
������� �	��
���	���	�������������	���
�������! #"

, $&%('*)�+ , ,&- .�/10

Abstract. 2436587:96;4<6=8>4?6@BA4CD=8E:F6G4HJI4K4LDM8NDO8PBQ4RTS8UJV:W8XZY4[6\:=J]4^:_6F4U`V
(1) >6?4@BA6C:=8aBED_8EDFBb8c4d6e4fhgJ7:i:jlk6m (2) n4o6>4?6@BA4C:=JaBE:_JE:FBb8c6d4e6fhg87:ijpk4m (3) qDF:rlsDU`t:u`k:=`>B?6@BA4Ch_JEhF4b`v4wBx6eBfhg87hiDjlk4mBVyW4U`Yyz`s{r`=8KBL6|BY~}NDG4U:�J=4�DrBS��4�6� O(1) �6�4�4�DG4b6z:�8_J��S8UJV4}4�6YB[4\D=8�4�D� #P �B�4�:G6b4zD�8_8�SJU8V (1) �6o4>B?4@6A4CD=`E:F4G6H8�B� (2) �4�BE6n4�:=J�Bo4>6?4@4ABCD=8EDF4GBH8�6�4Vh�Dr8M8YB�� n4�:=J�4o6>4?4@6A4CD_`�4N:�6b8�6�4| NP �6�4�4Y6�4N6�4�{�p�B�4�DG4b4zD�8_J�{S8UJV
Keywords: 2B3B5`7:9B;B< , EhF4GBH , KBL , >B?4@BABC , NP �B�B , #P �B�B , vBw6xBeBf:g`7hihj�kBm .

Counting the Independent Sets of a Chordal Graph

Yoshio Okamoto
 ¡"

, Takeaki Uno + , Ryuhei Uehara 0

Abstract. We study some counting and enumeration problems for chordal graphs, especially concerning inde-
pendent sets. We provide for a chordal graph (1) a linear-time algorithm for counting the number of independent
sets; (2) a linear-time algorithm for counting the number of maximum independent sets; (3) a polynomial-time
algorithm for counting the number of independent sets of a fixed size. On the contrary, we prove that the fol-
lowing problems for a chordal graph are #P-complete: (1) counting the number of maximal independent sets;
(2) counting the number of minimum maximal independent sets. With similar ideas, we show that enumerations
(namely, listing) of the independent sets, the maximum independent sets, and the independent sets of a fixed
size in a chordal graph can be done in constant amortized time per output, while finding a minimum weight
maximal independent set in a chordal graph is NP-hard, and even hard to approximate.
Keywords: Chordal graph, counting, enumeration, independent set, NP-completeness, #P-completeness, poly-
nomial time algorithm.

1 Introduction

How can we cope with computationally hard graph problems? There are several possible answers, and one of them
is to utilize the special graph structures arising from a particular context. This has been motivating the study of
special graph classes in algorithmic graph theory [3].

In this paper, we consider chordal graphs. A chordal graph is a graph in which every cycle of length at least four
has a chord, and it is sometimes called a triangulated graph, or a rigid circuit graph. Chordal graphs have numerous
applications in, for example, sparse matrix computation (e.g., see Blair & Peyton [2]), relational databases [1], and
computational biology [4]. The class of chordal graphs contains the interval graphs, which come along a lot of real
world applications including some scheduling and sequencing problems. Recently as a generalization of chordal
graphs, the concept of a chordal probe graph is introduced by Golumbic & Lipshteyn [11] along applications in
computational biology. Also, the class of chordal graphs forms a subclass of perfect graphs [9, 10].

It is known that many graph optimization problems can be solved in polynomial time for chordal graphs; to list
a few of them, the maximum weight clique problem, the maximum weight independent set problem, the minimum
coloring problem [8], the minimum maximal independent set problem [5]. There are also parallel algorithms to
solve some of these problems efficiently [12]. However, fewer problems have been studied for counting and enu-
meration. For enumeration in chordal graphs, the only algorithm we are aware of is one due to Fulkerson & Gross
[7] which enumerates all maximal cliques in a chordal graph.¢

Institute of Theoretical Computer Science, Department of Computer Science, ETH Zürich, Switzerland.
okamotoy@inf.ethz.ch£
Supported by Berlin/Zurich Graduate Program “Combinatorics, Geometry, and Computation (CGC)” financed by ETH
Zurich and the German Science Foundation (DFG).¤¦¥ ?4§6¨4©4Q6R4ª (National Institute of Informatics), uno@nii.jp«l¬B o6©¯®�°6±B©4²6³ (Komazawa University, Natural Science Faculty), uehara@komazawa-u.ac.jp

1

研究会Temp
テキストボックス
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
テキストボックス
2004－AL－96　（3）

研究会Temp
テキストボックス
2004／7／27

研究会Temp
テキストボックス
－17－

In this work, we study the problems concerning independent sets in a chordal graph. Especially, we give the
following kind of efficient algorithms: (1) a linear-time algorithm to count the number of independent sets; (2) a
linear-time algorithm to count the number of maximum independent sets; (3) a polynomial-time algorithm to count
the number of independent sets of a fixed size, in particular running in linear time when the size is constant. The
basic idea of these algorithms is to invoke a clique tree associated with a chordal graph and perform the dynamic
programming on the clique tree. Since a clique tree can be generated in linear time and the structure of the clique
tree is simple, this approach leads to simple and efficient algorithms for the problems above. Along the same idea,
we can also enumerate the independent sets, the maximum independent sets, and the independent sets of constant
size in a chordal graph in constant amortized time per output.

On the contrary, we show that the following counting problems are #P-complete: (1) counting the number of
maximal independent sets in a chordal graph; (2) counting the number of minimum maximal independent sets in
a chordal graph. Using a modified version of the same reduction, we furthermore show that the problem to find
a minimum weight maximal independent set is NP-hard, and even hard to approximate (more precisely there is
no randomized polynomial-time approximation algorithm to find such a set within a factor of ´¶µ¸·~¹ º»¹ , for some
constant ´ , unless ¼¾½À¿!Á¶ÂÄÃÆÅ4Ç¶ÈÊÉÌËÎÍÆÏ Ð¡ÑÒÏ Ð¡ÑÔÓÖÕÊ×).

2 Preliminaries

The neighborhood of a vertex Ø in a graph ÙÛÚ¯ÈÜºÞÝ¡ßJ× is the set àâá�ÈãØä×BÚæåèçêéëºì¹påèçíÝîØðïñéòßZï , and the
degree of a vertex Ø is ¹ àJá�ÈãØä×ó¹ and is denoted by ôÔõ#ö á ÈãØ÷× . For the vertex set ø of º , we denote by àJáùÈÜø`× the set
åèØ6éúºû¹ÔØ6éüà:Èãç¶× for some çhéúøJï . If no confusion can arise we will omit the index Ù . We denote the closed
neighborhood à:ÈÊØ÷×ÔýBåþØÔï by à ÿ Ø � . Given a graph Ù ÚÀÈÜº ÝîßJ× and a subset øÀ¿ º , the subgraph of Ù induced by
ø is the graph ÈÜø¾Ý��J× , where � Ú å÷åþçÎÝ¡ØÔï~¹ðåèçíÝîØðïJéyß for çÎÝ¡ØZé:øJï , and denoted by ÙBÿ ø � . The complement of
a graph Ù Ú ÈÜº Ýîßâ× is defined as �Ù Ú ÈÜº Ý��ßJ× , where �ß ÚÀåäåèçíÝîØðï~¹äåèçíÝîØðï��éyßZï . A vertex set � is an independent
set if ÙBÿ	� � contains no edge, and then the graph �ÙZÿ	� � is said to be clique.

For a given graph Ù Ú�ÈÜº Ýîßâ× , a sequence of the distinct vertices Ø�
þÝ¡Ø�þÝ������ ÝîØ�� is a path, denoted by
ÈãØ�
äÝ¡Ø�óÝ������îÝ¡Ø��Æ× , if åþØ��ÒÝîØ������#ï éòß for each ��������� . The length of a path ÈãØ�
äÝîØ�óÝ������¡Ý¡Ø��¸× is the number � .
A cycle is a path beginning and ending with the same vertex. An edge which joins two vertices of a cycle but is not
itself an edge of the cycle is a chord of the cycle. A graph is chordal if each cycle of length at least 4 has a chord.
Given a graph Ù Ú ÈÜº ÝîßJ× , a vertex ØZé:º is simplicial in Ù if ÙBÿ à:ÈãØä× � is a clique in Ù .

An ordering Ø�þÝ������¡Ý¡Ø Ó of the vertices of º is a perfect elimination ordering of Ù if the vertex Ø�� is simplicial
in Ù»ÿ åþØ��ÜÝ¡Ø������ Ý������¡Ý¡Ø Ó ï � for all Ú"!÷Ý������¡ÝîÉ . Then a graph is chordal if and only if it has a perfect elimination
ordering (see, e.g., [3, Section 1.2] for further details). Given a chordal graph a perfect elimination ordering of the
graph can be found in linear time [15, 17].

It is well known that a graph Ù Ú�ÈÜºÞÝ¡ßJ× is chordal if and only if it is the intersection graph of subtrees of
a tree # (see [3, Section 1.2] for further details). For the tree # , it can be assumed that the nodes of # are the
maximal cliques of Ù , and the subtrees #%$, Ø6éüº , are defined by the occurrences of the vertex Ø in the maximal
cliques of Ù . Such a tree # is called a clique tree of Ù . Given a chordal graph Ù�Ú È ºÞÝ¡ßJ× , we take any perfect
elimination ordering Ø�þÝîØ�&þÝ������¡Ý¡Ø Ó . Let 'ZÈãØ�� × be the clique induced by the set à ÿ Ø�� � in ÙBÿ Ø��ÜÝ¡Ø��(���óÝ������îÝ¡Ø Ó � . Then,
from the perfect elimination ordering, we can construct a clique tree of Ù in linear time [16]. In the clique tree # ,
each node corresponds to a maximal clique in Ù , which can be represented by ' ÈãØ÷× for some Ø in º .

3 Linear-Time Algorithm for Counting the Independent Sets

In this section, we describe our algorithm for counting the number of independent sets in a chordal graph. The
basic idea of our algorithm is to divide the input graph into subgraphs ÙZÈ*)ñ× induced by subtrees of the clique
tree. Any two these subtrees share vertices of a clique if they are disjoint in the clique tree. This property is very
powerful for counting the number of independent sets, since any independent set can include at most one vertex
of a clique. We compute the number of independent sets including each vertex of the clique, or no vertex of the
clique, recursively, by using the recursive equations.

First, we introduce some notations, and state some lemmas. Given a chordal graph ÙÀÚ È ºÞÝ¡ßJ× , we fix a perfect
elimination ordering of Ù , and construct the corresponding clique tree # of Ù by the algorithm in [16]. We now
pick any node in the clique tree # , regard the node as the root of # , and denote it by),+ . For a maximal clique)
in Ù , another maximal clique).- in Ù is a descendant of) if).- is a descendant of) in the clique tree # . For

2

研究会Temp
テキストボックス
－18－

convenience, we consider) itself a descendant of) as well. Let PRT È*)ñ× be the parent of) . We define PRT È*) + ×
by / . We denote by # È*)ñ× the subtree of # rooted at the node which corresponds to the maximal clique) . ÙZÈ*)h×
denotes the graph induced by the vertices included in at least one node in # È*)ñ× . That is, ÙZÈ0)ñ× is a chordal graph
with the clique tree # È*)h× . The following lemma is the key to our counting algorithm.

Lemma 1. Let Ù be a chordal graph and # be the clique tree of Ù . Let) and).- be maximal cliques of Ù such
that).- is not a descendant of) . Then, if a vertex Ø of ÙZÈ*)ñ× satisfies one of the following two conditions, then Ø
belongs to)21 PRT È*)ñ× . (1) Ø belongs to)3- , or (2) Ø is adjacent to some vertex ç of Ù È*).-Æ× not included in Ù È*)ñ× .
Proof. Suppose that (1) a vertex Ø of ÙZÈ*)h× belongs to).- . Then, both).- and a descendant 4 of) are nodes of# $. Since).- is not a descendant of) , the path connecting 4 and).- in the clique tree must include both) and
PRT È*)h× . Thus, ØZé5)61 PRT È*)ñ× .

Suppose that (2) a vertex Ø of ÙZÈ*)ñ× is adjacent to a vertex ç of ÙZÈ*).- × outside ÙZÈ*)h× . Then, #87 includes no
descendant of) . Since # $ includes a descendant of) and has a non-empty intersection with #87 , # $ must includes
both) and PRT È0)ñ× . Thus, ØZé9):1 PRT È*)h× . ;<

For a graph Ù , let =?>ùÈãÙJ× be the set of independent sets in Ù . For a vertex Ø , let =?> ÈÊÙBÝ¡Ø÷× be the set of
independent sets in Ù including Ø , i.e., =?>ùÈãÙBÝ¡Ø÷×A@ ÚëåCB ¹DBêé.=?> ÈÊÙJ×#Ý¡ØBéEBlï . For a vertex set ø , let =?>ùÈãÙBÝ ø`×
be the set of independent sets in Ù including no vertex of ø , i.e., =F> ÈãÙ»Ý#ø`×F@ Ú å�B�¹�B éG=?>�ÈÊÙJ×#Ý�B.1ñøTÚ2/Ôï .
Lemma 2. Let Ù be a chordal graph and # be the clique tree of Ù . Choose a maximal clique) of Ù , and let) � Ý������¡Ý�) � be the children of) in # . Furthermore let ØhéH) and B ¿ ºZÈãÙZÈ0)ñ×Ü× . Then, B é9=?>ùÈãÙZÈ0)ñ×#Ý¡Ø÷× if
and only if B is represented by the union of åþØÔï and B � Ý������îÝ�B � such that B � éG=?>�ÈãÙ È*) � ×#Ý¡Ø÷× if) � includes Ø , andB � é =?>ùÈãÙZÈ0) � × ÝI):1.) � × otherwise. In particular, such a representation is unique.

Proof. Suppose that B éJ=F> ÈãÙZÈ0)ñ×#Ý¡Ø÷× . Let B � @ ÚKB21ëºJÈãÙ È*) � ×Ü× . Then, B includes the union of åèØðï
and B � Ý������¡Ý�B � . Since B includes Ø , B � belongs to =?>ùÈãÙZÈ0) � × ÝîØä× if Ø éL) � . When Ø��éL) � , B � belongs to=?>ùÈãÙZÈ0) � × ÝI) � 1E)ñ× since Ø is adjacent any vertex of) � 1E) . Since any vertex of ÙZÈ0)ñ×NMZåèØðï is either ad-
jacent to Ø or included in ÙZÈ0) � × for some , B is equal to the union of åèØðï and B � Ý������ÜÝ�B � .

Suppose that B is the union of åèØÔï and B � Ý������¡ÝIB � satisfying that B � éO=?> ÈÊÙZÈ*) � ×#Ý¡Ø÷× if Ø éP) � , and B � é=?>ùÈãÙZÈ0) � × ÝI)61Q) � × otherwise. Since Ø is adjacent to all vertices of)6M åþØÔï , any vertex in B � M åþØÔï is included
in ºJÈãÙZÈ0) � × ×RMA) . Hence, from Lemma 1, any vertices in B � M åþØÔï and B � M8åèØðï are not adjacent to each other if S�ÚT� . Together with the observation that no vertex of ÙZÈ*) � ×UMS) is adjacent to Ø if ØQ�é9) � , this implies that B is
an independent set of ÙZÈ*)ñ× . Since Ø é3B , this shows that B éV=F> ÈãÙ È*)ñ× ÝîØä× .

For the uniqueness, suppose that B is the union of åèØðïÖÝ�B � Ý������¡ÝIB � and also the union of åèØðïÖÝ�B�-� Ý������¡ÝIB�-� such
that there exists with B � �Ú:B�-� . Without loss of generality assume B � �Ú6/ . Choose a vertex ç éWB � MXB�-� , where
ç��ÚòØ . Then, there must exist �9�ÚY with çñéOB�-� . This means that the nodes on the path connecting B � and B�-� in# include ç ; in particular çyé3) . Namely, ç and Ø belong to the clique) and at the same time they belong to the
independent set B . This is a contradiction. ;<

By similar discussion, we obtain the following lemma.

Lemma 3. Let Ù be a chordal graph and # be the clique tree of Ù . Choose a maximal clique) of Ù , and let) � Ý������¡Ý�) � be the children of) in # . If) is a leaf of the clique tree, � Ú2� .
1. B é =?> ÈÊÙZÈ*)ñ× ÝI)h× if and only if B is the union of B � Ý������¡Ý�B � such that B � é =?> ÈÊÙZÈ*) � ×#Ý�)91N) � × . In particular,

such a representation is unique.
2. B8�:é =F> ÈãÙZÈ0),�ã× ÝI)Z1�),�Ê× if and only if B8� belongs to either =F> ÈãÙ È*),�Ê×#Ý¡Ø÷× for some Øëé[),�\M�) , or=F>�ÈãÙZÈ0),�ã× ÝI),�Ê× . In particular, B8� belongs to just one of them.

Proof. The proof of the first claim is omitted here since it is similar to Lemma 2.
First, assume that B8�»é]=F> ÈãÙ È*),�Ê×#Ý¡Ø÷× for some Øúé^),�_M`) . Since),� is a clique, B8� cannot include any

vertex of),�RMâåèØðï , particularly of)[1a),� . Therefore, B8� é =F> ÈãÙ È*),�Ê×#Ý�)[1a),�ã× . Secondly, assume that B8�âé=?>ùÈãÙZÈ0),�ã× ÝI),�Ê× . Then, B8� includes no vertex of),�%1.) , since),�%1.)*¿]),� . Hence, B8� é =?> ÈÊÙZÈ*),�Ê×#Ý�):1.),�ã× .
Suppose that B8� is in =F>�ÈãÙZÈ0),�ã× ÝI),�%1b)ñ× . When B8� includes a vertex Ø of),�%MN) , B8�léV=F> ÈãÙZÈ0),�ã× ÝîØä× . Note

that Ø is a unique element in B8�%1hÈ0),�%M\)h× since B8� is an independent set and),�cMS) is a clique. Therefore, B8�A�é=?>ùÈãÙZÈ0),�ã× Ýîç¶× for ç6é È0),��MU)ñ×�MíåèØðï . When B8� includes no vertex of),��MU) , it follows that B8� é =?> ÈÊÙZÈ*),�Ê×#Ý�),� × .;<
3

研究会Temp
テキストボックス
－19－

From these lemmas, we have the following recursive equations with respect to =F> .

Equations 1. Let Ù be a chordal graph and # be the clique tree of Ù . For a maximal clique) of Ù which is not
a leaf of the clique tree, let) � Ý������¡ÝI) � be the children of) in # . Furthermore, let Ø:éW) . Then, the following
identities hold.=?> ÈÊÙZÈ*)h×Ü× Ú =?> ÈÊÙZÈ*)h×#Ý�)ñ×`dý de $�f�g =F> ÈãÙ È*)ñ× ÝîØä×ih=?> ÈÊÙZÈ*)h×#Ý¡Ø÷× Ú åCB ýhåèØðïâ¹jB Ú e ��(k�� B � ÝIB � é l =?>ùÈãÙZÈ0) � × ÝîØä× if ØZé5) �=?>ùÈãÙZÈ0),�ã× ÝI),�%1b)ñ× otherwise m ïDh=?> ÈÊÙZÈ*)h×#Ý�)ñ× Ú åCBú¹�B Ú e ��(k�� B � ÝIB � é�=?>ùÈãÙZÈ0) � × ÝI) � 1.)ñ× ïnh=?> ÈÊÙZÈ*),�Ê×#Ý�),�%1.)ñ× Ú =?>ùÈãÙZÈ0),�ã× ÝI),� ×íý e 7 f�gSoqprg =?> ÈÊÙZÈ*),�Ê×#Ý¡ç¶×i�

According to these equations, we obtain the following algorithm for counting the number of independent sets
in a chordal graph Ù . For a maximal clique) of a chordal graph Ù , we denote the set of children of) in a clique
tree of Ù by CHD È*)ñ× .

Algorithm #IndSets
Input: A chordal graph Ù ÚÀÈ ºÞÝ¡ßJ× ;
Output: The number of independent sets in Ù ;
1. construct a clique tree of Ù by the algorithm in [16];
2. call #IndSetsIter() +);
3. output ss =?>ùÈãÙBÝ�) + ×�ss�tWu $�f�gSv ¹ =?>ùÈãÙZÈ0) + ×#Ý¡Ø÷× ¹ .
Procedure #IndSetsIter
Input: A maximal clique) of the chordal graph Ù ;
4. If) is a leaf of the clique tree, set ¹ =?>�ÈãÙZÈ0)ñ×#Ý�)ñ× ¹D@ ÚP� and ¹ =F> È*)hÝîØä×ó¹D@ Ú^! for each ØZé5) and return;
5. for each child).- of) , call #IndSetsIter()w-);
6. for each child).- of) , compute ss =F> ÈãÙZÈ0).- ×#Ý�).-x1.)ñ×�ss by ss =?> ÈÊÙZÈ*).- × ÝI).-Æ×�ss0t u 7 f�gXyzprg ¹ =F> ÈãÙZÈ0).- ×#Ý¡ç × ¹ ;
7. compute ss =F>�ÈãÙZÈ0)ñ×#Ý�)ñ×�ss by { gXy|f CHD Í g Õ ss =?>ùÈãÙZÈ0).- ×#Ý�).-n1.)ñ×jss ;
8. for each ØZé5) , compute ¹ =F> ÈãÙZÈ0)ñ×#Ý¡Ø÷× ¹ by{ g y f CHD Í g Õ*} $�f�g y ¹ =?>ùÈãÙZÈ0).- ×#Ý¡Ø÷×ó¹�~5{ g y f CHD Í g Õ*} $x�f�g y ss =?> ÈÊÙZÈ*)3- × ÝI)3-n1.)ñ× ss .

Theorem 1. The algorithm #IndSets outputs the number of independent sets in a chordal graph ÙæÚ¯ÈÜºÞÝ¡ßJ×
within �ZÈ ¹ º ¹ t ¹ ß4¹ × arithmetic operations.

Proof. From Equations 1, the algorithm correctly computes the number of independent sets in a chordal graph
Ù . Let us consider the computation time �#È0)ñ× taken by a call to #IndSetsIter()). The overall running time of
#IndSets is �#È*),+þ× t �ZÈ ¹),+ð¹ × .

Steps 5 and 6 take �ZÈ��#È*).- × × and �ZÈ#¹) � ¹ × time for each).- é CHD È*)ñ× respectively. Step
7 can be done in � È ¹ CHD È0)ñ×ó¹ × . Next, we analyze the computation time for Step 8. Sincess =?> ÈÊÙZÈ*)ñ× ÝI)h× ss Ú { g y f CHD Í g Õ ss =F> ÈãÙ È*).- ×#Ý�).-x1.)ñ× ss , we have that { g y f CHD Í g Õ*} $�f�g y ¹ =F> ÈãÙ È*).- ×#Ý¡Ø÷× ¹�~{ g y f CHD Í g Õ�} $x�f�g y ss =?> ÈÊÙZÈ*).-Æ×#Ý�).-n1.)ñ×jss ÚKss =?> ÈÊÙZÈ*)ñ× ÝI)h×�ss ~ ��� y�� CHD � �U�|�	� � � y ¹ ��� Í á Í g y Õ�} $ Õ ¹��� y�� CHD � �U���	� � � y ¹ ��� Í á Í g y Õ�} g yz� g Õ ¹ , and we

use this equation in Step 8. Then ¹ =?>ùÈãÙZÈ0)ñ×#Ý¡Ø÷× ¹ can be computed in �ZÈ#¹ å�).-Þ¹�).-íé CHD È*)h×#Ý¡ØZé3)3- ïÒ¹ ×
time, thus Step 8 can be done in �ZÈ u $jfCg ¹ å�).-Þ¹�)3-Îé CHD È0)ñ×#Ý¡ØZé9).- ïð¹ × time. Therefore, the accumu-
lated time taken by a call to #IndSetsIter()b+) is u gXy|f CHD Í gSv Õ È*�ZÈ��#È*).- ×Ü× t �ZÈ#¹).-ã¹ ×Ü× t �ZÈ#¹ CHD È*),+ ×ó¹ × t�ZÈ u $�f�gSv ¹ å�).-Ìé CHD È0),+ó×Ä¹þØ é3).- ïÒ¹ × . By expanding �#È0).- × inside the sum, we can see that this is at most�ZÈ u g�f�� È#¹)ü¹ t u $�f�g ¹ åC).- é CHD È*)h×Ä¹þØZé5).- ïð¹ ×Ü× , where # denotes the set of nodes in the clique tree. Since
no two nodes give the same maximal clique of Ù , it holds that �ZÈ u g�f�� ¹)ü¹ × ÚP� È u $�fx� ¹ ' ÈãØ÷× ¹ × ÚP� È ¹ º4¹ t ¹ ß4¹ ×(remind that 'ZÈãØä× denotes the clique induced by à ÿ Ø � 1 åèØj- ¹�Ø�-��æØ in the perfect elimination ordering ï).
Furthermore, it follows that � È��g�f�� �$�f�g ¹ å�) - é CHD È*)ñ×Ä¹ ØZé9) - ïÒ¹ ×�Ú �ZÈi�$�fx� ¹ å�) - é.# ¹ ØZé3) - ïÒ¹ × Ú
�ZÈ �$�fx� ¹ 'ZÈãØä×ó¹ × Ú2�ZÈ ¹ º»¹ t ¹ ß6¹ × . Hence, the total running time is �ZÈ ¹ º»¹ t ¹ ß4¹ × . ;<

4

研究会Temp
テキストボックス
－20－

4 Efficient Algorithm for Counting the Independent Sets of Size �
In this section, we modify Algorithm #IndSets to count the number of independent sets of size � . For a graph
Ù and a number � , let =F> ÈãÙ�hI�Ò× be the set of independent sets in Ù of size � . For a vertex Ø , let =F> ÈãÙBÝ¡Øch��Ò× be
the set of independent sets in Ù of size � and including Ø , i.e., =?>ùÈãÙBÝ¡Øch��Ò× Ú å�B�¹8BÀé5=F> ÈãÙ�h��Ò× ÝîØyé�Blï . For
a vertex set ø , let =F> ÈãÙBÝ ø�h��Ò× be the set of independent sets in Ù of size � and including no vertex of ø , i.e.,=?>ùÈãÙBÝ ø�h��Ò×ÎÚ åCBú¹�B éG=?> ÈÊÙ�hI�¦×#Ý�B�1ñø ÚT/Ôï .

From lemmas stated in the previous section and Equations 1, we immediately have the following equations.

Equations 2. With the same set-up as Equations 1, the following identities hold.=?> ÈÊÙZÈ*)h×ih��Ò× Ú =F> ÈãÙZÈ0)ñ×#Ý�)Eh��Ò×�dý de $�f�g =?>ùÈãÙZÈ0)ñ×#Ý¡Øch��Ò×ih=?> ÈÊÙZÈ*)h×#Ý¡Øch��Ò× ÚÀå�BT¹�B Ú e ���k�� B8�îÝþ¹ B ¹äÚP� ÝIB8� é l =?> ÈÊÙZÈ*) � ×#Ý¡Ø÷× if ØZé5) �=?> ÈÊÙZÈ*) � ×#Ý�) � 1.)ñ× otherwise m ïDh=?> ÈÊÙZÈ*)h×#Ý�)EhI�¦×ÞÚ åCBú¹�B Ú e ��(k�� B � Ýþ¹ B ¹äÚP�ÌÝ�B � é�=?> ÈÊÙZÈ*) � ×#Ý�) � 1.)ñ×¡ïDh=?> ÈÊÙZÈ*) � ×#Ý�) � 1.)Eh��Ò× Ú =F> ÈãÙ È*) � ×#Ý�) � h��Ò×Udý de 7 f�g o prg =?> ÈÊÙZÈ*) � ×#Ý¡çRh��Ò×��
In contrast to Equations 1, the second and third equations of Equations 2 do not give straightforward ways to
compute ¹ =F> ÈãÙ È*)ñ× ÝîØ�hI�Ò× ¹ and ss =F> ÈãÙ È*)ñ× ÝI)Eh��Ò× ss , respectively, since we have to count how many combinations
of B � Ý������¡Ý�B � generate an independent set of size � . To compute them, we use a more detailed algorithm.

Here we only explain a method to compute ¹ =?> ÈÊÙZÈ*)ñ× ÝîØ�hI�¦×ó¹ since ss =?> ÈÊÙZÈ*)ñ× ÝI)�hI�Ò×jss can be computed in
a similar way. For a vertex ØêéY) , we give indices to the children of) such that) � Ý������¡ÝI)�� include Ø and) � ���èÝ������¡Ý�)�� do not. For �D-F��� and �|-��H� , let àñç8� È0�|-0hI��-¸×�@ Ú å�B ¹cBúÚ e � y��k�� B8�#Ý�B8��é5=?> ÈÊÙZÈ*),�Ê×#Ý¡Ø÷× Ýè¹ Bp¹¦Ú�D- ï . For �D-N�Y� and �|-N�P� t ! , let àñç8�hÈ*�|-0h��D-¸× @ Ú&å�Bò¹8B Ú e ��(kU� y B8�¡Ý�B8�Äé =F> ÈãÙ È*),�Ê×#Ý�),�R15)ñ×#Ýþ¹ B ¹ Ú¡�D- ï .
Then, ¹ =F> ÈãÙZÈ0)ñ×#Ý¡Øch��Ò× ¹óÚ u2¢£ kU
 ¹ àhç%�yÈq�Rh�¤¶×ó¹~�ss àhç%�yÈq� t !xh���¥E¤ ×jss .For each ��- and �D- , ¹ àñç%�yÈ*�|-0h��D-¸× ¹ can be computed in �ZÈ0�D-¸× time based on the following recursive equation.

¹ àñç%�yÈ*� - h�� - × ¹÷Ú§¦¨¨© ¨¨ª
¢ y�£ kU
 ¹ àhç%�yÈ*� - ¥W!hI¤¶×ó¹~ü¹ =?> ÈÊÙZÈ*) � y ×#Ý¡Øch�� - ¥E¤ × ¹ if ��-U«�!
¹ =F> ÈãÙZÈ0)b� × ÝîØ�hI��-¸×ó¹ otherwise.

Similarly, ss àñç8�ñÈ0�|-0hI��-¸× ss can be computed in �ZÈ0�D- × time. The computation of ¹ àhç%�yÈ*�|-0h��D-¸× ¹ and ss àñç8� È0�|-0hI��-¸× ssfor all combinations of �|- and �D- can be done in �ZÈ0� & ¹ CHD È*)ñ× ¹ × time, thus we can count the number of independent
sets of size � in a chordal graph in � È*� & ¹ º4¹ & × . In the following, we reduce the computation time by the technique
used in the previous section.

Observe that ss =?> ÈÊÙZÈ*)ñ× ÝI)�hI�D-Æ×�ss Ú u ¢ y£ kU
 ss àñç8� È|�Rh�¤ ×jss ~¬ss àñç%�yÈq� t !xh��D-D¥O¤¶×�ss , which givesss àñç%�yÈq� t !xh��D- ×jss ~Hss àñç8� Èq��hI�ä×�ss Úss =F> ÈãÙ È*)ñ× ÝI)Eh��D-Æ×�ss ¥ uP¢ y£ k�� ss àñç8� Èq��hI¤¶×�ss ~Tss àñç8� È|� t !xh��D-D¥w¤¶×�ss . This
implies that we can compute ss àñç%�yÈ*�D-0h�� t ! ×�ss from ss =F> ÈãÙZÈ0)ñ×#Ý�)Eh�¤ ×jss and ss àñç8� È|�Rh�¤ ×jss in the increasing order
of �D- . The computation time for this task is �ZÈ*�b~,� × .

In summary, we can compute ¹ =?> ÈÊÙZÈ*)h×#Ý¡Øch��D-¸× ¹ for all Ø é) and �D- Ú �ÒÝ������¡ÝI� in�ZÈ0� & u $jfCg ¹ åC).- ¹�).-Ìé CHD È*)ñ× ÝîØZé5).- ïð¹ × time. Therefore, the total computation time over all iterations can
be bounded in the same way as the above section, and we obtain the following theorem.

Theorem 2. 1. The number of independent sets of size � in a chordal graph Ù!Ú�ÈÜºÞÝ¡ßJ× can be computed in� È*� & È#¹ º ¹ t ¹ ß6¹ × × time.
2. The number of independent sets of size � in a chordal graph Ù Ú È ºÞÝ¡ßJ× can be computed in �ZÈ#¹ ºB¹ & È ¹ º»¹ t¹ ß4¹ ×Ü× time for all � from � to ¹ º ¹ .

5 Linear-Time Algorithm for Counting the Maximum Independent Sets

In this section, we modify Algorithm #IndSets to count the number of maximum independent sets. For a set
family > , we denote by ®.¯�° È�>¾× the size of a maximum size element of > , and ¯�±Üö®²¯C°ÒÈ³>¾× denotes the set of
elements in > of maximum size. For a graph Ù , let ´6=F> ÈãÙJ× be the set of maximum independent sets in Ù . For a
vertex Ø , let ´6=F> ÈãÙ»ÝîØä× be the set of maximum independent sets in Ù including Ø , i.e., ´6=?> ÈÊÙBÝîØä×N@ Ú åCBú¹�B é´6=?>ùÈãÙJ× ÝîØâé5B ï . For a vertex set ø , let ´6=?>ùÈãÙBÝ ø`× be the set of maximum independent sets in Ù including no
vertex of ø , i.e., ´6=F> ÈãÙBÝ ø`×F@ Ú åCBú¹�B é5´6=?>�ÈãÙâ×#Ý�B²1høTÚP/ðï .

From lemmas stated in Sect. 3 and Equations 1, we immediately have the following equations.

5

研究会Temp
テキストボックス
－21－

Equations 3. With the same set-up as Equations 1, the following identities hold.´6=?> ÈÊÙZÈ*)h×Ü× Ú2¯�± öx®²¯C°ÒÈ ´6=F> ÈãÙZÈ0)ñ×#Ý�)ñ×bdý de $�f�g ´6=?> ÈÊÙZÈ*)ñ× ÝîØä×Ü×�h´6=?> ÈÊÙZÈ*)h×#Ý¡Ø÷× Ú2¯�± öx®²¯C°ÒÈÜå�B�¹�B Ú e ���k�� B8�îÝ�B8� é l ´6=F> ÈãÙ È*) � ×#Ý¡Ø÷× if ØZé5) �´6=F> ÈãÙ È*) � ×#Ý�) � 1.)ñ× otherwise m ïè×�h´6=?> ÈÊÙZÈ*)h×#Ý�)ñ× ÚH¯j±Üöx®.¯�°¶ÈÜåCBú¹�B:Ú e ��(k�� B � Ý�B � é ´6=F> ÈãÙ È*) � ×#Ý�) � 1.)ñ×¡ïþ×ih´6=?> ÈÊÙZÈ*) � ×#Ý�) � 1.)ñ× Ú2¯�± öx®.¯�°ÒÈ ´6=F>�ÈãÙZÈ0) � × ÝI) � ×.dý de 7 f�g o pµg ´6=F> ÈãÙZÈ0) � × Ýîç¶×Ü×��
Since the elements of the set on the left hand side have the same size in each equation, the cardinality of the

set can be computed in the same order as Algorithm #IndSets. For example, ¹ ´6=F> ÈãÙ È*)ñ× ×ó¹ can be computed as
follows.

1. à"@ ÚH� ; ¶·@ ÚT®²¯C°ÒÈ ´6=F> ÈãÙZÈ0)ñ×#Ý�)ñ×Ìý e $�f�g ´6=?>�ÈãÙZÈ0)ñ×#Ý¡Ø÷× × ;
2. if the size of a member of ´6=?> ÈÊÙZÈ*)h×#Ý�)ñ× is equal to ¶ , then àZ@ ÚTà t ss ´6=?> ÈÊÙZÈ*)ñ× ÝI)h×�ss ;3. for each ØZé3) , if the size of a member of ´6=F>�ÈãÙZÈ0)ñ×#Ý¡Ø÷× is equal to ¶ , then àL@ ÚTà t ¹ ´6=?> ÈÊÙZÈ*)h×#Ý¡Ø÷×ó¹ ;
4. output à .

Therefore we have the following theorem.

Theorem 3. The number of maximum independent sets in a chordal graph Ù Ú ÈÜº ÝîßJ× can be computed in�ZÈ#¹ º4¹ t ¹ ß4¹ × time.

6 Hardness of Counting the Maximal Independent Sets

So far, we have provided efficient algorithms for counting the number of independent sets, and so on, in a chordal
graph. In this section, we turn to hardness results. First we consider the following counting problem: given a
chordal graph Ù , count the number of maximal independent sets of Ù . Although finding a maximal independent
set is easy even in a general graph, we show that the counting version of the problem is actually hard.

Theorem 4. Counting the number of maximal independent sets in a chordal graph is #P-complete.

The proof is based on a reduction from the counting problem of the number of set covers. Let ¸ be a finite set,
and >ú¿H¹�º be a family of subsets of ¸ . A set cover of ¸ is a subfamily »&¿�> such that

e » ÚH¸ . It is known
that, given a finite set ¸ and a set family > , counting the number of set covers of ¸ is #P-complete [14].

Proof of Theorem 4. The membership in #P of the problem is immediate. To show the #P-hardness, we reduce the
problem to count the set covers to counting the maximal independent sets in a chordal graph in polynomial time.

Let ¸ be a finite set and >ú¿]¹ º be a family of subsets of ¸ , and consider them as an instance of the counting
problem of set covers. Let us put >H@ Ú å�B � Ý������ ÝIB8¼¡ï . From ¸ and > , we construct a chordal graph Ù Ú ÈÜº ÝîßJ× in
the following way.

We set º½@ Ú2¸&ýb> ý.>?- , where >F-?@ Úëå�B�-� Ý������¡ÝIB�-¼ ï . Namely, >?- is a copy of > . Now, we draw edges. There
are three kinds of edges. (1) We connect every pair of vertices in ¸ by an edge. (2) For every Búé5> , we connect¾ é.¸ and B by an edge if and only if ¾ é5B . (3) For every B é.> , we connect B and B�- (a copy of B) by an edge.
Formally speaking, we define ß Úëå÷å ¾ Ý�¿Ôï~¹ ¾ Ý�¿Zé5¸:ï¾ý:å÷å ¾ Ý�Blï~¹ ¾ é5¸ñÝ�B é5>ÄÝ ¾ é9B ï ýhå÷åCB Ý�B�- ï ¹xB é.> ï .
This completes our construction. It is easy to see that this construction can be done in polynomial time.

First, let us check that the constructed graph Ù is indeed chordal. Let ' be a cycle of length at least four in Ù .
Since the degree of a vertex in >?- is one, they do not take part in any cycle of Ù . So forget them. Since > is an
independent set of Ù , vertices in > cannot appear along ' in a consecutive manner. Then, since the length of '
is at least four, there have to be at least two vertices of ¸ which appear in ' not consecutively. Then, these two
vertices give a chord since ¸ is a clique of Ù . Hence, Ù is chordal.

Now, we look at the relation between the set covers of ¸ and the maximal independent sets of Ù . Let ø be a
maximal independent set of Ù . We distinguish two cases.
Case 1. Consider the case in which ø contains a vertex ¾ éE¸ . Since ¸ is a clique of Ù , ø cannot contain any
other vertices of ¸ . Let ÙÁÀ Ú ÙPM à á ÿ ¾ � . (Remember that à á ÿ ¾ � is the closed neighborhood of ¾ , i.e., the set
of vertices adjacent to ¾ in Ù and ¾ itself.) By the construction, we have that º~ÈÊÙ À ×ÄÚ å�BTéE>�¹ ¾ �éOBlïùý3>?- ,
and ßZÈÊÙ À ×JÚ åäåCB Ý�B�- ï ¹8B éO>ÄÝ ¾ �é]Blï . Then, a vertex BR- éO>?- such that ¾ éWB is an isolated vertex of Ù À .
Therefore, this vertex must belong to ø by the maximality of ø . For each B é.> such that ¾ �é5B , ø must contain
either B or B�- , but not both. This means that the number of maximal independent sets containing ¾ is exactly¹DÂ Ã�Ä f � Â À �f ÄDÅ�Â .

6

研究会Temp
テキストボックス
－22－

Case 2. Consider the case in which ø contains no vertex of ¸ . Then, for each BÀéE> , due to the maximality, ø
must contain either B or B�- . Furthermore, ø51`> has to be a set cover of ¸ (otherwise an element of ¸ not covered
by øW13> could be included in ø). Hence, the number of maximal independent sets containing no vertex of ¸ is
equal to the number of set covers of ¸ .

To summarize, we obtained that the number of maximal independent sets of Ù is equal to the number of set
covers of ¸ plus u À f º ¹DÂ Ã�Ä f � Â À �f ÄnÅ�Â . Since the last sum can be computed in polynomial time, this concludes the
reduction. ;<

As a variation, let us consider the problem to count the number of minimum maximal independent sets in a
given chordal graph. Note that a minimum maximal independent set in a chordal graph can be found in linear time
[5]. In contrast to that, it is hard to count the number of minimum maximal independent sets in a chordal graph, as
the following theorem tells.

Theorem 5. Counting the number of minimum maximal independent sets in a chordal graph is #P-complete.

Proof. We use the same reduction as in the proof of Theorem 4. Look at the case distinction in that proof again.
The maximal independent sets arising from Case 1 have ¹ > ¹ t ! elements, while the maximal independent sets
from Case 2 have ¹ > ¹ elements. Therefore, the minimum maximal independent sets of the graph Ù constructed
in that proof are exactly the maximal independent sets arising from Case 2, which precisely correspond to the set
covers of ¸ . ;<
7 Hardness of Finding a Minimum Weight Maximal Independent Set

In this section, we consider an optimization problem to find a minimum weight maximal independent set in a
chordal graph. Here, the weight of a vertex subset is the sum of the weights of its vertices. Notice that there is a
linear-time algorithm when the weight of each vertex is zero or one [5]. On the contrary, we show that the problem
is actually hard when the weight is arbitrary.

Theorem 6. Finding a minimum weight maximal independent set in a chordal graph is NP-hard.

The proof is similar to what we saw in the previous section. We use the optimization version of the set cover
problem, which is known to be NP-hard.

Proof of Theorem 6. For a given instance of the minimum set cover problem, we use the same construction of a
graph Ù as in the proof of Theorem 4. We define a weight function Æ as follows: Æ È ¾ ×�@ ÚÇ¹ ¹ >`¹ t ! for every¾ é.¸ ; Æ È*B ×A@ ÚH¹ for every B é²> ; Æ8È*B - ×S@ Ú^! for every B - é.> - . This completes the construction.

Now, observe that > is a maximal independent set of the constructed graph Ù , and the weight of > is ¹ ¹ >`¹ .
Therefore, no element of ¸ takes part in any minimum weight maximal independent set of Ù . Then, from the
discussion in the proof of Theorem 4, if ¶ is a maximal independent set of Ù satisfying ¶È1,¸!ÚP/ , then ¶É1�>
is a set cover of ¸ . The weight of ¶ is ¹ ¶J1�>`¹ t ¹ > ¹ . Therefore, if ¶ is a minimum weight independent set
of Ù , then ¶ minimizes ¹ ¶Ê1b>`¹ , which is the size of a set cover. Hence, ¶Ë1Q> is a minimum set cover. This
concludes the reduction. ;<

We can further show the hardness to get an approximation algorithm running in polynomial time. The precise
statement is as follows.

Theorem 7. There is no randomized polynomial-time algorithm for finding a minimum weight maximal inde-
pendent set in a chordal graph with approximation ratio ´¶µ¸·J¹ º ¹ , for some fixed constant ´ , unless ¼�½ ¿
Á¶ÂÄÃÆÅ4Ç¶ÈÊÉ ËÎÍÆÏ Ð¡ÑÒÏ ÐîÑ¦ÓÖÕ × .

Remark that Á¶Â Ã¸Å6ÇÌÈ��î× is the class of languages which have a randomized algorithm running in expected time� with zero error.
To prove Theorem 7, we use the following restricted version of the minimum set cover problem: given a finite

set ¸ and a family >À¿�¹jº such that ¹ Ì�1GÍ4¹Î�½! for every Ì~Ý�Í é9> , find a minimum set cover of ¸ . We call
this variant the minimum set cover problem with intersection 1.

Anil Kumar, Arya, & Ramesh showed that the minimum set cover problem with intersection 1 cannot be
approximated by any randomized polynomial-time algorithm with approximation ratio ´�-#µÆ·~¹ ¸ü¹ , for some constant
´�- , unless ¼�½ ¿{Á¶Â Ã¸Å6Ç¶ÈãÉÌËíÍÆÏ Ð¡ÑÒÏ Ð¡ÑÔÓÖÕÊ× [13]. We use this fact in our proof.

Before proving the theorem, we need a lemma which bounds the size of > in an instance of the minimum set
cover problem with intersection 1. This is an easy special case of a theorem by Frankl & Wilson, which is well
known in extremal combinatorics [6]. Hence we are not going to prove it.

7

研究会Temp
テキストボックス
－23－

Lemma 4. Let ¸ be a finite set and >ú¿]¹ º be a family of subsets of ¸ such that ¹ ÌO1.Í4¹��^! for every Ì~Ý�Íëé²> .
Then, ¹ >`¹���¹ ¸ü¹ t ! .

Now we are ready to prove Theorem 7.

Proof of Theorem 7 (sketch). We basically follow the proof of Theorem 6, but this time, we use the minimum set
cover problem with intersection 1. We also change the weight on the vertices. First set ÏH@ ÚÇÐ ´¶µÆ·ÌÈ0Ñ ¹ ¸ü¹ t ¹ä×(Ò ¹ >`¹and define a weight Æ as follows: Æ È ¾ × Ú:¹xÏ & t ! for every ¾ éO¸ ; Æ È*B × Ú:¹xÏ for every B�éO> ; Æ È*B - × Ú�!
for every B�-�éE>?- . Note that the number of vertices in our graph Ù is ¹ º ¹¦Ú1¹ ¸ü¹ t ¹ ¹ >`¹8�^Ñ ¹ ¸ü¹ t ¹ by Lemma
4. Then, we can argue that a maximal independent set in Ù with weight at least ´�- µÆ·8¹ º ¹ times the weight of an
optimum gives a set cover of size at least ´¶µÆ·~¹ ¸ü¹ times the size of an optimum for a given instance of the minimum
set cover problem with intersection 1. Then, this implies ¼�½ ¿ûÁ¶ÂÄÃÆÅ4Ç ÈãÉÌËíÍÆÏ Ð¡ÑÒÏ Ð¡ÑÔÓÖÕÊ× [13]. ;<

Remark that “ ½DÚ ¼¾½ ” implies “ ¼�½�¿òÁ¶ÂÄÃÆÅ4Ç¶ÈÊÉ ËÎÍÆÏ Ð¡ÑÒÏ ÐîÑ¦ÓÖÕ × ,” but the converse is not known to be true. So,
Theorems in this section are independent.

8 Enumeration

Due to space limitation, details of the following theorem are omitted here:

Theorem 8. All independent sets in a chordal graph can be enumerated in constant time for each on average. ;<
Similar algorithms can be developed for enumerating maximum independent sets, and independent sets of size� . The computation time of these algorithms can be reduced to constant time for each independent set.

References

1. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the Desirability of Acyclic Database Schemes. Journal of the ACM,
30:479–513, 1983.

2. J.R.S. Blair and B. Peyton. An Introduction to Chordal Graphs and Clique Trees. In Graph Theory and Sparse Matrix
Computation, volume 56 of IMA, pages 1–29. (Ed. A. George and J.R. Gilbert and J.W.H. Liu), Springer, 1993.

3. A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, 1999.
4. P. Buneman. A Characterization of Rigid Circuit Graphs. Discrete Mathematics, 9:205–212, 1974.
5. M. Farber. Independent Domination in Chordal Graphs. Operations Research Letters, 1(4):134–138, 1982.
6. P. Frankl and R.M. Wilson. Intersection theorems with geometric consequences. Combinatorica, 1:357–368, 1981.
7. D.R. Fulkerson and O.A. Gross. Incidence Matrices and Interval Graphs. Pacific J. Math., 15:835–855, 1965.
8. F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Indepen-

dent Set of a Chordal Graph. SIAM Journal on Computing, 1(2):180–187, 1972.
9. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

10. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics 57. Elsevier, 2nd edition,
2004.

11. M.C. Golumbic and M. Lipshteyn. Chordal Probe Graphs. Discrete Applied Mathematics, to appear.
12. P.N. Klein. Efficient Parallel Algorithms for Chordal Graphs. SIAM Journal on Computing, 25(4):797–827, 1996.
13. V.S. Anil Kumar, Sunil Arya, and H. Ramesh. Hardness of Set Cover with Intersection 1. In ICALP 2000, pages 624–635.

Lecture Notes in Computer Science Vol. 1853, Springer-Verlag, 2000.
14. J.S. Provan and M.O. Ball. The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected.

SIAM Journal on Computing, 12:777–788, 1983.
15. D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic Aspects of Vertex Elimination on Graphs. SIAM Journal on Com-

puting, 5(2):266–283, 1976.
16. J.P. Spinrad. Efficient Graph Representations. American Mathematical Society, 2003.
17. R.E. Tarjan and M. Yannakakis. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hyper-

graphs, and Selectively Reduce Acyclic Hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.

8

研究会Temp
テキストボックス
－24－

