
モンゴメリのトリックを用いた 2kP 倍点の改良計算法
安達 大亮 平田 富夫
名古屋大学大学院工学研究科

〒 464-8603 名古屋市千種区不老町
Tel: 052-789-3440, Fax: 052-789-3089

E-mail: {adachi,hirata}@hirata.nuee.nagoya-u.ac.jp

概 要

この論文では素体上で定義された楕円曲線に注目する。我々は、アフィン座標系において、楕円曲線
上の点 P からその 2k 倍の点 2kP を求めるアルゴリズムを２つ提案する。１つは k = 2 の場合に有効で
あり、もう１つは任意の自然数 k に対して有効である。これらのアルゴリズムは、素体上の逆元計算 1回
を素体上の乗算数回と置き換えることに基礎を置いている。我々は、逆元計算の置き換えにモンゴメリの
トリックと呼ばれる技法を用いた。妥当な仮定の下で、我々のアルゴリズムは既存のアルゴリズムよりも
効率良く動作する。

Refined Computations for Points of the Form 2kP Using
Montgomery Trick

Daisuke Adachi Tomio Hirata
Graduate School of Engineering, Nagoya University

Furou, Chikusa, Nagoya, Aichi, 464-8603, Japan
Tel: 052-789-3440, Fax: 052-789-3089

E-mail: {adachi,hirata}@hirata.nuee.nagoya-u.ac.jp

Abstract

This paper focus on an elliptic curve defined over a prime field. We propose two algorithms for
computing points of the form 2kP in affine coordinates. The one only works for k = 2, and the other
works for arbitrary natural number k. These algorithms are based on a trade-off between a field
inversion and some field multiplications. We apply Montgomery trick to do this trade-off. Under a
reasonable assumption, our algorithms are efficient in comparison with existing algorithms.

1 Introduction

In recent years, commercial use of elliptic curve
cryptographic schemes has increased. The execu-
tion time of elliptic curve cryptographic schemes
heavily depends on that of scalar multiplications.
This multiplication takes a point P on an elliptic
curve over a finite field and computes a scalar mul-
tiple dP for some scalar d.

The 2w-ary method [2, 6] and the sliding win-
dow method [4] are useful for a scalar multiplica-
tion. These methods usually use the signed binary
representation of the scalar [7, 8, 12] and repeatedly

compute points of the form 2kP and 2P + Q from
points P and Q on an elliptic curve. This compu-
tation uses two arithmetics on the elliptic curve; an
addition and a doubling. The computation time of
additions and doublings varies depending on the co-
ordinate system for representing the elliptic curve.

Here we focus on an elliptic curve defined over
GF(p). In affine coordinates, additions and dou-
blings include inversions over the finite field. How-
ever, a field inversion is much expensive than a field
squaring or a field multiplication. In fact, Sakai-
Sakurai [11] reported that the ratio of computation

–1–

研究会temp
テキストボックス
社団法人 情報処理学会　研究報告
IPSJ SIG Technical Report

研究会temp
テキストボックス
2004－AL－98　(6)

研究会temp
テキストボックス
2004／11／5

研究会temp
テキストボックス
－33－



time of a field inversion to a field multiplication
became 25.0 for 160-bit p in their implementation.
Therefore, reducing the number of field inversions
is important for an efficient scalar multiplication.

One method for reducing the number of field
inversions is direct computation for points on an el-
liptic curve. For example, the direct computation
for 2kP computes 2kP directly from P , computing
no intermediate points 2P, 4P, . . . , 2k−1P . The con-
cept of direct computation was firstly proposed by
Guajardo and Paar [5]. They gave algorithms for
direct computation of 4P, 8P and 16P on an ellip-
tic curve defined over a binary field in affine coordi-
nates. In recent years, several algorithms of direct
computation for 2kP or 2P + Q in affine coordi-
nates have been proposed [1, 3, 5, 10, 11]. Sakai
and Sakurai [11] proposed an efficient algorithm
for 2kP on an elliptic curve defined over GF(p).
This algorithm works for arbitrary natural number
k. Also, Eisenträger, Lauter and Montgomery [3]
proposed an efficient algorithm for 2P + Q on an
elliptic curve defined over GF(p). Moreover, Ciet,
Joye, Lauter and Montgomery [1] extended and re-
fined this algorithm for an elliptic curve defined over
both GF(p) and a binary field. In Ciet-Joye-Lauter-
Montgomery’s algorithm, one technique is used for
reducing inversions, which is called “Montgomery
trick” [9].

This paper is organized as follows. Section 2
describes assumptions and preliminaries. In Sect.3,
we propose two algorithms for computing points of
the form 2kP which use Montgomery trick. The
one only works for k = 2, and the other works for
arbitrary natural number k. Section 4 applies our
algorithms to scalar multiplication and estimates
their savings.

2 Preliminaries

This chapter describes assumptions and preliminar-
ies used in this paper.

2.1 Arithmetics over GF(p)

The set of points on an elliptic curve defined over
GF(p) is used for implementation of elliptic curve
cryptographic scheme. The set (plus the point at
infinity) becomes additive group with addition P +
Q for points P, Q on the elliptic curve. If P and
Q are different, P + Q is called “addition”, and if
P and Q are identical, it is called “doubling” and
denoted by 2P .

Additions and doublings are both implemented
by several kinds of field arithmetics. Among these
arithmetics, a field squaring, a field multiplication
and a field inversion are more expensive than other
field arithmetics, such as a field addition and a field
subtraction. We intend to estimate the efficiency
of algorithms for computing points on an elliptic
curve by the number of the former three field arith-
metics1. Moreover, as in [1, 11], we will assume that
the cost of a field squaring is 80% as expensive as
that of a field multiplication. By dropping “field”,
we call these field arithmetics just as squaring, mul-
tiplication and inversion.

2.2 Addition Formula on Affine
Coordinates

Let p denote a prime. Ep : y2 ≡ x3 + ax + b
(mod p) (4a3 + 27b2 6 ≡0) is an elliptic curve de-
fined over GF(p). We also focus on the case that the
coordinate system for representing points is affine
coordinates. Let P = (xP , yP ) and Q = (xQ, yQ)
be points on Ep.

The point P + Q = (xP+Q, yP+Q), the result of
adding P to Q, is derived from the following formu-
lae:

λ =
yQ − yP

xQ − xP
,

xP+Q = λ2 − xP − xQ ,
yP+Q = λ(xP − xP+Q)− yP .

Thus, an addition requires 1 squaring, 2 multiplica-
tions and 1 inversion.

1We ignore field multiplication by small constant because
it is much cheaper than generic field multiplication.

–2–

研究会temp
テキストボックス
－34－



Furthermore, the point 2P = (x2P , y2P ), the
result of doubling P , is derived from the following
formulae:

λ =
3x2

P + a

2yP
,

x2P = λ2 − 2xP ,
y2P = λ(xP − x2P )− yP .

Thus, a doubling requires 2 squarings, 2 multiplica-
tions and 1 inversion.

2.3 Montgomery Trick

Montgomery trick [9] is a technique for simultane-
ous inversions. As a simple example, the inverses
modulo p of two numbers x, y can be calculated by
the following way:

M = xy,
I = M−1,

x−1 = Iy,
y−1 = Ix .

These formulae indicate that 2 inversions can be re-
placed by 1 inversion and 3 multiplications. Simi-
larly, the inverses modulo p of m numbers x−1

1 , x−1
2 ,

. . . , x−1
m ∈ GF(p) are calculated as follows.

(i) Calculate
∏i

j=1 xj for each i = 2, 3, . . . , m
and store them.

(ii) Calculate (
∏m

j=1 xj)−1.
(iii) Calculate (

∏i
j=1 xj)−1 ·∏i−1

j=1 xj = x−1
i and

(
∏i

j=1 xj)−1 · xi = (
∏i−1

j=1 xj)−1 for each i =
m, . . . , 3, 2.

In (i), (m − 1) multiplications are required, and
(2m− 2) multiplications are required in (iii). Thus,
x−1

1 , x−1
2 , . . . , x−1

m ∈ GF(p) can be calculated by 1
inversion and (3m − 3) multiplications. The above
replacements are effective if 1 inversion costs more
than 3 multiplications.

3 New Efficient Algorithms by
Montgomery Trick

In this chapter, we will propose a new algorithm for
computing the quadruple point 4P from P which

uses Montgomery trick. The proposed algorithm
saves 2 squarings in comparison with the Sakai-
Sakurai’s algorithm for k = 2. Moreover, we will
modify the Sakai-Sakurai’s algorithm using Mont-
gomery trick. This modification saves 2 squarings
and requires 1 additional multiplication comparing
to the original version of the Sakai-Sakurai’s algo-
rithm.

3.1 Formulae for Quadrupling

This section handles quadrupling of a point P . The
2w-ary method [2, 6] is known as an efficient algo-
rithm for scalar multiplication dP . This method
reads every w bits of a (signed) binary representa-
tion of d from left to right.

The 2w-ary method

INPUT: d =
∑t−1

j=0 d[j]2j , P
OUTPUT: a scalar multiple dP of P
Step 1. Precomputation

Compute vP for all v ∈ {1, . . . , 2w − 1}
Step 2. Evaluation

Y ← O (point at infinity)
for j = b(t− 1)/wcw down to 0 step w do

Y ← 2wY
if v = (d[j + w − 1] . . . d[j])2 6= 0 then

Y ← Y + vP
return Y

We focus on the situation in which the 2w-ary
method with small w is adopted to compute dP .
This situation frequently appears in case of imple-
menting an elliptic curve cryptographic scheme on
a device whose computation resources are limited,
such as a smart card. Quadrupling of a point ob-
viously appears for w = 2. Also, Quadrupling ap-
pears in case of w = 3 if this method computes 22P
first and then computes 2(22Y )+vP . For this com-
putation, direct computation of 2P +Q can be used
[1, 3].

A straightforward computation of a quadruple
point 4P is to perform two successive doublings.

–3–

研究会temp
テキストボックス
－35－



4P = (x4P , y4P ) is computed by

λ1 =
3x2

P + a

2yP

x2P = λ2
1 − 2xP

y2P = λ1(xP − x2P )− yP

and

λ2 =
3x2

2P + a

2y2P

x4P = λ2
2 − 2x2P

y4P = λ2(x2P − x4P )− y2P .

Thus, 4 squarings, 4 multiplications and 2 inver-
sions are required. Müller proposed an algorithm
for direct computation of 4P [10]. His algorithm
requires 7 squarings, 14 multiplications and 1 in-
version. The Sakai-Sakurai’s algorithm for 2kP can
also compute 4P if k = 2 [11]. This algorithm re-
quires 9 squarings, 9 multiplications and 1 inver-
sion, and thus it is efficient in comparison with the
two successive doublings if 1 inversion costs more
than 9 multiplications under our assumptions.

We present a new algorithm for computing 4P
which uses Montgomery trick. Our algorithm is
mainly based on the two successive doublings. As
we have seen, the straightforward way requires two
inverses (2yP )−1 and (2y2P )−1. To reduce the num-
ber of inversions, we focus on the formula for y2P .
Letting e = 2(3x2

P +a){12xP y2
P−(3x2

P +a)2}−16y4
P ,

we can see that e = 16y3
P y2P . Defining E = 2yP e

and I = E−1, we can obtain (2yP )−1 and (2y2P )−1

by

(2y2P )−1 = 16y4
P I, (2yP )−1 = eI .

The remaining part of our quadrupling algorithm is
identical to the two successive doublings. Namely,
we first calculate (2yP )−1 and (2y2P )−1, and then
calculate λ1, x2P , y2P , λ2, x4P , y4P in this order.
We show the detailed version of our quadrupling
algorithm in the following.

Algorithm A: Computation of 4P in affine coor-
dinates.

INPUT: P = (xP , yP )
OUTPUT: 4P = (x4P , y4P )
Step 1. Precomputation

m = 3x2
P + a

s = xP (2yP )2

t = (2yP )4

Step 2. Computation of the inverses

e = 2m(3s−m2)− t
E = (2yP )e
I = E−1

(2yP )−1 = eI
(2y2P )−1 = tI

Step 3. Computation of 4P

λ1 = m(2yP )−1

x2P = λ2
1 − 2xP

y2P = λ1(xP − x2P )− yP

λ2 = (3x2
2P + a)(2y2P )−1

x4P = λ2
2 − 2x2P

y4P = λ2(x2P − x4P )− y2P

We estimate the efficiency of our quadrupling al-
gorithm. Step 1 requires 3 squarings and 1 mul-
tiplication. Step 2 requires 1 squaring, 4 multipli-
cations and 1 inversion. Finally, Step 3 requires
3 squarings and 4 multiplications. Therefore, our
quadrupling algorithm requires 7 squarings, 9 mul-
tiplications and 1 inversion.

We show a summary of the efficiency for quadru-
pling in Table 1. In comparison with the Müller’s
algorithm, our quadrupling algorithm saves 5 multi-
plications. Moreover, in comparison with the Sakai-
Sakurai’s algorithm of k = 2, our algorithm saves
2 squarings. Thus, we conclude that our quadru-
pling algorithm is more efficient than the existing
algorithms.

3.2 Modification to the
Sakai-Sakurai’s Algorithm

This section handles computation of a point 2kP
from P for arbitrary natural number k. The slid-
ing window method [4] is an extension of the 2w-
ary method, in which the window size is at most w.

–4–

研究会temp
テキストボックス
－36－



Table 1: The efficiency for quadrupling

two doublings 4 squarings, 4 multiplications and 2 inversions
Müller [10] 7 squarings, 14 multiplications and 1 inversion

Sakai-Sakurai (k = 2) [11] 9 squarings, 9 multiplications and 1 inversion
proposed quadrupling 7 squarings, 9 multiplications and 1 inversion

This method performs Y ← 2iY +vP , where v is the
value of the current window, and i is the size of the
current window plus the interval between the cur-
rent window and its neighbor to the left. Therefore,
the sliding window method requires computation of
2kP for various k.

3.2.1 The Sakai-Sakurai’s algorithm.

Sakai and Sakurai [11] proposed an efficient algo-
rithm for direct computation of 2kP . We show their
algorithm in the following.

The Sakai-Sakurai’s algorithm

INPUT: P = (xP , yP )
OUTPUT: 2kP = (x2kP , y2kP )
Step 1. Computation of A1, B1, C1

A1 = xP

B1 = 3xP
2 + a

C1 = −yP

Step 2. Computation of Ai, Bi, Ci

(i = 2, 3, . . . , k)

Ai = B2
i−1 − 8Ai−1C

2
i−1

Bi = 3A2
i + 16i−1a(

i−1∏

j=1

Cj)4

Ci = −8C4
i−1 −Bi−1(Ai − 4Ai−1C

2
i−1)

Step 3. Computation of 2kP

Dk = 12AkC2
k −B2

k

x2kP =
B2

k − 8AkC2
k(

2k
∏k

j=1 Cj

)2

y2kP =
8C4

k −BkDk(
2k

∏k
j=1 Cj

)3

As we have noted, this algorithm does not com-
pute intermediate points 2P, 4P, . . . , 2k−1P in ex-
plicit form. These intermediate points are stored as
three terms, Ai+1, Ci+1, 2i

∏i
j=1 Cj . We can ob-

tain 2iP = (x2iP , y2iP ) (1 ≤ i ≤ k − 1) by

x2iP = Ai+1/



2i

i∏

j=1

Cj





2

y2iP = −Ci+1/



2i

i∏

j=1

Cj





3

.

This algorithm requires only 1 inversion at Step 3
since intermediate points are not computed explic-
itly. In addition, 4k + 1 squarings and 4k + 1 mul-
tiplications are required.

3.2.2 A Variant of the Sakai-Sakurai’s
Algorithm.

The Sakai-Sakurai’s algorithm avoids the computa-
tion of (x2iP , y2iP ) by storing intermediate points
in implicit form. This algorithm repeatedly calcu-
lates three parameters Ai+1, Bi+1, Ci+1 using Ai,
Bi, Ci (1 ≤ i ≤ k − 1). 2kP = (x2kP , y2kP ) is
computed using the parameters which have been
already calculated.

We first consider a variant of the Sakai-Sakurai’s
algorithm. This variant first computes 2k−1P =
(x2k−1P , y2k−1P ) by the Sakai-Sakurai’s algorithm,
and then computes 2kP = (x2kP , y2kP ) by one dou-
bling. Computing (x2k−1P , y2k−1P ) requires 4k −

–5–

研究会temp
テキストボックス
－37－



3 squarings, 4k − 3 multiplications and 1 inver-
sion. Moreover, one doubling in affine coordinates
requires 2 squarings, 2 multiplications and 1 inver-
sion. Therefore, This variant requires 4k− 1 squar-
ings, 4k− 1 multiplications and 2 inversions. Com-
paring to the Sakai-Sakurai’s algorithm, the vari-
ant of the Sakai-Sakurai’s algorithm saves 2 squar-
ings and 2 multiplications, and requires additional
1 inversion. Under our assumptions, this variant is
inefficient if 1 inversion costs more than 3.6 mul-
tiplications. In the following part, we modify this
variant using Montgomery trick.

3.2.3 A Variant with Montgomery Trick.

As we described above, the variant of the Sakai-
Sakurai’s algorithm requires two inverses. Comput-
ing 2k−1P = (x2k−1P , y2k−1P ) requires

(2k−1
k−1∏

j=1

Cj)−1 .

In addition, one doubling in affine coordinates re-
quires (y2k−1P )−1.

Here we set

X2k−1P = B2
k−1 − 8Ak−1C

2
k−1 ,

Y2k−1P = 8C4
k−1 −Bk−1Dk−1 ,

Z2k−1P = 2k−1
k−1∏

j=1

Cj . (1)

From (1), x2k−1P and y2k−1P satisfy the following
equations2;

x2k−1P =
X2k−1P

Z2
2k−1P

, y2k−1P =
Y2k−1P

Z3
2k−1P

. (2)

Therefore, (y2k−1P )−1 is equal to Z3
2k−1P /2Y2k−1P .

We apply Montgomery trick to calculate Z−1
2k−1P

and (2Y2k−1P )−1 simultaneously.
We first calculate X2k−1P , Y2k−1P , Z2k−1P us-

ing the Sakai-Sakurai’s algorithm. Let d and I be
d = 2Y2k−1P Z2k−1P and I = d−1. We can obtain

2These equations are equivalent to the definition of Jaco-
bian coordinates.

Z−1
2k−1p

= 2Y2k−1pI. Then, we calculate x2k−1P and
y2k−1P by (2).

Next, we compute 2kP = (x2kP , y2kP ) from
2k−1P = (x2k−1P , y2k−1P ). We induce the formula
for λ as follows3:

λ = (3x2
2k−1P + a)/2y2k−1P

= (3x2
2k−1P + a) · Z3

2k−1P · (2Y2k−1P )−1

= (3x2
2k−1P + a) · Z4

2k−1P · I
= (3X2

2k−1P + aZ4
2k−1P )I

= (3X2
2k−1P + 2 · aZ4

2k−2P · 8C4
k−1)I . (3)

The induced formula (3) contains two terms; 8C4
k−1

and aZ4
2k−2P . At a glance, these terms seem not

to be calculated. However, from (1), 8C4
k−1 has

been already calculated in the formula for Y2k−1P .
Also, aZ4

2k−2P has been calculated in the formula
for Bk−1

4. Therefore, if the values of 8C4
k−1 and

aZ4
2k−2P are stored, we can calculate λ from (3).

Finally, using x2k−1P , y2k−1P and λ, we compute
(x2kP , y2kP ).

We summarize the variant of the Sakai-Sakurai’s
algorithm with Montgomery trick in the following.

Algorithm B: A variant of the Sakai-Sakurai’s al-
gorithm

INPUT: P = (xP , yP )
OUTPUT: 2kP = (x2kP , y2kP )
Step 1. Computation of Ak−1, Bk−1, Ck−1 using

the Sakai-Sakurai’s algorithm
Step 2. Computation of X2k−1P , Y2k−1P , Z2k−1P

X2k−1P = B2
k−1 − 8Ak−1C

2
k−1

Y2k−1P = 8C4
k−1 −Bk−1(4Ak−1C

2
k−1

−X2k−1P )

Z2k−1P = 2k−1
k−1∏

j=1

Cj

(Also storing aZ4
2k−2P = 16k−2a(

∏k−2
j=1 Cj)4

and 8C4
k−1.)

3From (1), aZ4
2k−1P

= a(2k−1
∏k−1

j=1
Cj)

4

= a(2k−2
∏k−2

j=1
Cj)

4 · 16C4
k−1 = 2 · aZ4

2k−1P
· 8C4

k−1 .

4From (1), 16k−2a(
∏k−2

j=1
Cj)

4 = a(2k−2
∏k−2

j=1
Cj)

4 =

aZ4
2k−2P

.

–6–

研究会temp
テキストボックス
－38－



Table 2: The efficiency for computing 2kP

Sakai-Sakurai [11] 4k + 1 squarings, 4k + 1 multiplications and 1 inversion
proposed algorithm 4k − 1 squarings, 4k + 2 multiplications and 1 inversion

Step 3. Computation of (x2k−1P , y2k−1P )

d = 2Y2k−1P Z2k−1P

I = d−1

Z−1
2k−1P

= 2Y2k−1P I

x2k−1P = X2k−1P Z−2
2k−1P

y2k−1P = Y2k−1P Z−3
2k−1P

Step 4. Computation of (x2kP , y2kP )

λ = (3X2
2k−1P + 2 · aZ4

2k−2P

· 8C4
k−1)I

x2kP = λ2 − 2x2k−1P

y2kP = λ(x2k−1P − x2kP )− y2k−1P

Here we estimate the efficiency of the variant of
the Sakai-Sakurai’s algorithm. Step 1 requires 4k−7
squarings and 3k−6 multiplications. Step 2 requires
3 squarings and k multiplications. Step 3 requires 1
squaring, 5 multiplications and 1 inversion. Finally,
step 4 requires 2 squarings and 3 multiplications.
Therefore, our algorithm for 2kP requires 4k − 1
squarings, 4k + 2 multiplications and 1 inversion.

We summarize the efficiency for computing 2kP
in Table 2. In comparison with the Sakai-Sakurai’s
algorithm, our variant algorithm saves 2 squarings
and requires 1 additional multiplication. Namely,
our variant algorithm saves 0.6 multiplications com-
paring to the Sakai-Sakurai’s algorithm under our
assumptions.

4 Application to Scalar
Multiplication

As an instance, we compute dP using the 2w-ary
method with w = 3, where

d = 49719768
= (101̄01̄001001001̄00101̄00101̄000)2 .

We use a symbol ‘1̄’ to represent −1. We com-
pute the point of the form 23P + Q as follows;
compute 22P first, and then compute 2(22P ) + Q
using the Ciet-Joye-Lauter-Montgomery algorithm
[1]. We assume that 2P, 3P, 4P have been already
precomputed.

We consider two cases for computing 49719768P
between two cases(see Table 3). Case I computes
a point 2iP by the Sakai-Sakurai’s algorithm, and
Case II computes 2iP by Algorithm A(for k = 2)
or Algorithm B(for k ≥ 3). We estimate the num-
ber of field arithmetics for each such case. Case
I requires 90 squarings, 139 multiplications and 15
inversions, and Case II requires 74 squarings, 140
multiplications and 15 inversions. Namely, our al-
gorithms save 16 squarings and require 1 additional
multiplication. In case that the cost of a inversion
is 10 times as expensive as that of a multiplication,
the savings of the proposed algorithms translates to
3.3%.

5 Conclusion

We have presented two algorithms for computing
points of the form 2kP which use Montgomery trick.
The one only works for k = 2, and the other works
for arbitrary natural number k. We have shown
that our proposed algorithms are more efficient in
comparison with existing algorithms.

References

[1] M. Ciet, M. Joye, K. Lauter and P.L. Mont-
gomery, “Trading inversions for multiplica-
tions in elliptic curve cryptography”, IACR
Cryptology ePrint Archive, 2003. available at
http://eprint.iacr.org/2003/257.ps.gz

–7–

研究会temp
テキストボックス
－39－



Table 3: An instance of computing 46719768P

(Case I) (Case II)
22P = 23 · 3P − 2P [22P ], [2P + Q] [Alg-A], [2P + Q]

178P = 23 · 22P + 2P [22P ], [2P + Q] [Alg-A], [2P + Q]
1426P = 23 · 178P + 2P [22P ], [2P + Q] [Alg-A], [2P + Q]

11406P = 23 · 1426P − 2P [22P ], [2P + Q] [Alg-A], [2P + Q]
91250P = 23 · 11406P + 2P [22P ], [2P + Q] [Alg-A], [2P + Q]

729996P = 23 · 91250P − 4P [22P ], [2P + Q] [Alg-A], [2P + Q]
5839971P = 23 · 729996P + 3P [22P ], [2P + Q] [Alg-A], [2P + Q]

46719768P = 23 · 5839971P [23P ] [Alg-B(k = 3)]

[2] H. Cohen, A course in Computational Al-
gebraic Number Theory, Graduate Texts in
Math. 138, Springer-Verlag, Berlin, 1993.

[3] K. Eisenträger, K. Lauter, P.L. Montgomery,
“An efficient procedure to double and add
points on an elliptic curve”, IACR Cryp-
tology ePrint Archive, 2002. available at
http://eprint.iacr.org/2002/112.ps.gz

[4] D.M. Gordon, “A survey of fast exponentiation
methods”, J. Algorithms, 27 (1998), 129–146.

[5] J. Guajardo and C. Paar, “Efficient algorithms
for elliptic curve cryptosystems”, Advances in
Cryptology—Crypto’97, LNCS 1294 (1997),
Springer-Verlag, 342–356.

[6] D.E. Knuth, The Art of Computer Program-
ming, Vol. 2, Seminumerical Algorithms, 3rd
ed., Addison-Wesley, Reading, MA, 1997.

[7] K. Koyama, and Y. Tsuruoka, “Speeding up
elliptic cryptosystems by using a signed binary
window method,” Advances in Cryptology—
Crypto’92, LNCS 740, Springer-Verlag, 345–
357.

[8] F. Morain, and J. Olivos, “Speeding up
the computations on an elliptic curve using
addition-subtraction chains,” Theoretical In-
formatics and Applications, 24 (1990), No.6,
531–544.

[9] P.L. Montgomery, “Speeding the Pollard and
elliptic curve methods of factorization”, Math.
Comp., v. 48 (1987), 243–264.

[10] V. Müller, “Efficient algorithms for mul-
tiplication on elliptic curves”, Proc. GI-
Arbeitskonferenz Chipkarten 1998, TU
München, 1998.

[11] Y. Sakai, K. Sakurai, “Efficient scalar multi-
plications on elliptic curves with direct com-
putations of several doublings”, IEICE Trans.
Fundamentals, Vol.E84-A, No.1, 120–129, Jan,
2001.

[12] J.A. Solinas, “Efficient arithmetic on Koblitz
curves”, Designs, Codes and Cryptography, 19
(2000), 195–249.

–8–(end)

研究会temp
テキストボックス
－40－




