0000 o0ooooooooboo
IPSJ SIG Technical Report

20040 ALO 9801 (6)

200401 1105

000000000000002*PO0O0OODOOOO

g og

ugg og

oboooobooooooo
0 464-8603 0O OO0O0OODOOOO

Tel: 052-789-3440,

Fax: 052-789-3089

E-mail: {adachihirata}@hirata.nuee.nagoya-u.ac.jp
oo

goooooooboooooooooooooooOooOoooobobooboboOoboooOooOoOoOoobOOooDboO
000 POOCO 2000 2*PUODU0C0OOOU0DUOOOOODOOODO k=20000000
gooopooooooDoO00 kOOCOO0OD0O0ODOO0O0O0OQOOODODODDOOOOODOOOODO 1O
goooooooboooobooooboooooboooooooOoobooOoOoOoooboooobooooooboOooon
oooboobooooooooboooooboOoOobboOoooOboO0OobOoOoOobOOoOoOobOOoOoOobOOboOooon

gboboobooo

Refined Computations for Points of the Form 2*P Using
Montgomery Trick

Daisuke Adachi

Tomio Hirata

Graduate School of Engineering, Nagoya University
Furou, Chikusa, Nagoya, Aichi, 464-8603, Japan

Tel: 052-789-3440,

Fax: 052-789-3089

E-mail: {adachi hirata}@hirata.nuee.nagoya-u.ac.jp
Abstract

This paper focus on an elliptic curve defined over a prime field. We propose two algorithms for
computing points of the form 2* P in affine coordinates. The one only works for k = 2, and the other
works for arbitrary natural number k. These algorithms are based on a trade-off between a field
inversion and some field multiplications. We apply Montgomery trick to do this trade-off. Under a
reasonable assumption, our algorithms are efficient in comparison with existing algorithms.

1 Introduction

In recent years, commercial use of elliptic curve
cryptographic schemes has increased. The execu-
tion time of elliptic curve cryptographic schemes
heavily depends on that of scalar multiplications.
This multiplication takes a point P on an elliptic
curve over a finite field and computes a scalar mul-
tiple dP for some scalar d.

The 2%-ary method [2, 6] and the sliding win-
dow method [4] are useful for a scalar multiplica-
tion. These methods usually use the signed binary
representation of the scalar [7, 8, 12] and repeatedly

compute points of the form 2P and 2P + Q from
points P and @ on an elliptic curve. This compu-
tation uses two arithmetics on the elliptic curve; an
addition and a doubling. The computation time of
additions and doublings varies depending on the co-
ordinate system for representing the elliptic curve.

Here we focus on an elliptic curve defined over
GF(p). In affine coordinates, additions and dou-
blings include inversions over the finite field. How-
ever, a field inversion is much expensive than a field
squaring or a field multiplication. In fact, Sakai-
Sakurai [11] reported that the ratio of computation

0330

研究会temp
テキストボックス
社団法人 情報処理学会　研究報告
IPSJ SIG Technical Report

研究会temp
テキストボックス
2004－AL－98　(6)

研究会temp
テキストボックス
2004／11／5

研究会temp
テキストボックス
－33－

time of a field inversion to a field multiplication
became 25.0 for 160-bit p in their implementation.
Therefore, reducing the number of field inversions
is important for an efficient scalar multiplication.

One method for reducing the number of field
inversions is direct computation for points on an el-
liptic curve. For example, the direct computation
for 28 P computes 2¢P directly from P, computing
no intermediate points 2P, 4P, ..., 21 P. The con-
cept of direct computation was firstly proposed by
Guajardo and Paar [5]. They gave algorithms for
direct computation of 4P, 8P and 16P on an ellip-
tic curve defined over a binary field in affine coordi-
nates. In recent years, several algorithms of direct
computation for 2P or 2P 4+ Q in affine coordi-
nates have been proposed [1, 3, 5, 10, 11]. Sakai
and Sakurai [11] proposed an efficient algorithm
for 2P on an elliptic curve defined over GF(p).
This algorithm works for arbitrary natural number
k. Also, Eisentrager, Lauter and Montgomery [3]
proposed an efficient algorithm for 2P + @) on an
elliptic curve defined over GF(p). Moreover, Ciet,
Joye, Lauter and Montgomery [1] extended and re-
fined this algorithm for an elliptic curve defined over
both GF(p) and a binary field. In Ciet-Joye-Lauter-
Montgomery’s algorithm, one technique is used for
reducing inversions, which is called “Montgomery
trick” [9].

This paper is organized as follows. Section 2
describes assumptions and preliminaries. In Sect.3,
we propose two algorithms for computing points of
the form 2*P which use Montgomery trick. The
one only works for £k = 2, and the other works for
arbitrary natural number k. Section 4 applies our
algorithms to scalar multiplication and estimates
their savings.

2 Preliminaries

This chapter describes assumptions and preliminar-
ies used in this paper.

2.1 Arithmetics over GF(p)

The set of points on an elliptic curve defined over
GF(p) is used for implementation of elliptic curve
cryptographic scheme. The set (plus the point at
infinity) becomes additive group with addition P +
Q@ for points P,) on the elliptic curve. If P and
Q are different, P + @) is called “addition”, and if
P and @ are identical, it is called “doubling” and
denoted by 2P.

Additions and doublings are both implemented
by several kinds of field arithmetics. Among these
arithmetics, a field squaring, a field multiplication
and a field inversion are more expensive than other
field arithmetics, such as a field addition and a field
subtraction. We intend to estimate the efficiency
of algorithms for computing points on an elliptic
curve by the number of the former three field arith-
metics'. Moreover, as in [1, 11], we will assume that
the cost of a field squaring is 80% as expensive as
that of a field multiplication. By dropping “field”,
we call these field arithmetics just as squaring, mul-
tiplication and inversion.

2.2 Addition Formula on Affine
Coordinates

Let p denote a prime. E, : y?> = 23 +ax + b
(mod p) (4a® + 27b% /=0) is an elliptic curve de-
fined over GF(p). We also focus on the case that the
coordinate system for representing points is affine
coordinates. Let P = (zp, yp) and Q = (zg, yg)
be points on F,.

The point P+ Q = (xp+qQ, yp+qQ), the result of
adding P to @, is derived from the following formu-
lae:

N = Yo Yp ’
rQ —ITp
Tp+Q =)\27$p7£L‘Q s
yp+Q = MNaxp—2piQ)—yp -

Thus, an addition requires 1 squaring, 2 multiplica-
tions and 1 inversion.

1We ignore field multiplication by small constant because
it is much cheaper than generic field multiplication.

0340

研究会temp
テキストボックス
－34－

Furthermore, the point 2P = (zap, y2p), the
result of doubling P, is derived from the following
formulae:

\ - 37%5 4+ a
2yp
Top =)\2 — 2£Cp 5
yap = MNap—x2p) —yp .

Thus, a doubling requires 2 squarings, 2 multiplica-
tions and 1 inversion.

2.3 Montgomery Trick

Montgomery trick [9] is a technique for simultane-
ous inversions. As a simple example, the inverses
modulo p of two numbers x, y can be calculated by
the following way:

M =y,
I = M1,
b = Iy,
y ! = Iz .

These formulae indicate that 2 inversions can be re-
placed by 1 inversion and 3 multiplications. Simi-
larly, the inverses modulo p of m numbers :cl_l, Tq t

..., b € GF(p) are calculated as follows.

i) Calculate []’_, z; for each i = 2,3,...,m
j=1J
and store them.
(i) Calculate ([Tj-, ;)"

(iii) Calculate (H;:1 z;)7t- H;;ll z; =x; " and

(H§:1)t = (H;;ll z;)~ ! for each i =
my..., 3, 2

In (i), (m — 1) multiplications are required, and
(2m — 2) multiplications are required in (iii). Thus,
eyt xyt, .. @t € GF(p) can be calculated by 1
inversion and (3m — 3) multiplications. The above
replacements are effective if 1 inversion costs more
than 3 multiplications.

3 New Efficient Algorithms by
Montgomery Trick

In this chapter, we will propose a new algorithm for
computing the quadruple point 4P from P which

uses Montgomery trick. The proposed algorithm
saves 2 squarings in comparison with the Sakai-
Sakurai’s algorithm for &k = 2. Moreover, we will
modify the Sakai-Sakurai’s algorithm using Mont-
gomery trick. This modification saves 2 squarings
and requires 1 additional multiplication comparing
to the original version of the Sakai-Sakurai’s algo-
rithm.

3.1 Formulae for Quadrupling

This section handles quadrupling of a point P. The
2%-ary method [2, 6] is known as an efficient algo-
rithm for scalar multiplication dP. This method
reads every w bits of a (signed) binary representa-
tion of d from left to right.

The 2¥-ary method

INPUT: d =Y 'gd[j]2/, P
OUTPUT: a scalar multiple dP of P
Step 1. Precomputation
Compute vP for all v e {1, ..., 2% — 1}
Step 2. Evaluation
Y «— O (point at infinity)
for j = |(t — 1)/w]w down to 0 step w do
Y «—2%Y
if v=_(d[j+w—1]...d[j])2 # 0 then
Y Y +oP
return Y

We focus on the situation in which the 2%-ary
method with small w is adopted to compute dP.
This situation frequently appears in case of imple-
menting an elliptic curve cryptographic scheme on
a device whose computation resources are limited,
such as a smart card. Quadrupling of a point ob-
viously appears for w = 2. Also, Quadrupling ap-
pears in case of w = 3 if this method computes 22P
first and then computes 2(22Y) +vP. For this com-
putation, direct computation of 2P+ (@ can be used
1, 3].

A straightforward computation of a quadruple
point 4P is to perform two successive doublings.

0 350

研究会temp
テキストボックス
－35－

4P = (x4p, yap) is computed by

A = 37% 4+ a
2yp
Top —)\% — Ql‘p
yor = M(zp—x2p) —yp
and
N = 323p +a
2yap

Xap =)\g — 21’213
yap = Aa(x2p —ap) —Yopr .

Thus, 4 squarings, 4 multiplications and 2 inver-
sions are required. Miiller proposed an algorithm
for direct computation of 4P [10]. His algorithm
requires 7 squarings, 14 multiplications and 1 in-
version. The Sakai-Sakurai’s algorithm for 2¥ P can
also compute 4P if k = 2 [11]. This algorithm re-
quires 9 squarings, 9 multiplications and 1 inver-
sion, and thus it is efficient in comparison with the
two successive doublings if 1 inversion costs more
than 9 multiplications under our assumptions.

We present a new algorithm for computing 4P
which uses Montgomery trick. Our algorithm is
mainly based on the two successive doublings. As
we have seen, the straightforward way requires two
inverses (2yp)~! and (2y2p)~!. To reduce the num-
ber of inversions, we focus on the formula for ysp.
Letting e = 2(3z%+a){12zpy%—(3z%+a)?} — 16y},
we can see that e = 16y5ysp. Defining E = 2ype
and I = E~!, we can obtain (2yp)~* and (2y2p) "
by

(2y2p)*1 = 16y}%[, (2yp)*1 =el .

The remaining part of our quadrupling algorithm is
identical to the two successive doublings. Namely,
we first calculate (2yp)~! and (2y2p)~!, and then
calculate A1, zop, yop, A2, Tap, Yap in this order.
We show the detailed version of our quadrupling
algorithm in the following.

Algorithm A: Computation of 4P in affine coor-
dinates.

INPUT: P = (zp, yp)
QUTPUT: 4P = (z4p, Yapr)
Step 1. Precomputation
m = 3z5+a
s = xp(2yp)?
t = (2yp)*
Step 2. Computation of the inverses
e = 2m(3s—m?) —t
E = (2yp)e
I = B!
(2yp)~! = el
(ngp)71 = tI
Step 3. Computation of 4P
Moo= m(2yp)!
Top =)\% — 21’p
Yvor = Ai(zp —22p) —yp
Ay = (323p +a)(2y2p)
Tip = A3 —21op
yap = Xa(x2p — Tap) — Y2p

We estimate the efficiency of our quadrupling al-
gorithm. Step 1 requires 3 squarings and 1 mul-
tiplication. Step 2 requires 1 squaring, 4 multipli-
cations and 1 inversion. Finally, Step 3 requires
3 squarings and 4 multiplications. Therefore, our
quadrupling algorithm requires 7 squarings, 9 mul-
tiplications and 1 inversion.

We show a summary of the efficiency for quadru-
pling in Table 1. In comparison with the Miiller’s
algorithm, our quadrupling algorithm saves 5 multi-
plications. Moreover, in comparison with the Sakai-
Sakurai’s algorithm of £ = 2, our algorithm saves
2 squarings. Thus, we conclude that our quadru-
pling algorithm is more efficient than the existing
algorithms.

3.2 Modification to the
Sakai-Sakurai’s Algorithm

This section handles computation of a point 2¥P
from P for arbitrary natural number k. The slid-
ing window method [4] is an extension of the 2%-
ary method, in which the window size is at most w.

0 360

研究会temp
テキストボックス
－36－

Table 1: The efficiency for quadrupling

two doublings
Miiller [10]
Sakai-Sakurai (k = 2) [11]

4 squarings, 4 multiplications and 2 inversions
7 squarings, 14 multiplications and 1 inversion
9 squarings, 9 multiplications and 1 inversion

proposed quadrupling

7 squarings, 9 multiplications and 1 inversion

This method performs Y « 2'Y +vP, where v is the
value of the current window, and ¢ is the size of the
current window plus the interval between the cur-
rent window and its neighbor to the left. Therefore,
the sliding window method requires computation of
2k P for various k.

3.2.1 The Sakai-Sakurai’s algorithm.

Sakai and Sakurai [11] proposed an efficient algo-
rithm for direct computation of 2 P. We show their
algorithm in the following.

The Sakai-Sakurai’s algorithm

INPUT: P = (xp, yp)
OUTPUT: 2*P = (zoxp, Yok p)
Step 1. Computation of Ay, By, C

A1 = Tp
Bl = 3£CP2 +a
Ci = —yp
Step 2. Computation of A;, B;, C;
(i=2,3,...,k)
A, = Bi2—1 — 8A1;_1O,L-2_1
i—1
B; = 347+16a(]] C))*
j=1
C; = —8Ci,—Bi_1(A;—4A,_,C%)

Step 3. Computation of 28 P

Dy = 124,C? - B}
B} —8A,C?
2

Tokp =

8Ct — By Dy,
(Qk H§:1 Oj)3

Yorp =

As we have noted, this algorithm does not com-
pute intermediate points 2P, 4P, ..., 2*71P in ex-
plicit form. These intermediate points are stored as
three terms, A1, Ciy1, 2° [[;—, Cj. We can ob-
tain 2'P = (x9ip, y2ip) (1 <i<k—1) by

2

Toip = A/ QiHOj
j=1
4 3
) 7
yar = —Cip/S2°[]C

j=1

This algorithm requires only 1 inversion at Step 3
since intermediate points are not computed explic-
itly. In addition, 4k 4 1 squarings and 4k + 1 mul-
tiplications are required.

3.2.2 A Variant of the Sakai-Sakurai’s
Algorithm.

The Sakai-Sakurai’s algorithm avoids the computa-
tion of (z4ip, Y9ip) by storing intermediate points
in implicit form. This algorithm repeatedly calcu-
lates three parameters A;y1, Bit1, Ciy1 using A;,
Bi,C; (1 <i < k—1). 2P = (zorp, yorp) is
computed using the parameters which have been
already calculated.

We first consider a variant of the Sakai-Sakurai’s
algorithm. This variant first computes 2¥~1P =
(zox—1p, Yor-1p) by the Sakai-Sakurai’s algorithm,
and then computes 28 P = (2% p, yor p) by one dou-
bling. Computing (Zor—1p, Yor-1p) requires 4k —

0370

研究会temp
テキストボックス
－37－

3 squarings, 4k — 3 multiplications and 1 inver-
sion. Moreover, one doubling in affine coordinates
requires 2 squarings, 2 multiplications and 1 inver-
sion. Therefore, This variant requires 4k — 1 squar-
ings, 4k — 1 multiplications and 2 inversions. Com-
paring to the Sakai-Sakurai’s algorithm, the vari-
ant of the Sakai-Sakurai’s algorithm saves 2 squar-
ings and 2 multiplications, and requires additional
1 inversion. Under our assumptions, this variant is
inefficient if 1 inversion costs more than 3.6 mul-
tiplications. In the following part, we modify this
variant using Montgomery trick.

3.2.3 A Variant with Montgomery Trick.

As we described above, the variant of the Sakai-
Sakurai’s algorithm requires two inverses. Comput-
ing 28=1P = (29x-1p, Yor-1p) TEquires

k—1
e Ien -
j=1

In addition, one doubling in affine coordinates re-

quires (yor—1p) L
Here we set

Xowoip = BP | —8A, 1C? |,
YQk—lP = 80];1,1 —Br_1Dp 1)
k—1
Zyap = 227V]]Cy (1)
j=1

From (1), zor—1p and yor—1p satisfy the following
equations?;

sz—lp 5/219—1})
Tok—1p = 72 , Yok—1p = 75 (2
2k—1p 2k—1p

Therefore, (ygr—1p) "

is equal to ng_lp/2Y2k—1P.
We apply Montgomery trick to calculate Z;,},l P
and (2Yk-1p) ! simultaneously.

We first calculate Xok-1p, Yor-1p, Zok—1p us-
ing the Sakai-Sakurai’s algorithm. Let d and I be
d=2Ys-1pZy—1p and I = d~'. We can obtain

2These equations are equivalent to the definition of Jaco-
bian coordinates.

Z;kl,lp = 2Yor-1,1. Then, we calculate zox-1p and
Yar-1p by (2).

Next, we compute 2¥P = (29kp, yorp) from
2F=1P = (29k-1p, Yor-1p). We induce the formula
for A as follows®:

A = (3x3k,1p +a)/2y2k—lp
= (3(E§)€_1P + a) . ng_lP . (2Y2k—1p)_1
= (Bayapta) Zyap-l

= (3X22k—lp + aZ;lk—lp)I
= (BXjwip+2-aZgusp - 8CL_)I .

3)

The induced formula (3) contains two terms; 8C_,
and ang,zp. At a glance, these terms seem not
to be calculated. However, from (1), 8C{_; has

been already calculated in the formula for Yoe—1p.

Also, aZ;‘,c_2 p has been calculated in the formula
for By_1%. Therefore, if the values of 80,%71 and

aZy, »p are stored, we can calculate A from (3).
Finally, using xor-1p, yor—1p and A, we compute
(Tarps Yok p).-

We summarize the variant of the Sakai-Sakurai’s
algorithm with Montgomery trick in the following.

Algorithm B: A variant of the Sakai-Sakurai’s al-
gorithm

INPUT: P = (.%p, yp)

OUTPUT: 2*P = (29 p, Yorp)

Step 1. Computation of Ag_1, Bx_1, Cx—1 using
the Sakai-Sakurai’s algorithm

Step 2. Computation of Xor—1p, Yor—1p, Zor-1p

XQk—lP - Bi—l - 8Ak_1013_1
Yoroip = 8C{_ | — Br_1(44;,_1C?_,
— Xor-1p)
k-1
Z2k—lp == 2k_1 H Cj
j=1

aZ?t =

(Also storing aZy._.p

and 80,3_1.)

165 2a(527 C))*

_ k—1
3From (1), a,Z;lk71P =a(2k1 Hj:l ci)t

— q(9k—2TTk 2 — 4
=a@* 227 Ot 16513_1 =2-aZ}_\p- s;kck_1 :
_ -2 _ -2
4From (1), 16 2a(Hj:1 Ci)* = a(2k 2Hj:1 cyt =
aZék_QP .

0 380

研究会temp
テキストボックス
－38－

Table 2: The efficiency for computing 2% P

Sakai-Sakurai [11]

4k + 1 squarings, 4k 4+ 1 multiplications and 1 inversion

proposed algorithm

4k — 1 squarings, 4k + 2 multiplications and 1 inversion

Step 3. Computation of (xgr-1p, Yor—1p)
d - 2Y2k—1pZ2k—1p
I = da!
Zptip = 2Yaeapl
Tok—1p = XQk—lpZ;kZ,IP
Yok-1p Yoi-1pZyl s p
Step 4. Computation of (xorp, Yok p)
AN = (BXoap+2-aZyap
8Ck_)1
Tokp —)\2 — 2.1321«—1})
Yorp = MTor-1p — Tokp) — Yor-1p

Here we estimate the efficiency of the variant of
the Sakai-Sakurai’s algorithm. Step 1 requires 4k—7
squarings and 3k—6 multiplications. Step 2 requires
3 squarings and k multiplications. Step 3 requires 1
squaring, 5 multiplications and 1 inversion. Finally,
step 4 requires 2 squarings and 3 multiplications.
Therefore, our algorithm for 2P requires 4k — 1
squarings, 4k + 2 multiplications and 1 inversion.

We summarize the efficiency for computing 2% P
in Table 2. In comparison with the Sakai-Sakurai’s
algorithm, our variant algorithm saves 2 squarings
and requires 1 additional multiplication. Namely,
our variant algorithm saves 0.6 multiplications com-
paring to the Sakai-Sakurai’s algorithm under our
assumptions.

4 Application to Scalar
Multiplication

As an instance, we compute dP using the 2%-ary
method with w = 3, where

d = 49719768
(101010010010010010100101000) .

We use a symbol ‘1’ to represent —1. We com-
pute the point of the form 23P + @ as follows;
compute 22P first, and then compute 2(2?P) + Q
using the Ciet-Joye-Lauter-Montgomery algorithm
[1]. We assume that 2P, 3P, 4P have been already
precomputed.

We consider two cases for computing 49719768 P
between two cases(see Table 3). Case I computes
a point 2!P by the Sakai-Sakurai’s algorithm, and
Case II computes 2°P by Algorithm A(for k& = 2)
or Algorithm B(for k¥ > 3). We estimate the num-
ber of field arithmetics for each such case. Case
I requires 90 squarings, 139 multiplications and 15
inversions, and Case II requires 74 squarings, 140
multiplications and 15 inversions. Namely, our al-
gorithms save 16 squarings and require 1 additional
multiplication. In case that the cost of a inversion
is 10 times as expensive as that of a multiplication,
the savings of the proposed algorithms translates to
3.3%.

5 Conclusion

We have presented two algorithms for computing
points of the form 2* P which use Montgomery trick.
The one only works for k£ = 2, and the other works
for arbitrary natural number k. We have shown
that our proposed algorithms are more efficient in
comparison with existing algorithms.

References

[1] M. Ciet, M. Joye, K. Lauter and P.L. Mont-
gomery, “Trading inversions for multiplica-
tions in elliptic curve cryptography”, TACR
Cryptology ePrint Archive, 2003. available at
http://eprint.iacr.org/2003/257.ps.gz

0390

研究会temp
テキストボックス
－39－

[2]

Table 3: An instance of computing 46719768 P

2P = 23.3P-2P
178P = 23.22P 4 2P
1426P = 23.178P +2P
11406P = 23.1426P — 2P
91250P = 23.11406P + 2P
729996P = 23.91250P — 4P
5839971P = 23.729996P + 3P
46719768P = 23.5839971P

H. Cohen, A course in Computational Al-
gebraic Number Theory, Graduate Texts in
Math. 138, Springer-Verlag, Berlin, 1993.

K. Eisentriger, K. Lauter, P.L.. Montgomery,
“An efficient procedure to double and add
points on an elliptic curve”, TACR Cryp-
tology ePrint Archive, 2002. available at
http://eprint.iacr.org/2002/112.ps.gz

D.M. Gordon, “A survey of fast exponentiation
methods”, J. Algorithms, 27 (1998), 129-146.

J. Guajardo and C. Paar, “Efficient algorithms
for elliptic curve cryptosystems”, Advances in
Cryptology—Crypto’97, LNCS 1294 (1997),
Springer-Verlag, 342-356.

D.E. Knuth, The Art of Computer Program-
ming, Vol. 2, Seminumerical Algorithms, 3rd
ed., Addison-Wesley, Reading, MA, 1997.

K. Koyama, and Y. Tsuruoka, “Speeding up
elliptic cryptosystems by using a signed binary
window method,” Advances in Cryptology—
Crypto’92, LNCS 740, Springer-Verlag, 345—
357.

F. Morain, and J. Olivos, “Speeding up
the computations on an elliptic curve using
addition-subtraction chains,” Theoretical In-
formatics and Applications, 24 (1990), No.6,
531-544.

(Case I) (Case II)

[22P), [2P + Q] [Alg-A], [2P + Q)]

[22P], [2P + Q] [Alg-A], [2P + Q)]

[22P],[2P + Q)] [Alg-A],[2P + Q]

2°P],[2P + Q] [Alg-A],[2P + Q)]

2°P], 2P+ Q] [Alg-A],[2P + Q)

2°P],[2P + Q] [Alg-A],[2P + Q)]

[2P], [2P + Q] [Alg-A], [2P + Q]

23 P] [Alg-B(k = 3)]

[9] P.L. Montgomery, “Speeding the Pollard and
elliptic curve methods of factorization”, Math.
Comp., v. 48 (1987), 243-264.

[10] V. Miller, “Efficient algorithms for mul-
tiplication on elliptic curves”, Proc. GI-
Arbeitskonferenz ~ Chipkarten 1998, TU
Miinchen, 1998.

[11] Y. Sakai, K. Sakurai, “Efficient scalar multi-
plications on elliptic curves with direct com-
putations of several doublings”, IEICE Trans.
Fundamentals, Vol.E84-A, No.1, 120-129, Jan,
2001.

[12] J.A. Solinas, “Efficient arithmetic on Koblitz
curves”, Designs, Codes and Cryptography, 19

0400

(2000), 195-249.

研究会temp
テキストボックス
－40－

