
On the Enumeration of Colored Trees

Shin-ichi Nakano1 and Takeaki Uno2

1 Gunma University, Kiryu-Shi 376-8515, Japan. e-mail:nakano@cs.gunma-u.ac.jp
2 National Institute of Informatics, Tokyo 101-8430, Japan. e-mail:uno@nii.jp

Abstract: A c-tree is a tree such that each vertex has a color c ∈ {c1, c2, · · · , cm}. The
problem of enumerating all c-trees with at most n vertices without repetition has an application to
data mining problem of tree structured patterns, however no efficient algorithm, which generates
each tree in constant time on average, is known. In this paper we give a simple algorithm for
enumerating c-trees with at most n vertices and diameter d. Our algorithm generates each c-tree in
constant time on average. By using the algorithm for each diameter 2, 3, · · · , n−1, we can generate
all c-trees with at most n vertices.

色付き木の列挙

中野 眞一 1, 宇野 毅明 2

1 〒 376-8515 群馬県桐生市 群馬大学 e-mail:nakano@cs.gunma-u.ac.jp
2 〒 101-8430 東京都千代田区一ツ橋 2-1-2 国立情報学研究所 e-mail:uno@nii.jp

抄録: 各頂点が色集合 {c1, c2, · · · , cm} の中の 1色で塗られた木を c-tree とよぶ. 頂点数が高々
n である c-tree を全て列挙する問題は, データマイニングの分野に応用があるが, c-tree 1つあたりの
計算時間が定数時間であるような効率の良いアルゴリズムは, 既存の研究では知られていない. 本稿
では, 頂点数が高々 n, 直径が d である c-tree を列挙するアルゴリズムを提案する. このアルゴリズ
ムの計算時間は c-tree 1つあたり定数である. 直径を 2, 3, ..., n− 1 と変化させて問題を解くことに
より, 頂点数が高々 n の c-tree の列挙も可能である.

1 Introduction
It is useful to have the complete list of graphs for a particular class. One can use such a list to search
for a counter-example to some conjecture, to find the best graph among all candidate graphs, or
to experimentally measure the average performance of an algorithm over all possible input graphs.

Many algorithms to generate a particular class of graphs, without repetition, are already known
[B80, LN01, LR99, M98, N02, R78, W86]. Many excellent textbooks have been published on the
subject [G93, KS98, W89]. Algorithms to generate all trees with n vertices without repetition
are already known. The algorithm [W86] generates each tree in O(1) time on average, and the
algorithm [NU03] generates each tree in O(1) time.

Let C = {c1 = a, c2 = b, c3 = c, · · · , cm} be a set of colors. A c-tree is a tree such that
each vertex has a color c ∈ C. C-tree has an application to data mining problems. Consider a
tree-structured (semi-structured) database, on which each vertex has some data, such as the tuple
of data label and the data. Such database can be considered as a large c-tree. In the are of
data mining, several problems of finding “interesting” subtrees of the databse have been studied
actively [AAUN02, CYM03, TRS02, Z02]. A standard scheme for this task is to enumerate all
the candidate patterns of subtrees (sub c-trees) and output “interesting” trees among them. To
construct an efficient algorithm in this scheme, efficient enumeration of c-trees is important.

In this paper we give a simple algorithm for enumerating, without repetition, all c-trees with at
most n vertices and diameter d. Our algorithm generates each c-tree in constant time on average.
It does not output each c-tree entirely, but outputs the difference from the preceding c-tree. Our
algorithm is based on our algorithm in [NU03], and completely different from [W86].

The main idea of our algorithm is first to define a simple relation among the c-trees, that is “a
family tree” of c-trees (see Fig. 1), then outputs c-trees by traversing the family tree. The family
tree, denoted by Tn,d,m, is the (huge) tree such that the vertices of Tn,d,m correspond to the c-trees
with at most n vertices and diameter d, and each edge corresponds to some relation between two
c-trees. By traversing the family tree we can generate all c-trees corresponding to the vertices of

1

研究会Temp
テキストボックス
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
テキストボックス
2004－AL－95　（3）

研究会Temp
テキストボックス
2004／5／21

研究会Temp
テキストボックス
－17－



a

b a

b

b

a a
b a

b

b

a

b a

b b

b

a

b a
a

b

b
a

b a
a

b

b a

a

b a

b a

b

a

b a

b

b

b

a

bc a

b

b

a

a

a

a

a

b a
a

b

b

a

a

b a
a

b

b

b

a

b a
a

c

b

b

a

b a

b
b

b

b

a

b a

b
b

b

a

a

b a

b b

b

a

b a

b a

b

a

a

b a

b a

b

a
a

b a

b

b

a

a a
b b

a

b

ba a
b a

b
b

b

a a
b a

b
a

ba a
b a

b

b

a
a

bc a

b

b

a

bc a

b
b

b

a

bc a

b

b

a

b a

b
b

b

b

a

b a

b
a

b

b

a

b a

b

b

b

b

a

b a

a

b

b

b

a

bc a

b
a

b

a

b
b

c a

b

b

a

bc a

b

b
c

Figure 1: The family tree T7,4,3 sharing c-spine (a, b, b, a, b).

the family tree without repetition. We have designed several generation algorithms for some trees
based on the family trees [N02, NU03]. In this paper we first extend the method for c-trees.

The rest of the paper is organized as follows. Section 2 gives some definitions. Section 3 assigns
a unique ordered c-tree H for each c-tree T , by choosing the root of T and the ordering of each
child vertices. Section 4 introduces the family tree. Section 5 presents our algorithm to generate
all c-trees for the even diameter case. In Section 6 we sketch our algorithm for the odd diameter
case. Finally Section 7 is a conclusion.

2 Preliminaries
In this section we give some definitions.

Let G be a connected graph with n vertices. An edge connecting vertices x and y is denoted
by (x, y). A path is a sequence of distinct vertices (v0, v1, · · · , vk) such that (vi−1, vi) is an edge for
i = 1, 2, · · · , k. The length of a path is the number of edges in the path. The distance between a
pair of vertices u and v is the minimum length of a path between u and v. The diameter of G is
the maximum distance between two vertices in G.

A tree is a connected graph without cycles. A rooted tree is a tree with one vertex r chosen as
its root . A c-tree is a tree such that each vertex has a color c ∈ {c1, c2, · · · , cm}. For each vertex v

2

研究会Temp
テキストボックス
－18－



in a rooted tree, let UP (v) be the unique path from v to the root r. If UP (v) has exactly k edges
then we say that the depth of v is k, and write dep(v) = k. The parent of v �= r is its neighbor on
UP (v), and the ancestors of v �= r are the vertices on UP (v) except v. The parent of the root r
and the ancestors of r are not defined. We say that if v is the parent of u then u is a child of v,
and if v is an ancestor of u then u is a descendant of v. A leaf is a vertex that has no child.

An ordered tree is a rooted tree with left-to-right ordering specified for the children of each
vertex. We denote by T (v) the ordered subtree of an ordered tree T consisting of a vertex v and
all descendants of v with preserving the left-to-right ordering for the children of each vertex.

a

b b a

b
b c b c

(a)

a a a

(0,a,1,b,2,b,3,a,3,a,
 2,b,2,c,1,b,2,b,3,a,
 1,a,2,c)

a

b b a

c b
b b c

(c)

a a a

(0,a,1,b,2,c,2,b,3,a,
 3,a,2,b,1,b,2,b,3,a,
 1,a,2,c)

a

bb a

b
c bb c

(b)

a aa

(0,a,1,b,2,b,3,a,1,b,
 2,b,3,a,3,a,2,c,2,b,
 1,a,2,c)

depth 0

depth 1

depth 2

depth 3

Figure 2: The dc sequences.

Let T be an ordered c-tree with n vertices, and (v1, v2, · · · , vn) be the list of the vertices of T in
preorder [A95]. Let dep(vi) be the depth of vi and c(vi) be the color of vi for i = 1, 2, · · · , n. Then,
the sequence L(T ) = (dep(v1), c(v1), dep(v2), c(v2), · · · , dep(vn), c(vn)) is called the dc-sequence of
T . Some examples are shown in Fig. 2. Note that those trees in Fig. 2 are isomorphic as unordered
c-trees, but non-isomorphic as ordered c-trees.

Let T1 and T2 be two ordered c-trees, and L(T1) = (a1, b1, a2, b2, · · · , an, bn) and L(T2) =
(x1, y1, x2, y2, · · · , xz, yz) be their dc-sequences. If there is some j such that ai = xi and bi = yi for
each i = 1, 2, · · · , j − 1 (possibly j = 1) and either (i) aj > xj, (ii) aj = xj and bj > yj , or (iii)
n > z = j − 1, then we say that L(T1) is heavier than L(T2), and write L(T1) > L(T2).

3 The Left-heavy Embeddings
In Section 3–5, we only consider the case where the diameter is even.

Let T be a c-tree and (v0, v1, · · · , v2k) be a path in T having length 2k. One can observe that
T may have many such paths, but the vertex vk, called the center of T , is unique [W01, p72]. We
assign to T the rooted c-tree R derived from T by choosing vk as the root. Then we assign to R a
unique ordered c-tree H as follows.

Given a rooted c-tree R, since we can choose many left-to-right orderings for the children of
each vertex, we can observe that R corresponds to many non-isomorphic ordered c-trees. Let H be
the ordered c-tree corresponding to R that has the heaviest dc sequence L(H). Then we say that
H is the left-heavy embedding of R. For example, the ordered c-tree in Fig. 2(c) is the left-heavy
embedding of a rooted c-tree, however the ordered c-trees in Fig. 2(a) and (b) are not, since the
one in Fig. 2(c) is heavier. We assign the ordered c-tree H to R.

Given a c-tree T , we have assigned to T a unique distinct rooted c-tree R, and then we have
assigned to R a unique distinct ordered c-tree H , which is the left-heavy embedding of R. Note
that T, R and H have the same diameter 2k. One can observe that the assignment is a one-to-one
mapping. Let Sn,2k,m be the set of all left-heavy embeddings of c-trees with at most n vertices and
diameter 2k. If we generate all ordered c-trees in Sn,2k,m, then it also means the generation of all
c-trees with at most n vertices and diameter 2k. We are going to generate all ordered c-trees in
Sn,2k,m.

We have the following lemma.

Lemma 3.1 An ordered c-tree H is the left-heavy embedding of a rooted c-tree if and only if for
every pair of consecutive child vertices v1 and v2, they appear in this order in the left-to-right
ordering, L(T (v1)) ≥ L(T (v2)) holds.

3

研究会Temp
テキストボックス
－19－



Proof. By contradiction. Q.E .D.
In the rest of the paper the condition “L(T (v1)) ≥ L(T (v2)) for each consecutive child vertices

v1 and v2”, is called the left-heavy condition.

4 The Family Tree of c-trees Sharing a c-spine
Let H be a left-heavy embedding in Sn,2k,m with root r. Let pk be the first leaf of H at depth k in
preorder, and PL = (r = p0, p1, · · · , pk) be the path between r = p0 and pk. We say that PL is the
left spine of H . Let H

′
be the ordered tree derived from H by removing T (p1), that is the subtree

rooted at p1. We can observe that H
′
is also a left-heavy embedding. Let qk be the first leaf in H

′

at depth k in preorder, and PR = (r = q0, q1, · · · , qk) be the path between r = q0 and qk. We say
that PR is the right spine of H . We call PL ∪ PR the spine of H . We can observe that PL ∪ PR

corresponds to a path with 2k edges. Since the diameter of H is 2k, such pk and qk always exist.
An left-heavy embedding H in Sn,2k,m is trivial if it consisting of only PL ∪ PR. Observe that

any non-trivial H ∈ Sn,2k,m has at least three leaves, so we can choose one leaf except pk and qk.
Assume H ∈ Sn,2k,m is non-trivial. The last leaf x of H in preorder except pk and qk is called

the removable vertex of H . Let P (H) be the ordered c-tree derived from H by removing x.
Now we consider whether the left-heavy condition still holds in P (H) or not. We have the

following seven cases, depending on the location of x in H . Let r1, r2, · · · , rd(r) be the children of
r. Assume that they appear in this order in the left-to-right ordering of them. Also assume that
pk in PL is a descendant of ry and qk in PR is a descendant of rz. See Fig. 3.

p

r1

ry
r2 rz

rz+1ry+1

q
k k

r

Case 4

Case 5
Case 6

Case 7

Case 3

Case 2

Case 1

Figure 3: Illustration for the seven cases.

Case 1: x ∈ T (ri) for some i > z.
Then the left-heavy condition still holds in P (H), since we remove the rightmost leaf, so a

“right” subtree may loose some weight, but it never destroys the left-heavy condition.
Case 2: x ∈ T (rz), and x succeeds qk in preorder.

Then the left-heavy condition still holds in P (H). Similar to Case 1.
Case 3: x ∈ T (rz), and x precedes qk in preorder.

Now there is no leaf x satisfying Case 1 or 2.
Let qj on PR be the ancestor of x having maximum depth, and qj = q

′
j , q

′
j+1, q

′
j+2, · · · , q

′
s = x

be the path between qj and x. See Fig. 4. Note that by the definition of PR, the depth of any
descendant of q

′
j+1 is at most k − 1. (Otherwise, q

′
j+1 has a descendant at depth k, and PR must

pass through q
′
j+1. Now PR is the path between r and the leftmost descendant of q

′
j+1 at depth k,

a contradiction. )
We have the following two subcases.

Case 3(a): T (q
′
j+1) is not a path.

Then the left-heavy condition still holds in P (H). See Fig. 4(a), where the set of color is
{c1 = a, c2 = b, c3 = c}. Let t be the first leaf of T (q

′
j+1) in preorder. Note that the dc sequence

of the path from q
′
j+1 to t is heavier than the dc sequence of the path from qj+1 to qk, since the

left-heavy condition holds in H .
Case 3(b): T (q

′
j+1) is a path.

4

研究会Temp
テキストボックス
－20－



Then we have two subcases.
If c(q

′
j+1) = c(qj+1), c(q

′
j+2) = c(qj+2), · · ·c(q′s−1) = c(qs−1) holds then the left-heavy condition

destroyed in P (H), since L(T (qj+1)) is heavier than L(T (q
′
j+1)) in P (H). See Fig. 4(c). In this

case, by swapping the order of q
′
j+1 and qj+1, the left-heavy condition again holds. We re-define

the resulting ordered c-tree as P (H).
Otherwise the left-heavy condition still holds in P (H). See Fig. 4(b).

p

ry
rz

q

x xt

k k

q
j

'q
j+1

q
j+1

r

(a)

p

ry
rz

r1r1r1 r1

qk k

q
j

'q
j+1

q
j+1

r

(b)

c

c

c

b

a

c

c

b

b

a

a
x

p

ry
rz

qk k

q
j

'q
j+1

q
j+1

r

(c)

c

b

b

b

a

a

Figure 4: Illustration for Case 3.

Case 4: x ∈ T (ri) for some i, y < i < z.
Now rz−1 is the ancestor of x at depth one, and there is no leaf x satisfying Case 1, 2 or 3.

Case 4(a): T (rz−1) is not a path.
Then the left-heavy condition still holds in P (H). (Similar to Case 3(a).)

Case 4(b): T (rz−1) is a path.
Similar to Case 3(b). We have two subcases as follows.
Let q

′
0 = r, q

′
1, q

′
2, · · · , q′s = x be the path between r and x.

If c(q
′
1) = c(q1), c(q

′
2) = c(q2), · · · , c(q′s−1) = c(qs−1) holds, then the left-heavy condition de-

stroyed in P (H), since L(T (q1)) is heavier than L(T (q
′
1)) in P (H). In this case, by swapping the

order of q
′
1 = rz−1 and q1 = rz, the left-heavy condition again holds. We re-define the resulting

ordered c-tree as P (H).
Case 5: x ∈ T (ry), and x succeeds pk in preorder.

Then the left-heavy condition still holds in P (H). Similar to Case 1 and 2.
Case 6: x ∈ T (ry), and x precedes pk in preorder.

Similar to Case 3.
Case 7: x ∈ T (ri) for some i < y.

Similar to Case 4.

Since we never remove pk and qk, the spine always remains as it was. Note that P (H) is
left-heavy unless Case 3(b), 4(b) or 6(b) occurs, and even if Case 3(b), 4(b) or 6(b) occurs, by a
possible modification, the resulting P (H) is left-heavy.

Now we have the following lemma.

Lemma 4.1 For any non-trivial H ∈ Sn,2k,m, P (H) is also in Sn,2k,m (after possible modification
in Case 3(b), 4(b) or 6(b)).

Given an ordered c-tree H in Sn,2k,m, by repeatedly removing the removable vertex, we can
have the unique sequence H, P (H), P (P (H)), · · · of ordered c-trees in Sn,2k,m, which eventually
ends with the trivial ordered c-tree H1. By merging these sequences we can have the family tree of
Sn,2k,m, denoted by Tn,2k,m, such that the vertices of Tn,2k,m correspond to the c-trees in Sn,2k,m

having the same c-spine, and each edge corresponds to each relation between some H and P (H).
For instance, T7,4,3 with c-spine (a, b, b, a, b) is shown in Fig. 1.

We say that P (H) is the parent tree of H and H is a child tree of P (H). We also say H is a
Type i child of P (H) if Case i occurs to find P (H) from H .

5

研究会Temp
テキストボックス
－21－



5 Enumeration Algorithm
In this section we give an algorithm to construct Tn,2k,m.

Using the algorithm in [RS00], we can generate every c-path in constant time for each. Durring
the generation above, at the time we generate each c-path Pc, we wish to generate all c-trees in
Sn,2k,m sharing the c-spine Pc.

All we need to do is, given a c-tree H having the c-spine Pc, to generate all “child” c-trees of
H . Then in a recursive manner we can generate all c-trees in Tn,2k,m sharing the c-spine Pc. Now
we are going to give an algorithm to generate all child c-trees of a given ordered c-tree.

Let H be an ordered c-tree in Sn,2k,m. We have eight cases depending on the location of the
removable vertex x in H as follows.

Again let r1, r2, · · · , rd(r) be the children of the root r. Assume they appear in this order in the
left-to-right ordering of them. Let PL = (p0 = r, p1, · · · , pk), and PR = (q0 = r, q1, · · · , qk). Also
assume that pk in PL is a descendant of ry and qk in PR is a descendant of rz. See Fig. 3.

Case 0: H is trivial, that means H has only two leaves pk and qk.
Case 1: x ∈ T (ri) for some i > z.
Case 2: x ∈ T (rz), and x succeeds qk in preorder.
Case 3: x ∈ T (rz), and x precedes qk in preorder.
Case 4: x ∈ T (ri) for some i, y < i < z.
Case 5: x ∈ T (ry), and x succeeds pk in preorder.
Case 6: x ∈ T (ry), and x precedes pk in preorder.
Case 7: x ∈ T (ri) for some i < y.

For each case we can generate all child c-trees of H . In this paper we only explain for Case 2
and Case 3, since other cases are similar.

Case 2: x ∈ T (cz), and x succeeds qk in preorder.
If H has a child c-tree Hc with Type 4, 5, 6 or 7, then P (Hc) �= H , a contradiction. Thus H

has no child c-tree with Type 4, 5, 6 or 7.
Then consider for child c-trees with Type 1, 2 and 3.

Case 2(1): Child c-trees with Type 1.
Let H1[i] be the c-tree derived from H by adding the rightmost child leaf of r with color ci.

Assume that rz has color cj. The child c-trees of H with Type 1 are H1[0], H1[1], · · · , H1[j]. Note
that H1[j + 1] is not left heavy.
Case 2(2): Child c-trees with Type 2.

We need some definitions here.
Let P = (u0 = r, u1, · · · , udep(x) = x) be the path between r = u0 and x. Let uy on PR be the

ancestor of x having maximum depth. Thus P and PR share the subpath u0 = q0, u1 = q1, · · · , uy =
qy). Let si+1 be the child vertex of ui preceding ui+1 (if such si+1 exists), for 0 ≤ i ≤ dep(x).

We say that H is active at depth i if (i)ui has two or more child vertices, and (ii)L(H (ui+1)) is
a prefix of L(H(si+1)). Intuitively, if H is active at depth i, then we are copying subtree H(ui+1)
from H(si+1). We say the copy-depth of H is d if H is active at depth d but not active at any depth
in {0, 1, · · · , d− 1}. If H is not active at any depth, then we say the copy-depth of H is dep(x).
Assume that H is active at depth d.

Let H2[i, j] be the c-tree derived from H by adding the rightmost child leaf s to uj with color
ci. Thus uj+1 precede the new vertex s in H2[i, j], if j + 1 ≤ dep(x). Any child c-tree of H with
Type 2 is H2[i, j] for some i, j, however not all of them are child c-trees of H with Type 2. We
need to check each carefully.

For j = 0, 1, · · · , d− 1, if c(uj+1) ≥ ci then H2[i, j] is a child c-tree of H , and otherwise H2[i, j]
is not a child c-tree of H , since it is not left heavy. The copy-depth of each derived c-tree is j if ci
equal to c(uj+1), and is j + 1 otherwise.

Then consider for j = d, d + 1, · · · , dep(x). Let nR be the number of vertices in the subtree
H(uj+1) rooted at uj+1, and t be the (nR + 1)-th vertex in the subtree H(sj+1) rooted at sj+1.
Assume t has a color c�.

6

研究会Temp
テキストボックス
－22－



If j > dep(t) then H2[i, j] is not a child c-tree of H , since it is not left heavy. If j = dep(t)
but " < i then H2[i, j] is not a child c-tree of H , since it is not left heavy. If j = dep(t) and " = i
then H2[i, j] is a child c-tree of H . The copy-depth of the derived c-tree is again d. If j = dep(t)
and " > i then H2[i, j] is a child c-tree of H . The copy-depth of each derived c-tree is j if ci equal
to c(sj+1), and is j + 1 otherwise. If j < dep(t) then H2[i, j] is a child c-tree of H for any i. The
copy-depth of each derived c-tree is j if ci equal to c(sj+1), and is j + 1 otherwise.
Case 2(3): Child c-trees with Type 3.

In this case we need to check the reverse of Case 3(b) in Section 4. Thus a c-tree with Type 2
may have a child c-tree with Type 3.

Define P = (u0 = r, u1, · · · , udep(x) = x), d, uy, t and c� as in Case 2(2).
If the copy-depth of H is y or less, T (uy+1) is a path, and " < i, then H2[i, dep(x)] is a child

c-tree with Type 3, after swapping the order of uj+1 and qj+1.

Case 3: x ∈ T (cz), and x precedes qk in preorder.
If H has a child c-tree Hc with Type 4, 5, 6 or 7, then P (Hc) �= H , a contradiction. Thus H

has no child c-tree with Type 4, 5, 6 or 7.
Then consider for child c-trees with Type 1, 2 and 3.

Case 3(1): Child c-trees with Type 1.
Omitted. Similar to Case 2(1).

Case 3(2): Child c-trees with Type 2.
Omitted. Similar to Case 2(2).

Case 3(3): Child c-trees with Type 3.
Let P = (u0 = r, u1, · · · , udep(x) = x) be the path between r = u0 and x. Let uy on PR be the

ancestor of x having maximum depth. Let si+1 be the child vertex of ui preceding ui+1 (if such
si+1exists), for 0 ≤ i ≤ dep(x).

We say that H is active at depth i if (i)ui has two or more child vertices, and (ii)L(H (ui+1)) is
a prefix of L(H(si+1)). We say the copy-depth of H is d if H is active at depth d but not active at
any depth in {0, 1, · · · , d− 1}. If H is not active at any depth, then we say the copy-depth of H is
dep(x). Assume that H is active at depth d.

For j ≥ y, let H3[i, j] be the c-tree derived from H by adding the new child leaf s to uj

succeeding uj+1 with color ci.
Any child c-tree of H with Type 3 is H3[i, j] for some i, j, however not all of them are child

c-trees of H with Type 3.
For j = y, if s ≤ i < t, where cs = c(uj+1) and ct = c(qj+1), then H2[i, j] is a child c-tree of H .
For j = y + 1, y + 2, · · · , d− 1, if c(uj+1) ≥ i then H3[i, j] is a child c-tree of H , and otherwise

H3[i, j] is not a child c-tree of H , since it is not left heavy. The copy-depth of each derived c-tree
is j if ci equal to c(uj+1), and is j + 1 otherwise.

Then consider for j = d, d + 1, · · · , dep(x). Let nR be the number of vertices in the subtree
H(uj+1) rooted at uj+1, and t be the (nR + 1)-th vertex in the subtree H(sj+1) rooted at sj+1.
Assume t has a color c�.

If j > dep(t) then H3[i, j] is not a child c-tree of H , since it is not left heavy. If j = dep(t)
but " < i then H3[i, j] is not a child c-tree of H , since it is not left heavy. If j = dep(t) and " = i
then H3[i, j] is a child c-tree of H . The copy-depth of the derived c-tree is again d. If j = dep(t)
and " > i then H3[i, j] is a child c-tree of H . The copy-depth of each derived c-tree is j if ci equal
to c(sj+1), and is j + 1 otherwise. If j < dep(t) then H3[i, j] is a child c-tree of H for any i. The
copy-depth of each derived c-tree is j if ci equal to c(sj+1), and is j + 1 otherwise.

Based on the case analysis above, we have the following theorem.

Theorem 5.1 One can generate all c-trees in O(f(n)) time and O(n) space, where f(n) is the
number of nonisomorphic c-trees with at most n vertices and diameter 2k.

Proof. Since we traverse the family tree Tn,2k,m and output each ordered c-tree at each
corresponding vertex of Tn,2k,m, we can generate all c-trees in Sn,2k,m.

7

研究会Temp
テキストボックス
－23－



We maintain the last two occurrences of each depth in each subtree T (v1) and T (u1) in four
arrays of length k. We record the update of the four arrays and restore the arrays if return occur.
Thus we can find vi, v

′
i, ui and u

′
i in constant time for each i.

We also maintain the current copy-depth c and the vertex next to be copied.
Other parts of the algorithm need only constant time of computation for each edge of Tn,2k,m.
Thus the algorithm runs in O(f(n)) time. Note that the algorithm does not output each tree

entirely, but the difference from the preceding tree.
For each recursive call we need a constant amount of space, and the depth of the recursive call

is bounded by n. Thus the algorithm uses O(n) space. Q.E .D.

6 The Odd Diameter Case
In this section we sketch the case where the diameter is odd.

It is known that a tree with odd diameter 2k + 1 may have many paths of length 2k + 1, but
all of them share a unique edge, called the center of T [W01, p72].

Intuitively, by treating the edge as the root, we can define the family tree Tn,2k+1,m in a similar
manner to the even diameter case. The detail is omitted.

7 Conclusion
In this paper we gave a simple algorithm to generate all c-trees with n vertices and diameter d.
The algorithm generates each c-tree in constant time on average.

References
[AAUN02] T. Asai, H. Arimura, T. Uno and S. Nakano, Discovering Frequent Substructures in

Large Unordered Trees, In Proc. the 6th Discovery Science (DS03) LNAI, (2003).
[A95] A. V. Aho and J. D. Ullman, Foundations of Computer Science, Computer Science Press,

New York, (1995).
[B80] T. Beyer and S. M. Hedetniemi, Constant Time Generation of Rooted Trees, SIAM J. Com-

put., 9, (1980), pp.706-712.
[CYM03] Y. Chi, Yirong Yang and Richard R. Munts, Indexing and Mining Free Trees, ICDM2003,

(2003), pp.509-512.
[G93] L. A. Goldberg, Efficient Algorithms for Listing Combinatorial Structures, Cambridge Uni-

versity Press, New York, (1993).
[KS98] D. L. Kreher and D. R. Stinson, Combinatorial Algorithms, CRC Press, Boca Raton, (1998).
[LN01] Z. Li and S. Nakano, Efficient Generation of Plane Triangulations without Repetitions,

Proc. ICALP2001, LNCS 2076, (2001), pp.433–443.
[LR99] G. Li and F. Ruskey, The Advantage of Forward Thinking in Generating Rooted and Free

Trees, Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms, (1999), pp.939–940.
[M98] B.D.McKay, Isomorph-free Exhaustive Generation, J. of Algorithms, 26, (1998), pp.306-324.
[N02] S. Nakano, Efficient Generation of Plane Trees, Information Processing Letters, 84, (2002),

pp.167–172.
[NU03] S. Nakano and T. Uno, Efficient Generation of Rooted Trees, NII Technical Report (NII-

2003-005E) (2003). (http://research.nii.ac.jp/TechReports/03-005E.html)
[RS00] F. Ruskey and J. Sawada, A fast algorithm to generate unlabe led necklaces, Proc. of SODA

(2000), pp.256–262
[R78] R. C. Read, How to Avoid Isomorphism Search When Cataloguing Combinatorial Configu-

rations, Annals of Discrete Mathematics, 2, (1978), pp.107–120.
[TRS02] A. Termier, M. Rousset and M. Sebug, TreeFinder: a First Step towards XML Data

Mining, In Proc. IEEE ICDM ’02, (2002), pp.450-457.
[W01] D. B. West, Introduction to Graph Theory, 2nd Ed, Prentice Hall, NJ, (2001).
[W89] H. S. Wilf, Combinatorial Algorithms : An Update, SIAM, (1989).
[W86] R. A. Wright, B. Richmond, A. Odlyzko and B. D. McKay, Constant Time Generation of

Free Trees, SIAM J. Comput., 15, (1986), pp.540-548.
[Z02] M. J. Zaki. Efficiently Mining Frequent Trees in a Forest, In Proc. SIGKDD 2002 ACM,

(2002).

8

研究会Temp
テキストボックス
－24－




