2004—AL—95
200475721

HIHEA HRAEES PIRERG @

IPSJ SIG Technical Report

T RFERy IRy bU—Z ICBITABBEEAZOBTVTY XA

B o#E, X & # B'. A @B Kk K. B F -7

T REY IRy VI~ B ARERBEZITILOCEMINIARAEFLHFAF BRI IMELS
2B, BHAECHREINIEABFORIEESMIR M ETE, FRXTIE, DHEHCEREFEZSBIE5H22
DHABABT A TY XL RETH, HEH ST 76=(V,E)& —ROAM S 5 7H=(V,ENZBV T, D& 757
GOERE, prHOBERER S O, duaTHOZBERR 7 OEBRIIH T IBKBEL LI L &, TRTAHEKA A B
2#T 5 EROMDGHENV]) & O(pdmatHEVIVYEZ B L, E5i0, W OMNTF 72 FAIRH LTI I TRET ST

NAY XLBRETHD L LRT,
An Optimal Certificate Dispersal Algorithm for Mobile Ad Hoc Networks

HUA ZHENG', SHINGO OMURA', JIRO UCHIDA' and KOICHI WADA'

We focus on the problem that in an ad hoc network, how to send a message securely between two users using
the certificate dispersal system. In this paper, we construct two efficient certificate dispersal algorithms. We can
prove that for a strongly connected graph G=(V, E) and a directed graph H=(V', E"), new upper bounds on
dispersability cost on the average number of certificates stored in one node are O(Dg+E||V]) and
O(pdnaxHEY|VY) respectively, where Dg is the diameter of G, dpay is the maximum diameter of strongly
connected components of H and p is the number of strongly connected components of H. Furthermore, we can

prove our algorithms are optimal for several graph classes.

I. INTRODUCTION

The recent history of the Internet and of computer
networks has shown that if security of a given network
architecture is not properly designed from the very
beginning, then the security breaches will be exploited by
malicious users. Security in mobile ad hoc networks is
particularly difficult to achieve, notably because of the
vulnerability of the links, the limited physical protection
of each node, the sporadic nature of connectivity, the
dynamically changing topology, the absence of a
certification authority, and the lack of a centralized
monitoring or management point.

As such, our approach is developed mainly for “open”
networks, in which users can join and leave the network
without any centralized control. Therefore, it is necessary
to establish distributed and secure authentication systems
in mobile ad hoc networks. There is much research on
secure authentication systems, such as in [5] it provided a
system in which, if two nodes meet, they can
communicate securely with high probability, and in [12]
it guaranteed the probability 1.

The main problem of any public-key based security
system is to make each user’s public key available to
others in such a way that its authenticity is verifiable. In
mobile ad hoc networks, this problem becomes even
more difficult to solve because of the absence of
centralized services and possible network partitions.
More precisely, two users willing to authenticate each
other are likely to have access only to a subset of nodes

TAERTEXY
Nagoya Institute of Technology

of the network (possibly those in their geographic
neighborhoods). One of the best known approaches to the
public-key management problem is based on public-key
certificates [6]. A public-key certificate is a data structure
in which a public key is bound to an identity (and
possibly to some other attributes) by the digital signature
of the issuer of the certificate. The all certificates issued
by nodes in a network can be represented by a directed
graph, called certificate graph. Each node in a certificate
graph represents a mobile user in the network, and each
directed edge in a certificate graph represents a
certificate. The certificate can be used by any node in the
network that knows the public key of one node to further
acquire the public key of.the other node. The issued
certificates are necessary to be dispersed among nodes in
the network such that if a node u approaches another
node v and wishes to securely send messages to v, then u
can obtain the public key of v using certificates stored
either in u or v in the certificate graph.

Several papers have investigated the use of certificates
to provide security in traditional networks and in ad hoc
ones. Architectures for issuing, storing, discovery, and
validating certificates in traditional networks are
presented in [1,2,4,7,8,9,11,13].

In [5], the authors investigated how to disperse
certificates in a certificate graph in a mobile ad hoc
network under the following two conditions. First, each
node stores the same number of certificates. Second, with
high probability, if two nodes meet then they have
enough certificates for each of them to compute the
public key of the other.

In [12], it is proved that a lower bound on the number
of certificate to be stored in a node is #—1 which
satisfies the following conditions: First, each certificate
is stored in the same number of nodes. And secondly, the
same number of the certificates is stored in each node,
where n is the number of nodes in the system.

In [3], another condition, that every certificate must be
stored in some node, is considered, and the dispersability
cost of a certificate graph G, denoted ¢.G, is defined as
the minimum average number of certificates stored in
one node. Under this condition, a dispersal algorithm
called Full Tree algorithm is presented, and the upper
bound ¢.G < n-1 is proved, where n is the number of
nodes in the graph. The lower bound ¢.G 2 e/n is also
proved for any certificate graph, where e is the number of
edges in the graph. The authors have shown in [3] that
there exist some special certificate graphs, such as a fully
connected certificate graph such that c.G=n-1=e/n. Ring,
hourglass and star graphs are also analyzed. The
dispersability cost of the ring graph is n-1, which equals
to the tight upper bound, (n-1¥n for hourglass and
2(n-1)/n for star graph, which equal to the lower bounds.
And Half Tree algorithm, to which Full Tree algorithm is
improved, is also presented. However the cost of Full
Tree algorithm equals to n~1 for any strongly connected
certificate graph. Half Tree algorithm is probably better
than Full Tree algorithm, but the cost of Half Tree
algorithm is equal to the cost of Full Tree algorithm for
strongly connected graphs.

Our work is based on two conditions considered in [3].
First, different nodes may store different number of
certificates, but the average number of certificates stored
in one node is minimized. Secondly, it is guaranteed (i.e.
with probability 1) that if two nodes meet then they have
enough certificates for each of them to compute the
public key of other.

In this paper, we construct two efficient certificate
dispersal algorithms. And new upper bounds on
dispersability cost for strongly connected certificate
graphs and directed certificate graphs are proved. For a
strongly connected graph G and a directed graph H, the
upper bounds on the average number of certificates
stored in one node are 2Dg+E)|V| and
2pdmaxtp-1+|E)/|V| respectively, where Dg is the
diameter of graph G, dp,y is the maximum diameter of
strongly connected components of H and p is the number
of strongly connected components. For a given graph, an
algorithm whose complexity of the cost is asymptotically
equal to the complexity of the lower bound of the
dispersability cost of the graph, is called an optimal
algorithm. We can prove our algorithms are optimal for
several graph classes, such as Hypercubes, Meshes,
complete k-ary trees and de-Bruijn graphs.

II. PRELIMINARIES

For simplicity, we assume that each honest user owns
a single mobile node. We consider a mobile ad hoc
network, where each node u has a private key pri.u and a
public key pub.u. Users themselves create their public
and private keys. In this network, in order for a node u to
send a message m to v securely, u need to know the
public key of v to encrypt the message by pub.v, denoted
by pub.v<m>.

If a node u knows the public key pub.v of another
node v in the network, then node u can issue a certificate,
called a certificate from u to v, that identifies the public
key pub.v of node v. The certificate can be used by any
node in the network that knows the public key of the
node u to further acquire the public key of node v.

A certificate from node u to node v is of the following
form: pri.u <u, v, pub.v >,

The certificate is encrypted using the private key pri.u
of node u, and it contains three items: The identity of the
certificate issuer u, the identity of the certificate subject v,
and the public key of the certificate subject pub.v.

Any node who knows the public key of u can use
pub.u to decrypt the certificate from u to v for obtaining
the public key of node v.

When a node u wants to obtain the public key of
another node v, it acquires a path of certificates such that:

1. The first certificate of the path can be directly
verified by u, by using a public key that u holds and
trusts.

2. Each of remaining certificates can be verified using
the public key contained in the previous certificate of the
path.

3. The last certificate contains the public key of the
target node v.

A. Definitions

In this section, we define some terms used in this
paper.

All certificates issued by nodes in a network can be
represented by a directed graph, called a certificate graph,
denoted by G=(V, E). Each node in the certificate graph
represents a mobile user in the network. A directed edge
from node u to v in the certificate graph represents a
certificate from u to v. Note that according to this
definition, a certificate graph is a directed graph that does
not have self-loops and multiple edges between two
nodes.

The issued certificates are necessary to be dispersed
among nodes in the network such that if a node u
approaches another node v and wishes to securely send
messages to v, then u can obtain the public key of v using
certificates stored either in u or v provided that there is a
directed path from u to v in the certificate graph.

A directed path (vo, V1), (Vi, V2), ... , (Vi1, Vi) In @
certificate graph G, where the nodes vy, v, ... and vy are
distinct, is called a certificate path from vy to vy, here, vo

— 96—

and vy are called end nodes. Note that if there exists a
path from v, to Vi, then, vy can get the public key of vi.
For simplicity, we call certificate path as path in this
paper. The length of a path p(v;, vj) is the number of
certificates in it, denoted by |p(vi, vj)|. A path from v; to v;
is shortest iff its length is not larger than the length of
any other paths from v; to v; in the certificate graph. A
distance from v; to v; is the length of a shortest path from
vi to vj, denoted by d(v;, vj). Let ¢ denote the path (vo, vy),
V1, v2), .- » (i1, V). Then each of the paths (vo, vy), ...,
(Vj-1, vj), where 1 <j <Kk, is called a prefix of c that ends
at node v;. Also, each of the paths (vj, Vj+1), ..., (Vie1, Vi),
where 0 < j < k-1, is called a suffix of ¢ that starts at node
v;. Each of the paths (v;, viv1), ..., (Vi.1, Vj), where 0 € i<
j £ k-1, is called a subpath of c.

A graph, in which for any two distinct nodes u and v,
there exists a path from u to v, is said to be strongly
connected. And a graph is bi-directional if there is an
edge from node u to node v then there exists an edge
from v to u, and vice versa. For any node v in graph G,
we define the eccentricity of v as the length of a longest
shortest path from the node v to any other nodes. In a
bi-directional graph G, for any node v in G, the minimum
value of eccentricity is defined as radius of the graph,
denoted by Rg. And in a directed graph G, the maximum
length of shortest paths between any two nodes in G is
defined as a diameter of the graph, denoted by Dg. A
strongly connected component C of a directed graph
G=(V, E) isa subgraph C=(V’, E’) (V’cV and E’cE)
which satisfies that no node of G can be added to C such
that it is strongly connected. A directed graph can be
partitioned into strongly connected components. Note
that this partition is unique.

Free tree T is connected undirected graph without
cycle. A rooted tree is a free tree in which one of the
nodes is distinguished from the others. The distinguished
node is called the root of the tree. If the last edge on the
path from the root r of a tree T to a node x is (y, x), then
y is the parent of x, and x is a child of y. The root is the
only node in T with no parent. A node with no children is
an external node or leaf. A nonleaf node is an internal
node. The number of children of a node x in a tree is
called the degree of x. The length of the path from the
root to a node x is the depth of x in T. The largest depth
of any node in T is the height of T, denoted by h.

For a directed graph G, incoming tree T rooted at node
von G is a graph, whose nodes set are all of the nodes
reachable to v in G and there is a unique path from any
other node to v on T. A shortest incoming tree rooted at v
is an incoming tree in which the path from any other
node to v corresponds to a shortest path in G.

For a directed graph G, outgoing tree T rooted at node
v on G is a graph, whose nodes set are all of the nodes
reachable from v in G and there is a unique path from v
to any other nodes on T. A shortest outgoing tree rooted
at v is an outgoing tree in which the path from v to any

other node corresponds to a shortest path in G.

Given a graph V=(V, E) and a distinguished source
node v, breadth-first search is one of the algorithms for
searching a graph that systematically explores the edges
of G to discover every node that is reachable from v. It
produces a breadth-first tree with root v that contains all
such reachable nodes. For any node u reachable from v,
the path in the breadth-first tree from v to u corresponds
to a shortest path from v touin G.

B. Certificate Dispersal Problem 3

A certificate dispersal algorithm F is an algorithm that
takes a certificate graph G as an input and outputs a
subset of the certificates, which is stored in each node in
G, denoted F.(G, v), such that the following two
certificate dispersal conditions hold;

1) Connectivity:

For every distinct pair of nodes u and v in G, if
there is a path from u to v in G, then the certificates
on the path are in the set F.(G, u) U F.(G, v).

2) Completeness:

For every certificate in G, there exists a node v in G
such that this certificates is in F.(G, v).

Let G be a certificate graph, and let F be a certificate
dispersal algorithm. The cost of F to disperse the
certificates in G, which denoted by c.(F, G), is defined as
follows:

c(F,G) = %Zl F(@G, v},

where n is the number of nodes in G, and |F.(G, V)|
denotes the number of certificates in the set F.(G, v)
assigned by F to node v. Note that c.(F, G) is the average
number of certificates assigned by F to a node in G.

The dispersability cost of a certificate graph G,
denoted ¢.G, is defined as follows:

cG= mFin {c.(F,G)} -

HI. New UpPER BOUNDS

In this section, we introduce a procedure Pivot first.
Using Pivot procedure, we construct CPivot algorithm
for strongly connected certificate graphs and GPivot
algorithm for directed graphs later.

A new upper bound O(Dg) for a strongly connected
graph G and O(pd,..) for a directed graph H are proved,
where Dg is the diameter of graph G, dp is the
maximum diameter of strongly connected components of
H and p is the number of strongly connected components
of H. In section IV, CPivot algorithm will be proved to
be an optimal algorithm for Hypercubes, Meshes,
complete k-ary trees and de-Bruijn graphs.

A. Pivot

Procedure Pivot takes a strongly connected directed
graph G as an input. We sketch an outline of Pivot.

Arbitrarily, select one node as pivot node p. And then,
for every node x (x#p), all of the certificates on two
shortest paths in both directions between x and p are
stored in x. Pivot is formulated as follows:

Procedure Pivot (G=(V, E))
1. Select an arbitrary node as pivot node p
2. For every node vin V — {p}
2.1 Compute the shortest path from v to p, p(v, p)
and the shortest path from p to v, p(p, V)
2.2 Store p(v, p) v p(p, V) tov

Lemma 1: Pivot satisfies one of the certificate dispersal
conditions, connectivity, and its computation time is
X(E]).

Proof: Let G be a strongly connected graph, which is an
input of Pivot. Since G is strongly connected, for every
node v(#p) in G, there exist paths p(v, p) and p(p, v). In
Pivot, we stored all of the certificates on p(v, p) and p(p,
v) to v. That means, for every distinct pair of nodes u and
v, there exists a path from u to v via p in G, and the
certificates on the path are in the sets of the certificates
stored in w and v.

In the following, we prove the computation time. For
computing two shortest paths p(v, p) and p(p, v),
incoming and outgoing breadth-first trees rooted at pivot
node p are needed. It completes in time of O(fV|+E]).
And the main loop consumes time of O(JV]). Since G is
strongly connected, we have [E[2[V|. So the total
computation time of Pivot is O((|V|+E})+|V]) = O(E]). T
B. Certificate dispersal algorithm CPivot

In order to construct certificate dispersal algorithm
CPivot, we make a slight change to the Pivot. From
Lemma 1, we know that Pivot satisfies connectivity. For
satisfying the second condition, completeness, we store
all unused certificates to the pivot node after running
Pivot Procedure. Through this addition, Pivot can be
changed to a certificate dispersal algorithm, which
satisfying both of two conditions, connectivity and
completeness. We call this algorithm as CPivot.

Lemma 2: CPivot is a certificate dispersal algorithm.
Proof: In CPivot algorithm, after running Pivot procedure,
we stored all remaining certificates in pivot node p. That
means all of the certificates are stored in some nodes,
which satisfies completeness. And Pivot procedure
satisfies connectivity. We can know that CPivot satisfies
both of two conditions. O

Theorem 1: For any strongly connected certificate graph
G, ¢.G <2DGHE}|V].

Proof: CPivot consists of two phases, Pivot procedure
and the additional storing operation. In Pivot procedure,
it is clear that even if which node is selected as pivot
node p, for any v, |p(v, p)up(p, V)| € 2Dg. Therefore, at

the end of Pivot procedure, the total number of
certificates stored in all of the nodes is at most 2|V|Dg. In
the time of starting the additional storing operation, at
most |E| certificates are remained. So, the cost of CPivot
is 2DGHE|V]. D

C. Pivot selection

How to select a pivot node p in Pivot procedure,
determines the cost of the CPivot. We can choose a
special node as pivot node p to decrease the cost. In this
subsection, we introduce two efficient methods for
selecting pivot node p, for strongly connected graphs and
bi-directional graphs, respectively.

For a strongly connected graph, for each node x,
compute incoming breadth-first tree T;, rooted at x and
outgoing breadth-first tree T,y rooted at x. Select node x
with the minimum value of Y d(x,y)+ Y d(zX) as

YeV(To,) V(T)

pivot node p.

Lemma 3: Pivot selection for strongly connected graphs
is computed with O([V|-|E|) time.

Proof: For any node incoming and outgoing breadth-first
trees rooted at the node is computed in O(|V|+|E|) time.
For G is strongly connected, we have |E[2[V|. So the total
computation time is O(([V[HE|)[V]) = O(|V|-[E}). 0

For a bi-directional graph, for each node x, compute
outgoing breadth-first tree T, rooted at x. Select node x

with the minimum value of 3" d(x,y) as pivot node.
YeViTor)

Lemma 4: Pivot selection for bi-directional graphs is
computed with O(|V|-|E|) time.

Proof. Outgoing breadth-first tree for any node is
computed in time of O(|V|+E|). Since G is bi-directional,
we have |E[2[V]. So the total computation time is
O((VI+HE|)[V]) = O(VI-[E]). 0

Theorem 2: For any bi-directional certificate graph G,
¢.G < 2RGHEWVI. '

Proof: In Pivot selection, we select a special node x as
pivot node p, such that for any node y, d(x, y)<R¢. In
Pivot procedure, for any node v, |p(v, p)up(p, V)| < 2Rg.
Therefore, at the end of Pivot procedure, the total number
of certificates stored in all of the nodes is at most 2|V|Rg.
In the time of starting the additional storing operation, at
most |E| certificates are remained. So, the cost of CPivot
is 2RGHE}|V]. 0

D. Certificate dispersal algorithm GPivot

In this subsection, GPivot algorithm, which takes a
directed graph as an input, is presented.

Algorithm GPivot formulated is as follows.

Algorithm GPivot (G=(V, E))

1. Partition G into strongly connected components
C;=(V;, E), i=1,2,...,p. Let p; be pivot node of C..

2. For each C; do Pivot(C;)

3. Construct a graph H s.t. VH)={C,,C,,...,C;} and
E(H)={(C;, C;) | (v, w)eE, ve V(C;) and we V(C))}
Note that H contains no cycles (H is a directed
acyclic graph).

4, For each node C; e V(H)

4.1 Compute a shortest outgoing tree T; rooted at C; on
H
4.2 For each node ve V(C)
4.2.1 For each edge (C;, Cy)e E(T))
Store the certificates on the shortest path p(p;, px)
in Ginto v
5. Store all unused certificates to an arbitrary node

components

(a) an input graph G

~nn o certificates stored in step 2
M7 : certificates stored in step 4

() TronH (c) certificates stored

in nodes 1 and 9

Fig.1. An example of GPivot. (a): an input graph G and
pivot node of each strongly connected component. (b):

induced graph H and a shortest outgoing tree rooted at C,.

(c): the certificates on the path p(l, 9) by concatenating
p(t,3), p(3, 4), p(4, 7) and p(7, 9).

An example of GPivot is shown in Fig.1.

A directed graph G is given as an input of GPivot. We
partition G into four strongly connected components C,,
C,, C; and C,. For any reachable nodes pair, following
certificates are stored in. As an example, we focus on the
nodes 1 and 9 in different components. In step 2, through
Pivot procedure, the certificates (1, 2), (2, 3) and (3, 1)
are stored in node 1, and the certificates (9, 7) and (7, 9)
are stored in node 9. And the induced graph H from G
is shown in Fig.1 (b). A shortest outgoing tree T, rooted
at C; on H is shown in Fig.1 (b), in which the edges of T,
are denoted by solid line. A path from p; in C, to p; in C,,
which constructed in step 4 is shown in Fig.1 (c). The
certificates (3, 1), (1, 2), (2, 4) and (4, 7) on the path p(3,
7) are stored in node 1. After running of GPivot(G), the
certificates (1, 2), (2, 4), (4,7) and (7, 9) are stored in
nodes 1 and 9, which satisfies connectivity.

Lemma 5: For any directed graph G, GPivot is a
certificate dispersal algorithm, and its computation time
is O(p-(VI+[E]).

Proof: To prove that GPivot is a certificate dispersal
algorithm, we show connectivity first. For any reachable
pair u and v in G, we consider two different cases,
whether u and v are in the same strongly connected
component, or not. In the case which u and v are in the
same component C, since C,; is strongly connected, there
must exist a path from u to v. After running Pivot(C;), all
of the certificates on p(u, p;) and p(p;, v) are stored in u
and v respectively, which satisfies connectivity. In the
other case which reachable pair u and v are in different
strongly connected components, assume that ue C;, ve G
(i#)). The certificates on p(u, p;) is stored in u and the
certificates on p(p;, v) is stored in v in step2. And in step
4.1, we construct a shortest outgoing tree T; rooted at C;.
Since u and v are reachable, there must exist a path from
C; to C; in T;. Furthermore, in step 4.2 certificates on the
shortest path from p; to p; are stored in u. We can know
that for any reachable pair u and v, there exist a path p(u,
v) which concatenating p(u, p;), p(pi, p;) and p(p;, V), and
all of the certificates on p(u, V) are stored in u and v, this
satisfies connectivity. We show completeness second. In
step 5, we store all remained certificates in an aribitrary
node. That means all of the certificates are stored in some
nodes, which satisfies completeness. Therefore, GPivot is
a certificate dispersal algorithm.

For the proof of computation time, we consider the
time needed for each step. In step 1, G can be partitioned
into strongly connected components by Tarjan’s
algorithm [10] in O(|V|+{E|) time. It takes O(|V|+|E[) time
for Pivot procedure in step 2, and O(E|) time is needed
for constructing graph H in step 3. In step 4.1, we need
O(pHE(H)|) time for computing shortest outgoing tree
for each component, and in step 4.2, for constructing the
shortest paths between two reachable pivot nodes, we
need to construct shortest outgoing tree rooted at each
pivot node, which needs O(|V|HE]) time. Therefore, we

can finish the computation in step 4 in time of
O(p-(pHE(DHVIHED) = O@(VHE]). In step 5, at
most |E| certificates are remained, that means we need at
most O(E|) time for step 5. Hence, the total computation
time for GPivot is O(p-(IVIHE})). 0

Theorem 3: For any directed graph G, c.(GPivot, G)
< 2pdpatp—1+{E)/|V|, where p is the number of strongly
connected components of G and dp,, is the maximum
diameter of strongly connected components of G.

Proof: Let C;, C,... and G, be strongly connected
components, d; be diameter of C; and d,,,=max{d;,d;,...,
dp}. We consider the number of certificates stored in
each step. In step 2, for each node v in C;, at most 2d;
certificates are stored in v by Pivot procedure. In step 4,
since T; is a tree and [V(H)| = p, there are at most p-1
edges in T;. For any edge (C;, C;) in T;, d(p;, p;) is at most
2duaxt1. Therefore, |GPivot.(G, v)| satisfies an inequality
below:

|GPivot.(G, V| =2d,+| U p(p;.p,)]

(C;.Cu)eE(T)

<2d,.+ 2 (d,,+1)<2d,,+(p-1)2d,,+1)
(C;.CEE(T)
<2pd,, +p-1
This inequality holds for any node v in G. In step 5, at
most |E| certificates are stored in an arbitrary node.
Therefore, the cost of G.Pivot is 2pdn.,tp-1+E|/|V]. O

IV. LOWER BOUNDS FOR SPECIAL GRAPH CLASSES

In this section, we prove some lower bounds of the
dispersability cost for special graph classes,
n-dimensional Hypercube, n-dimensional Meshs,
complete k-ary trees and de-Bruijn graphs. And our
CPivot algorithm is shown to be optimal algorithm for
these graph classes.

Lemma 6: Let G = (V, E) be a strongly connected graph,
V, and V, be subsets of V such that VinV,=¢ . Letf: V;
—V, be an injective function and P={p(u, fu))| ueV,
and there exists a path from u to f{u)}. Then

|E| 1 J
c.G2max| —, — d(u,v) |-
(IVI IVI,,(Z

u,veP
Proof: For satisfying completeness condition, at least [E|
certificates have to be stored. This means the average
number of certificates stored in each node is not less than
|[E[/|V]. On the other hand, we assume that there exists a
certificate dispersal algorithm F with c.(F,G)<Zqvep
d(u,v)/}V|. The total number of certificates stored in all of
the nodes of G is c.(F, G)|V/|. Let us consider the path set
P defined in Lemma 6. For any path p(u, fu))eP, we
need at least d(u, f{u)) certificates. f is an injection from
Vi to V,, therefore, for any two distinct nodes u and v in
Vi, flu) and f{v) are different. So for satisfying

connectivity, we need at least 2. o vep d(u, V) certificates.
Although, we only have c.(F, G)|V| certificates in G, that
means there exists node x such that at least one
certificate on path p(x, f(x)) that is not stored in any node.
Here, F.(G, x) UF.(G, f(x)) is not enough to satisfy
connectivity. Contradiction occurs. 0

Hereafter we prove lower bounds on dispersability
cost for some special graph classes by using Lemma 6.

A. Hypercubes

An n-dimensional Hypercube H, (n-Hypercube) is
defined as follows: the n-Hypercube H, is an
bi-directional graph with 2" nodes which labeled with a
set of binary strings of length n and there exist
bi-directional edges between any two nodes, iff there is
only one bit differ in their labels.

Theorem 4 : For any integer n, c.H, 2 n.

Proof: Since in H,, |V|=2" and |E[=n2", according to
Lemma 6, ¢.H, = [E|/|[V|=n. c
Corollary 1: CPivot is an optimal algorithm for
n-Hypercube.

Proof: From Theorem 2 and 4, we know that c.(CPivot,
G) < 2RgHE)/|V] and ¢.H, = n. For n-Hypercube, Rg=n
and [E|/|V|=n, son < c.H; < 3n. We get this corollary. [

B. Meshes

An n-dimensional Mesh M," with side k (called (n,
k)-Mesh) is defined as follows: the (n, k)-Mesh M," is a
bi-directional graph whose node set is strings of length n
on alphabet of k integers 0, 1, ..., k-1 and there is an
edge from (a; ay, ..., a,) to (by, by, ..., b,) when there
exists i such that for all j#i, a=b; and a;=bx1. In (n, k)-
Mesh, |V}=k" and |E[=2nk"-2nk™".

Theorem 5: For any integer n and k, ¢.M," = (k-1)’n/4k.
Proof: In the case that k is an odd number; Let
Vi={(aj,az,...,a5)|a1€ {0,...,(k-3)/2},a,,...,a,€ {0,....k-1}},
Va={(a,3,-...an)|a;€ {(k-1)/2,....k-1},a,...,85€ {0,... k-1}}.
We define an injective function f: V;—V, as follows.
f{(a;,a,-..,an))=(a; Hk-1)/2,a,+(k-1)/2 mod K,...,a,;+(k-1)/2
mod k). It is clear that f is an injection from V, to V.
For any path p(x, f{x))eP, P={p(x, f{x)) | xe V,}, d(x,
f(x))= n(k-1)/2. Note that |P[=k™'(k-1)/2=((k-1)/2k)[V].

In the case that k is an even number; Let
Vi={(apay,....a)[a€ {0,....k/2-1}, a,...,a,€ {0,....k-1}},
V2={(a1,a2,. . .,a,,)]a.e {k/2, .. ,k’l }, a2,...,3pE {0,...,k—l } } .
We define an injective function f: V|—V, as follows.
fl(a), ay, ..., ay))=(a;tk/2, a;+k/2 mod k, ... , a;+k/2 mod
k). It is clear that f is an injection from V, to V,. For any
path p(x, fix)eP, P={p(x, ke Vi}, d(x, fix))=nk/2.
Note that |P|=|V|/2.

In both cases, since |[P| = ((k-1)/2k)|V], d(x, f(x)) =
n(k-1)/2 and from Lemma 6,

—30—

dx,fx) , k-1 nk-1) _(k-1)’n g
[Vl ~ 2k 2 4k

cMp 2 Z

p(x.fix)eP

Corollary 2: CPivot is an optimal algorithm for (n,
k)-Mesh.

Proof: From Theorem 2 and 5, we know that ¢.(CPivot,
G) < 2RGHE)|V] and ¢.M," 2 nk/2. For the (n, k)-Mesh,
Rg=nk/2, [E[=2nk"<2nk™" and |[V|=K", so (k-1)n/4k
< ¢.M," € nk+2n-2n/k. We have this corollary. O

C. complete k-ary tree

complete k-ary tree Ty is a free tree in which all leaves
have the same depth and all internal nodes have degree k.
We make all of the undirected edges in Ty bi-directional
ones.

Theorem 6: For any integer k, let T, be a complete k-ary
tree of height h, ¢.T," > h-1.

Proof: We number the nodes in the complete k-ary tree
with breadth-first-order and sort the leaves in ascending
order, say 1, 2, ..., kh. Note that there are kh leaves in a
complete k-ary tree. Vi={xeT,* | 1 < x < |k"2l},
V={xe T8 [Lk2 41 <x < k™)

We define an injective function f: V,—V, as follows.
fix)=x+ L k"2] It is clear that f is an injection from V, to
V,. For any p(x, f(x))eP, P={p(x, f(x))xeV,}, d(x,
f(x))=2h.

From lemma 6, |V|=(k""-1)/(k-1) and |P|= k"2,

Tz) 99(,1(_)&)):&_2}1. k-1 =M
K poctoer | V] 2 ™1 T
2h-1=Q(h) ;

Corollary 3: CPivot is an optimal algorithm for complete
k-ary tree.

Proof: From Theorem 2 and Theorem 6, we know that
¢.(CPivot, G) < 2RG+E)|V| and c.T ! > h-1. For
complete k-ary tree, Rg=h and |[E}/|V|=2(|V|-1)/|V|<2, so
h-1 € ¢. T, < 2h+2. We have this corollary. 0

D. de-Bruijn Directed Graph

We need to prepare some notations before defining
de-Bruijn directed graph. For two sets A and B, let
AxB={(a,b) | ac A, beB}. Let Z,={0, ..., n—1}, and for
any positive integer k, ZM = Z.xZ %

A de-Bruijn directed graph B(n, d) (called (n,d)-de-
Bruijn) is a graph whose nodes set is the strings of length
d on an alphabet of n integers 0,1,...,n-1, i.e. V(B(n, d))
=Z.% For any x, ye V(B(n, d)), there is an edge from x to
y if the d-1 first letters of y are equal to the d-1 last
letters of x. That is, there is an edge from (xy, X,, ..., Xp)
to all the vertices (X2, ..., Xp, p), where p is any letter of
the alphabet (shifting property). It is easy to check that its
diameter is d (from a given node, all nodes are attained
after d shifting and there exists a pair of nodes away from

d). Its number of nodes is n? and its number of edges is
n*'. For any node v=v vy, ..., v4 in B(n, d), let
$i(V)=Vaitts ..., Va, P(V)=Viva...vi. Define that k"' =

max{i | si(u)=pi(v)} and (u"')'=ug"ug.,"... u," and v;"=u;+1.

Lemma 7: For any two nodes u,ve Z,* =V(B(n, d)), the
distance from u to v is d—k™".

Proof: Let u = wju,...u4, Vv = vjvs...v4 and d(u, v) = s.
Shifting d—k™" times, u’s id can be changed to v’s id. So
du, v) < d-k*". u’s id changes to the form
UgUgsz.. . UgX X2...Xs, Where X; is an arbitrary letter after
shifting s times. Since U=V, Us Usy...USViV;. .. Vy s, that is
sa.s(U) = pas(v). Because k™' is maximum, d-s < k"".
Therefore, s=d(u,v)=d-k"". 0

Lemma 8: For any node u = wju,...u4 € Z.lcZI=
V(B(n, d)), d(u, (uh)"H=d.

Proof: We show that for any k(1< k < d), sy(w)#p(u™)").
If k=1, then s;(u)=uy and p,((u™)")=us", since vy # ug".
For any k larger than 1, s(u) = UgisiUgpsz.. .U,
Pl)0 vy g™ If ug € uger, then since
WS 1 <Uger”, the last letters differ. If ug.< ug, then
Vg1 <ug<uy’, the first letters differ.]

Theorem 7: For any integer n and d, ¢.B(n,d)2d(n—-1)/2n.
Proof: From lemma 8, for any node in Z,.,°, there exists a
node away from d. So we take V\={ve Z, ,%(v')'e Z,..%}.
V can be computed through an algorithm below:
L.V, =@, V=2,
2. Repeat
Take a node v from V arbitrary
V|=le{V}
If (v")" €V then V=V-{(v')"}
Until V=0 or |V|=1
Then it is clear that |V,| > |Z,.,%/2.
From lemma 6,

c.B(n, d)_—
[V(B(n,d)| v,

Ty =Yoo
Corollary 4: CPivot is an optimal algorithm for (n,
d)-de-Bruijn graph.

Proof: From Theorem 1, we know that c.(CPivot, G)
< 2DgHE//|V|. And from Theorem 7, we know that ¢.B(n,
d) 2 d(n-1)/2n. Since for de-Bruijn graph, Dg=d and
[E[/|VI=n, so max(d(n—1)/2n, n) < ¢.B(n, d) < 2d+n. We
have this corollary. 0

V. CONCLUSIONS

In this paper, we proposed certificate dispersal
problem under two conditions connectivity and
completeness. New upper bounds on the cost of the
certificate dispersability for strongly connected graphs
and directed graphs are given. CPivot algorithm is

constructed for strongly connected graphs, and GPivot is
constructed for directed graphs. For some special graph
classes such as n-dimensional Hypercube, n-dimensional
Mesh, complete k-ary tree and de-Bruijn graph, our
algorithms are proved to be optimal.

Further research is needed on the upper bounds using
other parameters. The upper bounds and the lower
bounds of certificate dispersability cost for some other
graph classes are necessary to be studied. It will be
possible to construct some other certificate dispersal
algorithms with lower cost for general directed graphs.
We are also interested in the problem that what kind of
certificate graphs have lower dispersability cost.

REFERENCES

[1] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T.
Ylonen, “SPKI certificate theory,” RFC 2693, 1999.

[2] D. Clarke, J.-E. Elien, C. Ellison, M.Fredette, A. Morcos, and R.L.
Rivest, “Certificate chain discovery in SPKVSDSI, "Journal of
Computer Security, vol. 9, no. 4, pp. 285-322, 2001.

[3] Eunjin Jung, Mohamed G. Gouda, “Certificate Dispersal in Ad Hoc
Networks,” Proceedings of the 24" annual International Conference on
Distributed Computing Systems (2004)

[4] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti,
“dRBAC: distributed role-based access control for dynamic coalition
envirc ts,” in Proceeding 22" International Conference on
Distributed Computing Systems, 2002, pp. 411-420.

[5] Jean-Pierre Hubaux, Levente Buttyan, and Srdan Capkun, “The
quest for security in mobile ad hoc networks,” in Proceedings of the
2001 ACM International Symposium on Mobile ad hoc networking &
computing. 2001, pp. 146-155, ACM Press.

[6] L.M. Kornfelder, “Toward a Practical Public-Key Cryptosystem,”
bachelor’s thesis, Dept. Electrical Eng., Massachusetts Inst. of
Technology, Cambridge, 1978.

[7] M. Blaze, J. Feigenbaum, J. loannididis, and A. Keromytis, “The
keynote trust-management system version 2,” RFC 2704, 1999.

[8] M. Myers, R. Ankney, A Malpani, S. Galperin, and C. Adams,
“X.509 internet public key infrastructure online certificate status
protocol - OCSP,” RFC 2560, 1999.

[9] Ninghui Li, William H. Winsborough, and John C. Mitchell,
“Distributed credential chain discovery in trust management: extended
abstract,” in Proceedings of the 8* ACM conference on Computer and
Communications Security. 2001, pp. 156-165, ACM Press.

[10] Robert E. Tarjan, “Depth first search and linear graph algorithms,”
SIAM Journal on Computing, 1(2):146-160, 1972

[11] Ronald L. Rivest and Butler Lampson, “SDSI - A simple
distributed security infrastructure,” Presented at CRYPTO’96
Rumpsesseion, 1996.

[12] Srdjan Capkun, Levente Buttyan, and Jean-Pierre Hubaux,
“Self-organized public-key management for mobile ad hoc networks,”
IEEE Transactions on Mobile Computing, vol. 2, no. 1, pp. 52-64,
2003.

[13] S. Boeyen, T. Howes, and P. Richard, “Internet X.509 public key
infrastructure operational protocols - LDAPv2,” 2559, 1999.

