#HEEA HRAEEs PREmE
[PSJ SIG Technical Report

2004—AL—-97 (10)
20041015

SIS kT A I i v N /4

HREdE TRE—

1 duiEE KRR AR
T 060-0814 ALEFHILX AL 14 KA 9 T H

E-mail: t{atsu,mine}@main.ist.hokudai.ac.jp

HBOEL FRXTH. FAGW AT EIHFROEEL S, HOPLDLTORNEATHEZ b T
VABRIIERE 2 TEOENART, T ORYEMIBMADIT L HERLIERT S, BEPNT Y XLIE Zaki D
TreeMiner 7V Y XL (9] &, #lMIEZ#H AT VORI R L THRNICAERTSLIKHEL 2 bOTHD, ¥
=, B ISNVIREBLEETIRENCAKBDO AT Y EERTH LI BBICT 2 HECONTHIERT S, BR
IUVVTHEDOENE WebX—TVREEN B, L AL S 0L FHEHE SOHEIMIER o 28I, 12
E7NFYXLERATIZI LIV BOh BRI O>TOHET 5.

F—9—F K BN R—-b SR, Web<wA=> 2

Mining Frequent Trees with Node-Inclusion Constraints

Atsuyoshi NAKAMURA and Mineichi KUDO

t Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814
Ermail: t{atsu,mine}@main.ist.hokudai.ac.jp

Abstract In this paper, we propose an efficient algorithm enumerating all frequent subtrees containing all special
nodes that are guaranteed to be included in all trees belonging to a given data. Our algorithm is a modification
of TreeMiner algorithm [9] so as to efficiently generate only candidate subtrees satisfying our constraints. We also
propose a space saving method for a set of trees with a lot of nodes having the same label. We report mining

results obtained by applying our algorithm to the problem of finding frequent structures containing the name and

reputation of given restaurants in Web pages collected by a search engine.

Key words freequent tree, minimum support, constraint, Web mining

1. Introduction

Frequent structure mining is one of the most popular way
of data mining because of understandability of its analyzed
results. The idea of finding frequent patterns is simple and
easy, but for massive databases efficient algorithms to do
this task are necessary, and it is not trivial to develop such
algorithms. After Agrawal and Srikant developed efficient
algorithm Apriori, various efficient algorithms have been de-
veloped for frequent itemsets [1], subsequences (2], subtrees
(3], [9], subgraphs [6] and so on.

People sometimes have a certain point of view from which
they want to analyze data. In such cases, they want to find
frequent structures that satisfy certain constraints. This can

be done by selecting structures satisfying the constraints af-

ter enumerating all frequent ones, but it is not efficient when
a lot of more frequent other structures exist. In order to
efficiently find the frequent structures satisfying constraints
without enumerating unnecessary frequent ones, some algo-
rithms have been also developed for itemsets [8] and subse-
quences {5].

In this paper, we consider a kind of constrained problem
for frequent subtrees. Data we mine is a set of labeled rooted
ordered trees, each of which contains just d special nodes
labeled a different label belonging to a set of d special la-
bels. Our mining problem is to find all frequent embedded
subtrees [9] containing all d special nodes.

This research is motivated by wrapper induction [4], [7]. A
wrapper is a program that extracts information necessary for

some purpose from Web pages. Most wrappers extract nec-

essary information by pattern matching around the informa-
tion. Wrapper induction, automatic wrapper construction
from training data, can be done by finding common pat-
terns around the information in the data. Most Web pages
are HTML documents of which tag structures can be repre-
sented by DOM-trees, so finding frequent subtrees of DOM-
trees containing all nodes with necessary information can
be used as a kind of wrapper induction methods, though
some additional information like contents of the information
and distance between nodes are necessary to construct high-
precision wrappers.

In this paper, we propose an efficient algorithm enumer-
ating all frequent subtrees containing all special nodes. Our
algorithm is an extension of TreeMiner algorithm proposed
by Zaki[9]. We modified TreeMiner algorithm so as to effi-
ciently generate only candidate subtrees satisfying our con-
straints. We also propose a space saving method for a set of
trees with a lot of nodes having the same label. We also re-
port mining results obtained by using our algorithm for the
problem of finding frequent structures containing the name
and its reputation of given Ramen (lamian, Chinese noodles

in Soup) shops in Web pages collected by a search engine.
2. Problem Statement

2.1 Notions and notations

In this paper, all trees we deal with are labeled ordered
trees defined as follows. A rooted tree T = (N, B) is a con-
nected acyclic graph with a set N of vertices and a set B
of directed edges (u,v) € N x N that represent parent-child
relation, which satisfies the condition that every vertex but
just one vertex (root) has just one parent vertex. For a tree,
a vertex and an edge are called a node and a branch, respec-
tively. An ordered tree T = (N, B, X) is a rooted tree (N, B)
with partial order < on N representing a sibling relation,
where the order is defined just for all the pair of children
having the same parent. Let L be the set of labels. A labeled
ordered tree T = (N, B, X,1) is an ordered tree (N, B, X) of
which nodes are labeled by the label function l: N — L.

An id of a node of a tree T = (N, B, X,!) is its position
in a depth-first traversal of the tree, where the passing order
of children of the same parent follows order <. We call this
traversal node-id traversal. Note that, in our notation, any
node with subscript ¢ represents the node of id 3.

The parent-child relation, which is defined by set B of
branches, induces another partial order £, an ancestor-
descendant relation, by extending the relation so as to satisfy
reflexivity and transitivity. If t; and t; are not comparable
in order £, t; is said to be a left-collateral of t; when i > j
and a right-collateral of t; when i < j.

A scope of a node t is defined as [/, 7] using the minimum

id ! and the maximum id r among the ids of t’s descendant
nodes. Note that ! is always t’s id.

A string encoding of a tree T is a sequence of labels in
L U {~1} generated by starting with null string, appending
the label of the node at its first visit, and appending -1 when
we backtrack from a child in node-id traversal. For example,

tree S in Figure 1 is encoded as
abl-1-12-1.

We abuse notation and use the same symbol to represent
both a tree and its string encoding.

Size of a tree T is the number of nodes in T. A size-k
prefiz of a tree is the subtree composed of the nodes of which
id is less than k. .

An embedded subtree considered by Zaki[9] is defined as
follows.

[Definition 1] Let T = (Ng,Br,=n,ir) and S =
(Ns, Bs,<s,ls) be labeled ordered trees.

Nr and Ns are represented as {to,t1,..,tn-1} and

Assume that

{s0, 51, ..., Sm—1}, respectively. If there is an one-to-one map-
ping i : j — ; from {0,1,...,m—1} to {0, 1, ..., n — 1} satisfy-
ing the following conditions, S is called an embedded subtree
of T and 1 is called an embedding mapping.
(1) (Label preserving)
ls(s]‘) = lT(tij) for j € {0, ey m — 1}.
(2) (Ancestor-descendant relation preserving)
(8j,8%) € B=>ty; Sty for j,k € {0,1,...,m—1}.
(3) (Sibling relation preserving)
jSkei; Sy for j, ke {0,1,..,m—1}.

Let D denote a set of labeled ordered trees. For given D
and a minimum support 0 < o £ 1, a subtree S is frequent
if the rate of trees in D that have S as an embedded subtree
is at least o. ‘

Zaki [9] considered the problem of enumerating all frequent
subtrees and developed an efficient algorithm for this prob-
lem.

2.2 Trees with special nodes

In this paper, we assume that there are d different special
labels which are not members of L, and that every tree in D

has just d special nodes labeled different special labels.

S2

Figure 1 Example of trees with special nodes: squares denote
special nodes. The size of tree T is 4, and trees S1 and

Sy are its size-3 and size-2 prefixes, respectively.

The notions of size and size-k prefix defined above are ex-
tended as follows. Size of a tree is the number of non-special
nodes. For example, the size of tree T in Figure 1is 4. A
size-k prefiz of a tree is the subtree composed of k non-special
nodes with & smallest ids and all spccial nodes. For example,
trees S1 and Sz in Figure 1 are the size-3 and size-2 prefixes
of tree T, respectively.

We consider the following problem.

[Problem 1] (Constrained tree minining problem) For given
D and a minimum support o, enumerate all frequent subtrees

that have all special nodes.
3. Candidate subtree generation

Since all embedded subtrees of a frequent subtree are also
frequent, enumerating frequent subtrees in size-increasing or-
der reduces candidates, and as a result it is efficient. Zaki’s
efficient method [9] for enumerating frequent subtrees in size-
increasing order is based on a notion of prefir equivalence
class. We first describe his method in the next subsection,
then propose modified version of the method for the con-
strained problem.

3.1 Method for the problem without constraints

A prefix equivalence class for a size-k tree P in a size-(k+1)
tree set G, that is denoted by [P]g, is the set of size-(k + 1)
trees in G of which size-k prefix is P. We let [G]pre denote
the set of all prefix equivalence classes. Every tree T € [Pg
is distinguished from other trees in [P)g by its last node, the
node with maximum id. The last node of T can be uniquely
represented in [P]¢ by a pair (z,1) of its label z and id i of
its parent node in P, because the node must be the last child
of its parent node in order to preserve tree’s prefix.

Since two size-k subtrees of a size-(k + 1) frequent subtree
T created by removing®?’ one of the last two nodes of T' are
also frequent, and the size-(k—1) prefixes of the two nodes co-
incides with each other, all size-(k+ 1) frequent subtrees can
be enumerated by joining two size-k frequent subtrees that
belong to the same prefix equivalence class. The relation be-
tween the last two nodes of size-(k + 1) tree is parent-child
relation or not, thus join operator must generate trees of the
both relations if possible.

When Py and P; are different size-(k — 1) trees, trees gen-
erated by join operator from [Pi]c and [P:]c are trivially
different because their size-(k — 1) prefixes are preserved.
Thus, by applying join operator to each combination of two
frequent size-k trees in each prefix equivalence class, we can
enumerate all size-(k + 1) frequent tree candidates without

duplication.

(#1) : Note that, when the removed node has child nodes, the new

parent of those child nodes is the parent of the removed node.

3.2 Method for the constrained problem

Our method for the constrained tree mining problem is
based on the same idea as Zaki’s method mentioned above.
Only pért we have to consider is how to deal with special
nodes.

A prefiz equivalence class [Plg in a size-(k + 1) tree set G
for a size-k tree P, and the set [G]pre of all prefix equiva-
lence classes in G are defined similarly. The prefix equiva-
lence class for tree Sz in Figure 1 is shown in Figure 2, which
indicates that there are 8 positions for the last node of a tree
in the same class. The difference from the case without con-
straints is that the position of the last node of a tree in the
same class cannot be uniquely determined by its parent node.
For example, there are three positions for the last node with
its parent node labeled a in the prefix equivalence class for

tree S2 in Figure 1.

Figure 2 Prefix equivalence class for tree Sz in Figure 1

To overcome this problem, we specify the position of the
last node by its inserted position in the string encoding of its
prefix. For example, in the above case, when the last node
is between the nodes labeled a and 2, the tree is encoded
as “ab 1-1-1x2-1-1" and the prefix of its last node is
encoded as “a b 1-1-12-1". In this case, its position of the
last node is specified as (4, 6), which means that the label z
of the last node is inserted right after the 4th character and
-1 is inserted right after the 6th character, where a string
begins with the Oth character. Therefore, three positions for
the last node with its parent node labeled a is specified as
(4,4),(4,6) and (6, 6).

Let a tree be represented by a pair (P, (z, (i1, 1))) of its
prefix P and last node (z, (i1,j1)), where z is its label and
(i1,71) is its inserted position in the string encoding of P.
We define join operators ®;, and ®q, on two trees in the
same prefix equivalence class as follows.

[Definition 2] Let (P, (x, (i1,41))) and (P, (v, (i2,52))) be

two trees in the same prefix equivalence class.

(P» (92, (ilajl))) ®in (Pv (ya (1'2,]'2)))
= (P (2, (61.51), (v, iz + 1,52 + 1))
(P: (x’ (ilvjl))) ®0ut (Py (?j, (iZsjz)))

déf ((P’ ($3 (il:jl))): (y’ (".2 + 21j2 + 2)))

[Proposition 1] Let T be a size-(k + 1) tree (k 2 2) and let
(P, (z, (41,71))) and (P, (y, (iz,j2))) be the trees generated
by removing the second last and the last non-special nodes,
respectively. Then just one of the following cases holds.
Case I (P, (z,(i1,51))) @i (P (¥, (42, 42))) = T and

i1 Sda, 52 £ i1
Case 11 (P, (z,(i1,51))) ®out (P, (¥, (i2,52))) = T and

J1 L4
(Proof) Let tx, and tp, be the second last and the last non-
special nodes in T, respectively. Since hi < hgz, th, is an
ancestor or left-collateral of t,. It is easy to see that Case I
holds when ¢, is an ancestor of t, and Case II holds when
th, is a left-collateral of tp,. O

Examples of size-4 trees of case 1 and case II are shown in

Figure 3.

(abl-1-12-1,(x,(4,6))) (abl-1-12-1,(y,(5.5))) (abi-1-1x2-1-1,(y.(6,6)))
) ®

(abl-1-12-1,(x,(3,3))) (abl-1-12-1,(y,(5.5))) (abl-1x-1-12-1,(y,(7.,730)

Figure 3 Operation examples for two join operators

The next proposition says that all size-(k + 1) candidate
subtrees can be enumerated by generating T1 ®iy T2 for all
(T, Tz) € Pin and T1 Qqyt T3 for all (Tl,Tz) € Pout with-
out duplication, where each of P;, and Pyt consists of a
pair of size-k frequent subtrees belonging to the same prefix
equivalence class.

[Proposition 2] Let Fi denote the set of all size-k frequent
subtrees for k 2 2. Let
Pin = {((P, (=, (11,5:10)), (@, (y, (22, 2)))) € Fie x Fi :
P=Q,iy Liz,j52 £ 51} and
Pout = {((P, (z, (i1, 51))), (Q, (¥, (82, 52)))) € Fie X F
P =Q,j1 £1iz2}. Define
Cr41 = U

U {71 ®out T2}
(T1,T2)€P,

(T, T2)€Pqyt
Then, the followings hold.
(1) Fie41ECk+1
(@) [Ckssl = Piy] + [Pout]
(Proof)
(1) Let T € Fi41. Let (P, (z, (41,71))) and (P, (y, (32, 72)))
be the trees generated from T by removing the second

{T1 ®in Tz} U

last and the last non-special nodes, respectively. Then,

(P, (z, (i1,51))): (P, (y, (i2, j2))) € Fk. Therefore, by Propo-
sition 1, T € Ci41.

(2) Assume that Ty @ T2 = T @ T for
(T, T2), (T4, T3) € Py Let Tz = (Q,(y,(i2,72))) and
T; = (Q, (¥, (12, 42))). Then, (T1,(y,(iz + 1,52 + 1))) =
(T4, (', (&5 + 1,52 + 1))). Thus, i = Ti,y = y',iz =
iy and j2 = jb. Therefore, (T1,7T2) = (T1,T3). This
means IU(ThTz)E'Pin{Tl ®in Te} = |Pjyl- We can prove
IU(T1 T3Pyt {T1 ®;, T2}l = |Pouyt | similarly.

Assume that 1 ®iy, T2 = Ti ®qyt T3 for (11,T2) €
Pip and (T1,T;) € Poyt. Let Tz = (Q,(y, (2, 52))) and
T; = (@, (¥, (4, 45)))- Then, (T1,(y,(iz + 1,52 + 1)) =
(T!, (', (1542, 55+2))). Thus, Ty =T1,y =y, 42 = iz+1and
j2 = j3 + 1. Let Ty = (P, (z, (%1, 71))). Since (Th,T2) € Pj,
and (771,T3) € Py, t1 = d2,J2 £ j1 and ji < i3 hold.
Therefore, a contradiction j2 < j1 £ i3 < j3 < j2 is derived.
This means that T1 ®;, Tz F T{®qyt T for any (T1,T2) € Pjy
and (T}, T§) € Pout- o

4. Scope-List representation for fast fre-
quency counting

In order to efficiently count the number of trees in a given
tree set D to which candidate subtree S can be embedded,
Zaki introduced a scope-list of S, which is a list of informa-
tion about S-embeddable positions in D. For our problem
with constraints, we also use the scope-list representation
with slight modification. An element (t,m,s) of scope-list
L(S) of size-k tree S represents one S-embeddable position
in some tree T belonging to D, where t is the id of T', m is
a sequence of ids of the non-special nodes in T in which the
size-(k — 1) prefix of S can be embedded, and s is the scope
of the last mon-special node in the S-embeddable position.
Note that the size-(k — 1) prefix of S contains all special
nodes, but m is a sequence of k — 1 ids of non-special nodes
in T, because the special nodes can be uniquely embedded in
any tree T belonging to D. We call an element of scope-list
of tree S an S-instance-scope.

For example, let tree id of tree T in Figure 1 be 0. Then
(0,0,[1,2]) is an Sp-instance-scope for Sz in Figure 1, and
(0,01, [3,3)) is an Si-instance-scope for S in the same fig-
ure.

For two size-k trees 51 and Sz with a common size-(k — 1)
prefix, we define join operators ® on a pair of S;-instance-
scope and Sz-instance-scope as follows.

[Definition 3] Let S; and Sz be size-k trees with a com-
mon size-(k — 1) prefix. Let (t,m, [l1,71]) and (t,m,[l2,72])

be Si-instance-scope and S»-instance-scope, respectively.

(t,m, [l1, 7)) ® (t,m, [l2,72)) 2 (8, mly, [la, ma])

Note that ml; is node id sequence m appended ;.

[Proposition 3] Let T be a size-(k + 1) tree (k = 2) and
let S1 = (P, (=, (i1,51))) and S2 = (P, (y, (i2,72))) be the
trees generated by removing the second last and the last
non-special nodes, respectively. Let (t,mly,[l2,72]) be a T-
instance-scope and let [l1,r1] be the scope of the node with
id {;. Then the followings hold.

(1) (¢m,[l,m]) € L(S1), (t,m, [l2,72]) € L(S2)

@) hi<lbyr:€r f85@yS5=T

1 <lg if S1@qut Se=T

(Proof) (1) This is trivial because any domain-restricted em-
bedding mapping also satisfies the conditions of embedding
mapping.

(2) Assume S ®;;, S2 = T. Then, i1 £ iz and j2 £ /1
hold by Proposition 1. This means that the last two nodes
in T are ancestor-descendant relation. Thus, nodes labeled
by {1 and I are also ancestor-descendant relation. Since two
nodes are distinct nodes, I; < l3 and 7 £ r; hold. In the
case with 81 ®qyt 52 = T, r1 < l2 can be proved similarly.

[m]

The next proposition says that scope-lists of 51 ®;, S2 and
51 ®out S2 can be generated without duplication by joining
all pairs (g1, q2) of elements satisfying a certain condition,
where g; and g2 belong to the scope-lists of S1 and 52, re-
spectively.

[Proposition 4] Let Si = (P (z,(i1,51))) and 82 =
(P, (z, (12, j2))) be size-k trees with a common size-(k — 1)
prefix P. Let
Tin = {(@&m, [, 7)), (¢, m/, [, 7])) € £(S1) x £(Sz) :
t=t'' m=m/l<l'r<r} and
Tous = {((&,m, L), (¢, m!, ', 7])) € £(S1) x £(S2)
t=t'm=m',r <l'}.
Then, the followings hold.
(1) For i £i2,j2 £ i,
LSens) = |J {neal
(91.92)€Z,

[£(S1 ®ip S2)| = |Tip -
(2) For j1 L1,

LS1®utS) = () {nea)

(q1,92)€Z5y ¢

I£(51 ®out, S2)| = | Zout-
(Proof) (1) Let T = S1 ®j,, S2 and g € L(T). Then S; and

S» are subtrees generated by removing the second last and
the last non-special nodes, respectively. By Proposition 3,
there exists (q1,92) € I, such that ¢ = q1 ® ga. Thus,
£(51 @i 52) € Uig, apez, {0 @ @2}

Let (q1,92) € Z;;- Then ¢ and ¢z can be represented

by (t,m, [l1,71]) and (t, m, [l2, 72]), respectively. The embed-
ding mapping represented by ¢: ® ¢z is extension of two em-
bedding mapping represented by q; and g;. Therefore, the
extended mapping satisfies all the conditions of embedding
mapping except the relation between two nodes labeled {;
and l3. In 81 ®;,, S2, the relation between the last two nodes
is ancestor-descendant relation, and the relation between the
two nodes labeled I; and I; is also ancestor-descendant rela-
tion because l; < l3,72 £ r1. Thus, the extended mapping
also satisfies the condition between the two nodes labeled I3
and Iz. Therefore £(S: ®;y S2) D U(ql,qg)em {1 ® g2}

For (q1,92), (@1, 92) € Tip, (01, ¢2) F (91, %2) > a1 ® @2 #
qi ® ¢; holds trivially, so [£(S1 ®, S2)| = |Z;y, | holds.

(2) This can be proved similarly. g

5. ConstrainedTreeMiner algorithm

5.1 Algorithm

Constrained TreeMiner algorithm in Figure 4 enumerates
all frequent embedded subtrees containing all special nodes
efficiently. Its algorithm structure is the same as TreeMiner
algorithm (9], but its data structure and join operations are
different as mentioned in the previous sections.

The basic algorithm structure is as follows. First, by ex-
ecuting procedure Enumerate-F> described in the next sub-
section, the algorithm creates the set F2 of size-2 frequent
subtrees and divides it into the set [F3]pre of its prefix equiv-
alence classes while creating the scope-list £(S) of S € F>.
For each [P] € [F2]pre, all larger frequent trees having prefix
P can be created from [P] and {£(S) : S € [P]} by re-
cursively applying Enumerate-Frequent-Subtrees procedure.
In Enumerate-Frequent-Subtrees procedure, one size larger
candidate subtree is created by joining two subtrees S; and
S2 with the same prefix P using operators ®;;, and ®qyt,
and frequency counting for the candidate is done by joining
elements in £(S1) and £(S2) using operator ®.

Here, we assume that the least common ancestor of all
special nodes in any tree in D is a non-special node for the
sake of simplicity. Note that slight modification is necessary
to deal with the case that the least common ancestor is a
special node.

5.2 Procedure Enumerate-F3

Procedure Enumerate-F3, which creates the set F3 of size-
2 frequent subtrees and scope-lists for its elements, is the
following process for each tree T in D. (See Figure 5 for
examples of each step.)

Step 0 Obtain the paths p; from the root node to each
special node labeled ¢ in T. (In many cases, the paths are
given.)

Step 1 Create a subtree U composed of all the paths

Casel:
By (=Py) Py
[

Case3:
al-12-1 bl-12-1

t

t3

to

Step 1 Step 2

. S
ig=0 Q@
i=4
i=5 [i]
i3=7

@<LcA 1,28 al-12-1
4=
ig=11
ig=12

v 2] wlij(12) wl2]G4

®. 602024 By, (@, ,0,02)2% P,
PO[1.9D.(p.27.92% (B, (b.0.2))
®.L07.9) % 1(p,0,020)

By (c.(0,0)) 24 [p

®0.33) 2 1R (c.0,00)

R 0,220 4 o, P, 0,220 24 (p)
(.0,[10,10).(p.2,{10,10) 2% 1 (b,2,2)))
(P.L110,10D 2% 1p, b2 2))

Figure 5 Example of each steps of the procedure enumerating all size-2 frequent subtrees

and creating its scope-list

ConstrainedTreeMiner(D,minsup)
begin
Enumerate-F2 (D,minsup)
for all [P] € [Fa]pre do
Enumerate-Frequent-Subtrees([P], {£(S) : S € [P]},minsup)
enddo

end

Enumerate-Frequent-Subtrees([P], {£(S) : S € [P]},minsup)
begin
for all (P, (=, (41,71))) € [P] do
S1 = (P, (z, (i1,01))
[Si1]=0
for all (P, (y, (i2,32))) € [P] do
Sg = (Pa (ya (i25j2)))
if i1 £ 42 £ j2 £ J1 then
Create L(S1 ®j, S2)
if S1 ®jp S2 is frequent then
[81] = [S1]U{(S1, (v, (2 + 1,42 + 1))}
if 71 £ 1g then
Create L(S1 @gut S2)
if 81 ®out S2 is frequent then
[51] = [S11U{(S1, (v, (12 + 2,32 + 2)))}

enddo

Enumerate-Frequent-Subtrees([S1], {£(S) : S € [S1]},minsup)
enddo

end

Figure 4 ConstrainedTreeMiner algorithm
Pp1,P2, -, Pd- Let a one-to-one mapping ¢ : j — i; denote
the embedding mapping from the set {0, 1, ..,m — 1} of node
ids of U to the set of node ids of T". Let u;, the node in

U with id {, denote the least common ancestor of all special

nodes.

Step 2 Create an embedded subtree S of U composed of
the root node and all special nodes.

Step 3 Attach insertable position (su,e.) for S to each
node u of U. Insertable positions are calculated as follows.
Set v to 0 initially. Starting from the root node, traverse all
nodes in the order of node ids. For each node u, set sy to
the value of v at the first visit, and set e, to the value of v at
the last visit. When visiting a special node at the first and
last times, add 1 to v before setting s, and e,.

Step 4 For all node ty, in T, do the followings. Let t;, be
the least ancestor of t, among all nodes in {ti, iy s tipay }-
Let C = {j : i; < h,u; is a child of ug}. Let I' = min{l, k}.
Let P; denote a tree that is created from S by replacing
the root inode label with u;. Let b denote the tree id of T,

and let z and s denote the label and the scope of node ¢,

respectively.

Casel ix=h
Add (z,(Suy.€u,)) to [P] and add (b,i,s) to
L{(Pi, (z, (Suy,€u,)))) forall i € {0,1,...,l'}.

Case2 iy +hand C=19
Add (z,(Su;,84,)) to [P] and add (b,4,8) to

LU(P, (z, (Suy, Suy)))) for all i € {0,1,...,1'}.
Case3 ixF+hand C+0
Let j* = maxC. Add (z,(eu;s,eu;.)) to [Pi] and add

(b1, 5) to L((P;, (z, (ew;s €u)))) for alli € {0, 1,..., '}
5.3 Space problem
Keeping scope-lists of size-k frequent subtrees reduces
computational time needed to calculate scope-list of size-
(k+1) candidate trees, but sometimes requires a lot of space,
especially when data includes some trees with a lot of nodes

having the same labels. For example, consider the case shown

100
in Figure 6. In this case, £(Sk) contains (X) Sk-instance-

100 nodes

k nodes

Figure 6 A tree that causes space problem

scopes for T", thus the number of Sk-instance-scopes for T in-
creases exponentially with respect to k. This often happens
for DOM-trees of HTML documents, for example, '
’
and ’<td>’ possibly occurs many times in each of them. We
should calculate scope-lists when we want to know the num-
ber of occurrences of a subtree in each tree, but we do not
have to calculate them when we only want to know whether
a subtree occurs in each tree or not as the case of Problem 1.
One of the countermeasures for this problem is as follows.
Instead of keeping the scope-lists of frequent subtrees S, keep
only the first S-instance-scope in lexicographical order for
each tree, namely, S-instance-scope (t,m, [l,7]) for tree T of
id t such that the sequence ml of t’s node ids comes first in
lexicographical order among all sequence m'l’ of t’s node ids
for S-instance-scope (t,m’, [l’,7']) in £(S). Let S1 and Sz be
frequent subtrees and let (t,ma, [l1,71]) and (t,mz, [l2,72])
be the first Si- and S»-instance-scopes, respectively. Then,
calculation of £L(S: ®;, S2) in Enumerate-Frequent-Subtree
procedure is replaced with the following procedure for each
tree T of id ¢ that finds the first (S1 ®; S2)-instance-scope
for T. Note that giving the first S;- and S»-instance-scopes
to the procedure reduces the computational time of Step 1.
Letting each node of T" have the id of the next node with the
same tag reduces computational time of all ‘min’ functions
efficiently. Also note that the first ‘min’ functions in Step 1
and Step 4 can be implemented by recursive procedure that
finds the next P-instance-scope for one size smaller prefix P,
Calculation of £(S1®qytS2) in Enumerate-Frequent-Subtree
procedure is also replaced with the corresponding procedure
similarly.
Step 1 Calculate a pair of S;-instance-scope (¢, m’, [I1,7]])
and S»-instance-scope (t,m’, [l5,75]) such that m'l} =
min{m*{] : (t,m*,[I1,r]) € L(S1), (t,m*,[13,73]) € L(S2)}
and I3 = min{l3 : ({,m/,[I3,73]) € £(S2)} . If there is no
such pair, no (S1 ®;,, S2)-instance-scope exists in the tree of
id t. Otherwise, go to Step 2.
Step 2 Ifl; < I3 and 7y < 7 hold, then (t,m'l{, [l5,75]) is
the first (81 ®jy, S2)-instance-scope. Otherwise, go to Step
3.

Step 3 Set [to the value of l3. Calculate the next
Sq-instance-scope (t,m’, [I3,73]) such that I3 = min{l} :
(¢, m/,[I3,73]) € L£(S2),13 > I}. If there are no such S;-
instance-scope, set l; to the value of I7, set m; to the value
of m’ and go to Step 4. Otherwise go to Step 2.

Step 4 Calculate a pair of S;-instance-scope (t, m’, [I{,71])
and Sy-instance-scope (t,m’,[l3,75]) such that m'l} =
t,m" 1, ri]) € L(S),@¢m" [i3,75]) €
L(S2),m"l] > mili} and I3 = min{l; : (t,m',[i5,75]) €
L(S2)} . If there is no such pair, no (51 ®;, S2)-instance-

min{m*1}

scope exists in the tree of id ¢. Otherwise, go to Step 2.
6. Application to DOM-tree analysis

We conducted an experiment of extracting common struc-
tures from DOM-trees of HTML documents. The HTML
documents we used in our experiment are Web pages con-
taining the information about a given Ramen (lamian, Chi-
nese noodles in Soup) Shop. We selected the most popular 10
Ramen shops with more than 15 collected Web pages among
the shops mentioned in the Ramen-shop’s popularity rank-
ing of a popular local town information magazine (Hokkaido
Walker). From the collected Web pages about 10 Ramen
shops, we further selected the pages that contain both the
shop name and its reputation consisting of only one text
node each. There are 99 pages satisfying these conditions.
Each tree in our experimental data is created by transform-
ing each Web page to a DOM-tree, relabeling its text nodes
of the shop name and its reputation by special labels 1 and
2, respectively, and finally choosing the subtree consisting
of all descendants of the least common ancestor (LCA) of
the special nodes. The reason why we do not use the whole
tree is that we do not want to extract trivial frequent struc-
tures like “html title -1 body --- -1” that are common to all
HTML documents. For the data constructed by the above
procedure, we applied our algorithm to enumerate all fre-
quent subtrees containing all special labels.

Table 1 shows frequency distribution of HTML tags (non-
special labels) attached to the root nodes, the LCA of the

special nodes. Since we wanted to extract frequent subtrees

table 22 |p 9|div 1
body 21| tbody 6 |dl 1
td 1811 4 !span 1
tr 15 | blockquote 1
Tablex 1 LCA’s tags of special nodes and its frequency in the
data

even for the trees that have several other trees with a root
node labeled the same tag, we calculated support rate for
each set of trees with a root node labeled the same tag. By

this support calculation, every subtree of a tree with a root

node labeled ‘blockquote’, ‘div’, ‘dl’ or ‘span’ achieves sup-
port rate 1.0, so we did not enumerate such subtrees. In
our experiment, all subtrees containing text nodes were not
enumerated. All mazimal frequent subtrees for minimum
support o = 1.0,0.9,0.8,0.7 are shown in Figure 7. Note
that a mazimal frequent subtree is a subtree such that its
any super-tree is not frequent. When a shop name and its
reputation are embedded in a table, the positional relation
between them is clear: upper-lower relation for “table tr 1
-1-1trtd2-1-1-1", “tbody trtd 1-1-1-1trtd2-1-1
-1” and “td 1 -1 br -1 2 -1”, left-right relation for “tr td 1
-1-1td 2-1-1". Especially, when both a shop name and its
reputation are in one cell in a table, namely, the case with
“td 1 -1 br-12-1", the shop names are emphasized like “td
strong 1 -1-1 br -1 2 -1” in most such pages. When the tag
of LCA is ‘body’, ‘p’ or ‘Ii’, the structures around the nodes
of a shop name and its reputation is not so clear, but the
positional relation between them is upper-lower one in most
such trees like “body br-11-1br-12-1br-1br-1a-1",
“pl-1br-12-1"and “lil1-1br-1br-1br-12-1br-1br
-1 br -1 br -1 br -1".
ag=1.0

22 tabletr1-1-1trtd2-1-1-1

6 thodytrtd1-1-1-1trtd2-1-1-1

15 trtd1-1-1td2-1-1
o=20.9

19 body 1-12-1br-1

20 table trtd 1-1-1-14rtd 2-1-1-1

6 tbodytrtdl-1-1-1trtd2-1-1-1

17 td1-1br-12-1

15 tred1-1-1td2-1-1
=208

17 body br-11-12-1a-1br-1

17 bodybr-11-12-1br-1a-1

8 pl-12-1br-1

8 pl-lbr-12-1

20 tabletrtd1-1-1-1trtd2-1-1-1

18 tabletrtd1-1-1-11d-12-1

5 tbodytrtd1-1-1-1trtd2-1-1-1trtd-1-1

5 tbodytd1-1-1td-1¢d2-1-1

17 td1-1br-12-1

15 trtd1-1-1td2-1-1

o=0.7

but they are too general to specify the place of necessary in-
formation. To construct a wrapper, other features of HTML
documents like contents of the information and distance be-
tween nodes should be additionally used. We are now trying
to develop such combined method, which is potentially able
to extract necessary information from arbitrary Web pages
retrieved by a search engine, while most conventional wrap-
pers can do only from the pages in the same site as the
training pages.
References

[1] R. Agrawal and R. Srikant. First algorithms for mining as-
sociation rules. In Proc. 20th Int’l Conf. on VLDB, pages
487-499, 1994.

[2] R. Agrawal and R. Srikant. Mining sequencial patterns. In
Proc. 11th Int’l Conf. on Data Eng., pages 3-14, 1995.

[3] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto,
and S. Arikawa. Efficient substructure discovery from large
semi-structured data. In Proc. 2nd SIAM Int'l Conf. on
Data Mining, pages 158-174, 2002.

[4] W.W. Cohen, M. Hurst, and L. S. Jensen. A flexible learn-
ing system for wrapping tables and lists in html documents.
In Proc. 11th Int’l World Wide Web Conf., pages 232-241,
2002.

[5] M. Garofalakis, R. Rastogi, and K. Shim. Mining sequential
patterns with regular expression constraints. /[EEE Trans-
actions on Knowledge and Data Engineering, 14(3):530-
552, 2002.

[6] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based
algorithm for mining frequent substructures from graph
data. In Proc. PKDD 2000, pages 13-23, 2000.

[7) N. Kushmerick. Wrapper induction:efficiency and expres-
siveness. Artificial Intelligence, (118):15-68, 2000.

[8] R.Srikant, Q. Vu, and R. Agrawal. Mining association rules
with item constraints. In Proc. 8rd Int’l Conf. on Knowl-
edge Discovery and Data Mining, pages 67-73, 1997.

[9] M. J. Zaki. Efficiently mining frequent trees in a forest. In
Proc. SIGKDD’02, pages 71-80, 2002.

15 bodybr-11-12-1br-1br-1br-1br-1br-1br-1br-l1br-1a-1br-1

15 body br-11-1br-12-1br-1br-1a-1

15 bodybr-11-1br-12-1br-1a-1br-1

15 body 1-12-1hr-1

3 lil-1br-1br-1br-12-1br-1br-1br-1br-1br-1
3 lil-la-1img-12-1a-1

3 lil-laimg-1-12-1

7 pl-1br-12-1br-1

20 tabletrtd1-1-1-1trtd2-1-1-1

16 tabletrtd1-1-1-1td-12-1td-1

16 tabletrtd 1-1-1-1td-1td 2-1-1

17 tabletrtd 1-1-1-1%d 2-1-1¢td-1

5 tbodytrtdl-1-1-1trtd2-1-1-1¢trtd-1-1
5 thodytd1l-1-1td-1td2-1-1

13 td1-1br-1br-12-1

13 tdstrong 1-1-1br-12-1

13 td1-12-1br-1

11 trtd1-1-1td-1td2-1-1

Figure 7 Maximal subtrees with at least support o and their fre-

quencies

6.1 Concluding Remarks

Structures found in our experiment appear to be useful,

