
劣モジュラ多面体内直線探索問題に対する
強多項式時間アルゴリズム

永野 清仁1

Abstract

本稿では劣モジュラ関数最小化の完全に組合せ的な強多項式時間アルゴリズムをもとにし，Megiddo
により提案されたパラメトリック・サーチ法を枠組みとして用いることで，劣モジュラ多面体内の直
線探索を行う強多項式時間アルゴリズムを与える．

A Strongly Polynomial Algorithm for
Line Search in Submodular Polyhedra

Kiyohito NAGANO1

Abstract

This paper presents a strongly polynomial time algorithm for line search in submodular poly-
hedra with the aid of a fully combinatorial algorithm for submodular function minimization as a
subroutine. The algorithm is based on the parametric search method proposed by Megiddo.

1 Introduction

Let V be a finite set with |V | = n. Let f be a submodular function on the subsets of V , that is,

f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y), ∀X, Y ⊆ V. (1)

Iwata, Fleischer and Fujishige [6] and Schrijver [10] independently presented combinatorial, strongly
polynomial time algorithms for submodular function minimization. Iwata [4] presented a fully com-
binatorial algorithm, which uses only additions, subtractions, comparisons, and the oracle calls for
function values. For a vector x ∈ RV and u ∈ V , we denote by x(u) the component of x on u. For a
submodular function f : 2V → R with f(∅) = 0, the submodular polyhedron P(f) is defined by

P(f) = { x ∈ RV |x(X) ≤ f(X) (∀X ⊆ V) } , (2)

where x(X) =
∑

u∈X x(u). In this paper we consider the following problem:

Problem Line Search in Submodular Polyhedra (LSSP)
Instance: A submodular function f : 2V → R with f(∅) = 0, x0 ∈ P(f) and a ∈ RV .
Task: Find t∗ = max{ t ∈ R |x0 + ta ∈ P(f)}.

An example of Problem LSSP is illustrated in Fig. 1.
If a ∈ RV

−, Problem LSSP does not have an optimal solution. Hence throughout we assume that
a /∈ RV−. We may assume f(X) ≥ 0, ∀X ⊆ V , and x0 = 0, by resetting f(X) := f(X)− x0(X) for all
X ⊆ V . So throughout we assume that f is nonnegative, f(∅) = 0 and x0 = 0. It is easy to see that
the optimal value t∗ of Problem LSSP is equal to min{f(X)/a(X) |X ⊆ V, a(X) > 0}. So Problem
LSSP can be regarded as a minimum-ratio problem.

The Newton method (Section 3) is a simple approach to Problem LSSP. If a is nonnegative, it is
shown that the number of iterations of the Newton method is at most n + 1 and Problem LSSP can
be solved in strongly polynomial time. (See Fujishige [2, §7.2] for details.) If a ∈ RV and a /∈ RV

+,
however, only a weakly polynomial running time bound is given, and it is left open to verify if the
Newton method for Problem LSSP runs in strongly polynomial time.

1東京大学大学院 情報理工学系研究科 数理情報学専攻, Department of Mathematical Informatics, Graduate School of
Information Science and Technology, The University of Tokyo. E-mail: nagano@simplex.t.u-tokyo.ac.jp

–1–E

研究会Temp
テキストボックス
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp
テキストボックス
2004－AL－96　（2）

研究会Temp
テキストボックス
2004／7／27

研究会Temp
テキストボックス
－9－

P(f)

O

t∗a

x(1)

x(2)

a

Figure 1: Problem LSSP (n = 2)

In this paper, we propose an algorithm for Problem LSSP, which is quite different from the Newton
method. The algorithm uses a fully combinatorial algorithm for submodular function minimization
[4, 5] as a subroutine, within the framework of the parametric search method proposed by Megiddo
[7]. It solves Problem LSSP in strongly polynomial time.

The paper is organized as follows. In Section 2, we provide preliminaries for the following sections.
In Section 3, we describe the Newton method using an algorithm for submodular function minimization
as a subroutine. In Section 4, we present a strongly polynomial time algorithm for Problem LSSP
using a fully combinatorial algorithm for submodular function minimization as a subroutine within
the framework of the parametric search method proposed by Megiddo.

2 Preliminaries

Let V be a finite nonempty set and |V | = n. A family D ⊆ 2V is said to be a ring family if it satisfies

X, Y ∈ D ⇒ X ∪ Y, X ∩ Y ∈ D.

Let f : 2V → R be a submodular function and let arg min f denote a family of all the minimizers
of f . It is not difficult to see that arg min f forms a ring family. Suppose that X, Y ∈ arg min f
and f(X) = f(Y) = α. Then, using submodularity (1), we have f(X ∪ Y) + f(X ∩ Y) ≤ 2α. Since
f(X ∪ Y) ≥ α and f(X ∩ Y) ≥ α, this implies f(X ∪ Y) = f(X ∩ Y) = α, that is, X ∪ Y, X ∩ Y ∈
arg min f . As arg min f is closed under union and intersection, there exists a minimal minimizer
Xmin =

⋂
{X |X ∈ arg min f} ∈ arg min f and exists a maximal minimizer Xmax =

⋃
{X |X ∈

arg min f} ∈ arg min f .
Let f : 2V → R be a submodular function with f(∅) = 0 and let x ∈ P(f). A subset X ⊆ V is

said to be a tight set at x if x(X) = f(X). We denote the family of tight sets at x by D(x). Namely,

D(x) = {X ⊆ V |x(X) = f(X)}.

For any y ∈ RV , a function fy : 2V → R defined by fy(X) = f(X) − y(X) (X ⊆ V) is obviously a
submodular function. As x ∈ P(f), fx(X) ≥ 0 , ∀X ⊆ V , and fx(∅) = 0. Thus the minimum value of
fx is 0, which implies for any X ⊆ V ,

X ∈ D(x) ⇐⇒ X ∈ arg min fx .

So arg min fx = D(x), therefore D(x) forms a ring family. Note that ∅ ∈ D(x).
Let U be a finite set. A function g : D → R is said to be a modular function on a ring family

D ⊆ 2U if it satisfies

g(X) + g(Y) = g(X ∪ Y) + g(X ∩ Y), ∀X, Y ∈ D.

For a vector b ∈ RU we denote b(X) =
∑

u∈X b(u) for all X ⊆ U , so b can be regarded as a modular
function on 2U . For a ring family D, a function bD : D → R defined by

bD(X) =
∑
u∈X

b(u) (X ∈ D) (3)

–2–E

研究会Temp
テキストボックス
－10－

is a modular function on D.

As an instance of Problem LSSP, without loss of generality, we assume that f is nonnegative,
f(∅) = 0, x0 = 0, and a /∈ RV

−. We explain that the optimal value t∗ of LSSP(f, 0, a) is nonnegative
and finite. The optimal value of LSSP(f, 0, a) is

t∗ = max{t | ta ∈ P(f)}. (4)

Since 0 ∈ P(f), t∗ is nonnegative. Let A ⊆ V be a subset which satisfies a(A) > 0. If t > f(A)/a(A),
then ta(A) > f(A) and hence ta /∈ P(f). So t∗ ≤ f(A)/a(A), therefore t∗ is finite.

For any t ∈ R we consider deciding whether ta ∈ P(f) or ta /∈ P(f). Since, for any x ∈ RV ,
f(∅) − x(∅) = 0, we have

x ∈ P(f) ⇐⇒ fx(X) = f(X) − x(X) ≥ 0, ∀X ⊆ V ,

⇐⇒ min{fx(X) |X ⊆ V } = 0,

and if x can be represented as ta, using ta(∅) = 0,

ta ∈ P(f) ⇐⇒ min{fta(X) |X ⊆ V } = 0,

ta /∈ P(f) ⇐⇒ min{fta(X) |X ⊆ V } < 0.
(5)

So we can decide whether ta ∈ P(f) or ta /∈ P(f) by minimizing fta.
Now, for any t ≥ 0, let us consider the conditions of “t < t∗”, “t = t∗” and “t > t∗”. See Figure 2

to understand each condition intuitively.

Case 1 0 ≤ t < t∗

a0
ta

Ex. 1. 3Ex. 1. 2Ex. 1. 1

0 taa

Ex. 2. 2Ex. 2. 1

Case 3

Ex. 3. 1

t∗ < tCase 2 t = t∗

0 taa

ta = 0

a

a0 ta
a0 ta

Figure 2: Relation between t and t∗

It follows from (4), (5), and the convexity of P(f) that

0 ≤ t ≤ t∗ ⇐⇒ t ≥ 0 and min{fta(X) |X ⊆ V } = 0,

t∗ < t ⇐⇒ t ≥ 0 and min{fta(X) |X ⊆ V } < 0.
(6)

The condition (6) is not sufficient to compare t with t∗, because we cannot decide whether t < t∗

or t = t∗. We consider the condition of t = t∗. Remark that t = t∗ and ta ∈ ∂ P(f) are not
equivalent (see Ex. 1. 2 and Ex. 1. 3 in Figure 2), where ∂ P(f) is a “boundary” of P(f), that is,
∂P(f) = { x ∈ P(f) | ∃X ∈ 2V \{ ∅ } s. t. x(X) = f(X)}. Equation (4) directly implies that

t = t∗ ⇐⇒ ta ∈ P(f), ∀ε > 0 (t + ε)a /∈ P(f),
⇐⇒ ta ∈ P(f), ∃X ⊆ V s. t. ∀ε > 0 εa(X) > fta(X)(≥ 0),
⇐⇒ ta ∈ P(f), ∃X ∈ D(ta) s. t. a(X) > 0,

⇐⇒ ta ∈ P(f), max{a(X) |X ∈ D(ta)} > 0. (7)

For ta ∈ P(f), D(ta) always includes ∅, so max{a(X) |X ∈ D(ta)} ≥ 0. Thus using (6) and (7), we

–3–E

研究会Temp
テキストボックス
－11－

obtain

0 ≤ t < t∗ ⇐⇒

⎧⎪⎨
⎪⎩

t ≥ 0,

min{fta(X) |X ⊆ V } = 0,

max{a(X) |X ∈ D(ta)} = 0,

t = t∗ ⇐⇒

⎧⎪⎨
⎪⎩

t ≥ 0,

min{fta(X) |X ⊆ V } = 0,

max{a(X) |X ∈ D(ta)} > 0,

t∗ < t ⇐⇒
{

t ≥ 0,

min{fta(X) |X ⊆ V } < 0.

(8)

3 The Newton method for Problem LSSP

The Newton method is a simple approach to Problem LSSP with weakly polynomial running time
bound. It is left open to verify if the Newton method runs in strongly polynomial time.

The Newton method for Problem LSSP uses an algorithm for submodular function minimization as
a subroutine. Let f : 2V → R be a submodular function and |V | = n. Let γ denote the upper bound
on the time to compute the function value of f . Combinatorial strongly polynomial time algorithms
for submodular function minimization are given independently by Iwata, Fleischer and Fujishige (IFF)
[6] and Schrijver [10]. Iwata [5] described an improved variant of the IFF algorithm and this algorithm
achieves the best known bound on the running time, O(γ(n6 log n) + n7 log n).

Let Algorithm SFM be some algorithm which finds a minimizer of a submodular function f : 2V →
R with O(T O(n)) oracle calls for function evaluation and O(T A(n)) arithmetic operations where T O(n)
and T A(n) are some polynomials in n, for example, T O(n) = n6 log n and T A(n) = n7 log n. For
simplicity, we assume n T O(n) = O(T A(n)). Let T (n) = γ T O(n) + T A(n). The running time of
Algorithm SFM is O(T (n)).

Algorithm SFM (Submodular Function Minimization)
Input: A submodular function f : 2V → R.
Output: A minimizer of f .
Operation: Oracle calls for function evaluation, arithmetic operations.
Running Time: O(T (n)) (T (n) = γ T O(n) + T A(n)).

We define a function h : R → R as
h(t) = min

X⊆V
{fta(X)} = min

X⊆V
{f (X)− ta(X)} . (9)

It is obvious that h is a concave function. As 0 ∈ P(f), h(0) = 0. Since fta(∅) = 0 for any t ∈ R,
h(t) ≤ 0 for any t ∈ R. Using (4), (5) and (9), we have t∗ = max{ t ∈ R |h(t) = 0}. The graph of h is
illustraited in Figure 3 by a thick curve.

For any t ∈ R we can obtain the value h(t) by running SFM(f − ta). For each v ∈ V we compute
ta(v) in advance. A function evaluation of f − ta needs a function evaluation of f and at most n
subtractions. Thus the time complexity of one iteration in the Newton method is O((γ + n) T O(n) +
T A(n)). Since n T O(n) = O(T A(n)), f − ta can be minimized in O(T (n)) time.

The Newton method is described below. The process of Newton method is illustrated in Figure 3.

The Newton method for Problem LSSP
Step 0: Find a set X0 ⊆ V such that a(X0) > 0. Set t1 := f(X0)/a(X0) (≥ t∗). Set i := 1.
Step 1: Obtain Xi ⊆ V such that h(ti) = f(Xi) − ta(Xi) by running SFM(f − tia).
Step 2: If h(ti) = 0, return t∗ := ti and stop. If h(ti) < 0 then set ti+1 := f(Xi)/a(Xi) and

i := i + 1. Go to Step 1.

If a ∈ RV
+, it is known that the number of iterations of the Newton method for Problem LSSP

is at most n. (See Fujishige [2, §7.2] for details.) It is left open to verify if the Newton method for
Problem LSSP runs in a strongly polynomial number of iterations. An analysis based on Radzik [9]

–4–E

研究会Temp
テキストボックス
－12－

t

h(t)

0

t∗ = t4

f(X1) − ta(X1)

t1t2t3

f(X2) − ta(X2)

f(X3) − ta(X3)

Figure 3: h(t)

gives a bound on the number of iterations of the Newton method for a special class of the LSSP
problem with an integer-valued submodular function f and a integer vector a.

Theorem 3.1 Let f be a integer-valued nonnegative submodular function, and let a be a integer
vector which satisfies a /∈ RV

−. If maxX⊆V |f(X)| ≤ U1, maxX⊆V |a(X)| ≤ U2, the Newton method
for LSSP(f, 0, a) runs in O(log U1 + log U2) iterations.

4 A strongly polynomial algorithm

We present a combinatorial strongly polynomial time algorithm for Problem LSSP. We use a fully com-
binatorial strongly polynomial algorithm for submodular function minimization [4, 5] as a subroutine
and the parametric search method proposed by Megiddo [7].

Framework

Later we will describe two procedures for Comparison with the Optimal Value; Procedure COV and
Procedure L-COV. For any given nonnegative value t ≥ 0, we can tell whether “t < t∗”, “t = t∗”
or “t > t∗” by running COV(t) in O(γ T O

COV(n) + T A
COV(n)) time, where T O

COV(n) and T A
COV(n) are

some polynomials in n. Procedure L-COV is a similar procedure. For any given t ≥ 0, once ta(v) is
computed for each v ∈ V , it compares t to t∗ with O(T O

L-COV(n)) oracle calls for function evaluation of
f , and O(T FC

L-COV(n)) fully combinatorial operations, that is, additions, subtractions and comparisons,
where T O

L-COV(n) and T FC
L-COV(n) are some polynomials in n. Moreover, if t = t∗, Procedure L-COV

returns a subset X ⊆ V such that f(X) = t∗a(X) and a(X) > 0.
By running COV(0) we can tell whether t∗ = 0 or t∗ > 0. So we can assume that t∗ > 0. If we

knew the value of t∗ and run L-COV(t∗), then it would return a subset X ⊆ V s. t. f(X) = t∗a(X)
and a(X) > 0, that is, t∗ = f(X)/a(X). We try to run L-COV(t∗) without knowing the value of t∗. If
we can run L-COV(t∗) successfully without knowing the value of t∗, we can obtain t∗ by f(X)/a(X)
using X ⊆ V s. t. f(X) = t∗a(X) and a(X) > 0. The point is how to run L-COV(t∗) successfully
without knowing the value of t∗. To achieve this goal, we use Megiddo’s parametric search method.

Megiddo’s parametric search

We give a strongly polynomial time algorithm for Problem LSSP using the parametric search technique
of Megiddo [7]. We explain this technique in the following paragraphs.

Operations used in running L-COV(t∗) are additions, subtractions, comparisons, oracle calls for
function evaluation of f , and only n multiplications to obtain t∗a(v) for each v ∈ V . So each value
which appears in running L-COV(t∗) can be represented as the form p − qt∗ where values p, q are
known values and not functions of t∗. We consider trying to run L-COV(t∗) without knowing the
value of t∗ with all the values represented as linear functions of t∗. When values are represented as
linear functions of t∗, each operation is done as follows:

–5–E

研究会Temp
テキストボックス
－13－

An addition : (p1 − t∗q1) + (p2 − t∗q2) → (p1 + p2) − t∗(q1 + q2)
A subtraction : (p1 − t∗q1) − (p2 − t∗q2) → (p1 − p2) − t∗(q1 − q2)
A comparison : (p1 − t∗q1) ? (p2 − t∗q2) → ? = ‘>’ or ‘=’ or ‘<’

Even though t∗ is not known additions and subtractions do not change the assymptotic running time
of the procedure. A comparison of two linear functions of t∗ is not so easy as the other operations.

We now consider comparing two linear functions of t∗. Let p1, p2, q1, q2 be known values. Let us
consider the comparison of p1− t∗q1 and p2− t∗q2. Setting p = p1−p2, q = q1− q2, we want to decide
whether p − t∗q > 0, p − t∗q = 0 or p − t∗q < 0. Note that t∗ > 0.

If p q ≤ 0, it is easy to decide the sign of p − t∗q using t∗ > 0: p = 0 and q = 0 =⇒ p − t∗q = 0,
p ≥ 0, q ≤ 0, and (p, q) �= 0 =⇒ p − t∗q > 0, p ≤ 0, q ≥ 0, and (p, q) �= 0 =⇒ p − t∗q < 0.

Now let us assume that p q > 0. If p > 0 and q > 0, then p/q > 0, and hence p − t∗q = 0 ⇐⇒
p/q = t∗, p − t∗q > 0 ⇐⇒ p/q > t∗, p − t∗q < 0 ⇐⇒ p/q < t∗. If p < 0 and q < 0, then p/q > 0
and hence p − t∗q = 0 ⇐⇒ p/q = t∗, p − t∗q > 0 ⇐⇒ p/q < t∗, p − t∗q < 0 ⇐⇒ p/q > t∗.
This analysis implies that we can obtain the sign of p − t∗q if we can decide p/q > t∗, p/q = t∗ or
p/q < t∗. So a comparison of two linear functions of t∗ can be done by running Procedure COV if
p q > 0. Thus we can run L-COV(t∗) successfully without knowing the value of t∗. We describe below
Algorithm LSSP, which solves Problem LSSP within Megiddo’s parametric search method.

Algorithm LSSP
Step 1: Decide whether “t∗ = 0” or “t∗ > 0” by running COV(0). If t∗ = 0, then stop.
Step 2: Run L-COV(t∗) without knowing the value of t∗ with all the values represented

as linear functions of t∗. Each comparison of two linear functions of t∗ en-
counterd during the computation can be evaluated (if necessary) by running
Procedure COV. We can obtain X ⊆ V s. t. f(X) = t∗a(X) and a(X) > 0.

Step 3: Return t∗ := f(X)/a(X).

We will show that Algorithm LSSP solves Problem LSSP in strongly polynomial time.

Comparison of t with t∗

Now let us consider describing Procedure COV and Procedure L-COV using (8). As a preparation
for describing them, we introduce four algorithms; Algorithm FC-SFM, Algorithm SFMmin, Algorithm
FC-SFMmin, and Algorithm MFM.

An algorithm for submodular function minimization is said to be a fully combinatorial strongly
polynomial time algorithm if the total number of oracle calls for function evaluation and fully combi-
natorial operations, that is, additions, subtractions and comparisons, is bounded by some polynomial
in n. Iwata [4] presented a fully combinatorial strongly polynomial time algorithm for submodular
function minimization as a variant of the IFF algorithm [6], and later, Iwata [5] described an improved
algorithm, which runs in O(γ(n8 log2 n) + n9 log2 n) time.

Let Algorithm FC-SFM be some algorithm which finds a minimizer of a submodular function
f : 2V → R with O(T O

FC(n)) oracle calls for function evaluation of f and O(T FC
FC (n)) fully combinatorial

operations. For example, T O
FC(n) = n8 log2 n and T FC

FC (n) = n9 log2 n . For simplicity, we assume
n T O

FC(n) = O(T FC
FC (n)). Let TFC(n) = γ T O

FC(n) + T FC
FC (n).

Algorithm FC-SFM (Fully Combinatorial algorithm for SFM)
Input: A submodular function f : 2V → R.
Output: A minimizer of f .
Operation: Oracle calls for function evaluation, fully combinatorial operations.
Running Time: O(TFC(n)) (TFC(n) = γ T O

FC(n) + T FC
FC (n)).

Now we consider finding a minimal minimizer of f . It is known that the IFF algorithm [6] finds a
maximal minimizer. And similarly, Iwata’s combinatorial strongly polynomial time algorithm [5] and
Iwata’s fully combinatorial strongly polynomial time algorithm [4, 5], which are improved variants
of the IFF algorithm, find maximal minimizers. If f is a submodular function, then a function f ′

defined as f ′(X) = f(V \X) (X ⊆ V) is also a submodular function. So we can construct a (fully)

–6–E

研究会Temp
テキストボックス
－14－

combinatorial strongly polynomial algorithm which finds a minimal minimizer. Note that an oracle
call for function evaluation of f ′ can be done in O(γ + n) time.

Let Algorithm SFMmin be some combinatorial strongly polynomial time algorithm which finds a
minimal minimizer of a submodular function and let Algorithm FC-SFMmin be some fully combinatorial
strongly polynomial time algorithm which finds a minimal minimizer of a submodular function. For
simplicity we assume the running time of SFMmin is O(T (n)) and that of FC-SFMmin is O(TFC(n)).
Algorithm SFMmin

Input: A submodular function f : 2V → R.
Output: The minimal minimizer of f .
Operation: Oracle calls for function evaluation, arithmetic operations.
Running Time: O(T (n)) (T (n) = γ T O(n) + T A(n)).

Algorithm FC-SFMmin

Input: A submodular function f : 2V → R.
Output: The minimal minimizer of f .
Operation: Oracle calls for function evaluation, fully combinatorial operations.
Running Time: O(TFC(n)) (TFC(n) = γ T O

FC(n) + T FC
FC (n)).

Let U be a finite set and let D ⊆ 2U be a ring family. For a modular function g : D → R with
g(∅) = 0, g can be expressed as g(X) = b(X), ∀X ∈ D, using some vector b ∈ RU . Let b ∈ RU ,
and let us consider minimizing a modular function bD : D → R defined as (3). We can assume
w.l.o.g. {∅, U} ⊆ D. We need to have some infomation on D in advance. We assume for each v ∈ U
the minimal set Mv ∈ D containing v is known. (This is enough information about D. See, for
example, Fujishige [2, §3.2].) Using a result of Picard [8] the modular function minimization problem
can be reduced to the minimum cut problem of a network with O(|U |) vertices in O(|U |2) time, and
Cunningham [1] showed the equivalence between the modular function minimization problem and the
minimum cut problem. Using, for example, the Goldberg-Tarjan algorithm [3] for solving the minimum
cut problem, bD can be minimized with O(|U |3) fully combinatorial operations. Let Algorithm MFM
be some fully combinatorial strongly polynomial time algorithm which finds a minimizer of a modular
function over a ring family D ⊆ 2U with TMFM(|U |) fully combinatorial operations. For example,
TMFM(|U |) = |U |3. We can assume TMFM(n) = O(T (n)) and TMFM(n) = O(TFC(n)).

Algorithm MFM (Modular Function Minimization)
Input: A vector b ∈ RU , and ring family D ⊆ 2U with {∅, U} ⊆ D (∀v ∈ U , the

minimal set Mv ∈ D containing v is known).
Output: A minimizer of bD.
Operation: Fully combinatorial operations.
Running time: O(TMFM(|U |)).
We describe below Procedure COV, which decide, for any given nonnegative value t ≥ 0, whether

“t < t∗”, “t = t∗” or “t > t∗” using conditions (8) directly. In Step 1, we examine whether ta ∈ B(f)
or not. In Step 2, we obtain information about D(ta). Note that D(ta) always includes ∅ but not
necessarily includes V . Hence, for some v ∈ V , there may not exist a subset X such that v ∈ X and
X ∈ D(ta). In Step 3, we maximize aD(ta) and examine whether t = t∗ or not.

Procedure COV (Comparison with the Optimal Value)
Input: A nonnegative value t ≥ 0.
Output: A decision whether “t < t∗”, “t = t∗” or “t > t∗”.
Operation: Oracle calls for function evaluation, arithmetic operations.
Step 1: Minimize fta by running SFM(fta). If min{fta(X) |X ⊆ V } < 0 then stop (t > t∗).
Step 2: For each v ∈ V , let fv : 2V \{v} → R be a submodular function defined by fv(X) =

fta(X ∪ {v}) (X ⊆ V \{v}). Find (if any) the minimal set Mv ∈ D(ta) = arg min fta

containing v by running SFMmin(fv).
Step 3: Maximize aD(ta) : D(ta) → R by running MFM(−a, D(ta)).

If max{a(X) |X ∈ D(ta)} = 0 then stop (t < t∗).
If max{a(X) |X ∈ D(ta)} > 0 then return the maximizer of aD(ta) and stop (t = t∗).

–7–E

研究会Temp
テキストボックス
－15－

Let us consider the running time of Procedure COV. In Procedure COV we run Algorithm SFM once,
Algorithm SFMmin n times, and Algorithm MFM once. Note that for any given X ⊆ V a function
value fta(X) = f(X) −

∑
v∈X ta(v) can be acquired by a function evaluation of f(X) and at most

n subtractions. (For each v ∈ V we compute ta(v) in advance.) So the running time of SFM(fta)
is O((γ + n) T O(n) + T A(n)). Since n T O(n) = O(T A(n)), fta can be minimized in O(T (n)) time.
Thus, the total running time is O((n + 1)T (n) + TMFM(n)) = O(nT (n)). Let T O

COV(n) = nT O(n),
T A

COV(n) = nT A(n), and let TCOV(n) = nT (n) (= γT O
COV(n) + T A

COV(n)).
Let Procedure L-COV be a procedure which is obtained by replacing Algorithm SFM and Algo-

rithm SFMmin by Algorithm FC-SFM and Algorithm FC-SFMmin respectively in Procedure COV. For
any given t ≥ 0, once ta(v) is computed for each v ∈ V , Procedure L-COV compares t to t∗ with
O(T O

L-COV(n)) oracle calls for function evaluation of f , and O(T FC
L-COV(n)) fully combinatorial opera-

tions, where T O
L-COV(n) = n T O

FC(n) and T FC
L-COV(n) = n T FC

FC (n). And moreover if t = t∗, Procedure
L-COV returns a subset X ⊆ V s. t. f(X) = t∗a(X) and a(X) > 0. Let TL-COV(n) = nTFC(n)
(= γT O

L-COV(n) + T FC
L-COV(n)). The time complexity of Procedure L-COV is O(TL-COV(n)).

Complexity

Theorem 4.1 Algorithm LSSP solves LSSP(f, 0, a) in strongly polynomial time.

Proof The running time in Step 1 is O(TCOV(n)). In Step 2, O(T FC
L-COV(n)) comparisons of linear

functions of t∗ are evaluated and the running time of the other part is O(TL-COV(n)). So the total
running time is O(TCOV(n) + TL-COV(n) + T FC

L-COV(n)TCOV(n)) = O(nTFC(n) + n2 T FC
FC (n)T (n)). �

References

[1] W. H. Cunningham: Minimum cuts, modular functions, and matroid polyhedra. Networks, 15
(1985), pp. 205–215.

[2] S. Fujishige: Submodular Functions and Optimization. North-Holland, Amsterdam, 1991.

[3] A. V. Goldberg and R. E. Tarjan: A new approach to the maximum flow problem. Journal of
the ACM, 35 (1988), pp. 921–940.

[4] S. Iwata: A fully combinatorial algorithm for submodular function minimization. Journal of
Combinatorial Theory (B), 84 (2002), pp. 203–212.

[5] S. Iwata: A faster scaling algorithm for minimizing submodular functions. SIAM Journal on
Computing, 32 (2003), pp. 833–840.

[6] S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial strongly polynomial algorithm for min-
imizing submodular functions. Journal of the ACM, 48 (2001), pp. 761–777.

[7] N. Megiddo: Combinatorial optimization with rational objective functions. Mathematics of Op-
erations Research, 4 (1979), pp. 414–424.

[8] J. C. Picard: Maximal closure of a graph and applications to combinatorial problems. Manage-
ment Science, 22 (1976), pp. 1268–1272.

[9] T. Radzik: Fractional combinatorial optimization. In D. Z.Du and P.M. Pardalos, eds. , Handbook
of Combinatorial Optimization, vol. 1, pp. 429–478, Kluwer Academic Publishers, Boston, 1998.

[10] A. Schrijver: A combinatorial algorithm minimizing submodular functions in strongly polynomial
time. Journal of Combinatorial Theory (B), 80 (2000), pp. 346–355.

–8–E

研究会Temp
テキストボックス
－16－

