tau+1}\right), \ldots,\left(x_{h-1}, z_{t+\tau+h-1}\right)$.

Now, we are left with $\mathcal{R}^{\prime}, R_{t+\tau+h}, \ldots, R_{\ell}$ each of which is helpful or moderate. Moreover, by Lemma 3.17, if $G$ has a $(\Delta, k)$-phylogeny, then it has one in which $\mathcal{R}^{\prime}, R_{t+\tau+h}, \ldots, R_{\ell}$ are subtrees. So, we can modify the proof of Lemma 3.13 to show that $G$ has a ( $\Delta, k$ )-phylogeny if and only
if $a^{\prime} \geq 2$, where $a^{\prime}$ is the number of helpful $(\Delta, k)$ QPs among $\mathcal{R}^{\prime}, R_{t+\tau+h}, \ldots, R_{\ell}$.
In summary, we have the following:
Theorem 3.18 Suppose that $k$ is even. Then, we can decide if $G$ has a ( $\Delta, k)$-phylogeny, and construct one if so, in linear time.

## References

[1] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: a Survey, SIAM Monographs on Discrete Mathematics and Applications, SIAM, Philadelphia, 1999.
[2] Z.-Z. Chen, T. Jiang, and G.-H. Lin, Computing phylogenetic roots with bounded degrees and errors, SIAM Journal on Computing, 32 (2003) 864-879.
[3] P. E. Kearney and D. G. Corneil, Tree powers, Journal of Algorithms, 29 (1998) 111-131.
[4] G.-H. Lin, P. E. Kearney, and T. Jiang, Phylogenetic $k$-root and Steiner $k$-root, in: The 11th Annual International Symposium on Algorithms and Computation (ISAAC 2000), Lecture Notes in Computer Science, 1969 (2000) 539-551.
[5] Y.-L. Lin and S. S. Skiena, Algorithms for square roots of graphs, SIAM Journal on Discrete Mathematics, 8 (1995) 99-118.
[6] R. Motwani and M. Sudan, Computing roots of graphs is hard, Discrete Applied Mathematics, 54 (1994) 81-88.
[7] N. Nishimura, P. Ragde, and D. M. Thilikos, On graph powers for leaf-labeled trees, in: Proceedings of the 7th Scandinavian Workshop on Algorithm Theory (SWAT 2000), Lecture Notes in Computer Science, 1851 (2000) 125138.
[8] D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. Hillis, Phylogenetic inference, in: D. M. Hillis, C. Moritz, and B. K. Mable (Ed.), Molecular Systematics (2nd Edition), Sinauer Associates, Sunderland, Massachusetts, 1996, pp. 407-514.


[^0]:    ＊Department of Mathematical Sciences，Tokyo Denki University，Hatoyama，Saitama 350－0394，Japan．Sup－ ported in part by the Grant－in－Aid for Scientific Research of the Ministry of Education，Science，Sports and Culture of Japan，under Grant No． 14580390.
    ${ }^{\dagger}$ Department of Information Science，Tokyo Denki Uni－ versity，Hatoyama，Saitama 350－0394，Japan

