П

On the Orthogonal Drawing of Series-Parallel Graphs

Kumiko NOMURA, Satoshi TAYU, and Shuichi UENO

Dept. of Communications and Integrated Systems, Tokyo Institute of Technology, Tokyo 152-8552-S3-57, Japan E-mail:{nomura, tayu, ueno}@lab.ss.titech.ac.jp

Abstract. We show in this paper that every series-parallel graph with maximum degree at most 4 has a 1-bend 2-D orthogonal drawing. We also show that every series-parallel graph with maximum degree at most 6 has a 2-bend 3-D orthogonal drawing.

1 Introduction

We consider the problem of generating orthogonal drawings of series-parallel graphs in the plane and space. The problem has obvious applications in the design of 2-D and 3-D VLSI circuits and optoelectronic integrated systems.

Throughout this paper, we consider simple connected graphs G with vertex set V(G) and edge set E(G). We denote by $d_G(v)$ the degree of a vertex v in G, and by $\Delta(G)$ the maximum degree of vertices of G. G is called a k-graph if $\Delta(G) \leq k$.

It is well-known that every graph can be drawn in the space so that its edges intersect only at their ends. Such a drawing of a graph G is called a 3-D drawing of G. A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. Such a drawing of a planar graph G is called a 2-D drawing of G.

A 2-D orthogonal drawing of a planar graph G is a 2-D drawing of G such that each edge is drawn by a sequence of contiguous horizontal and vertical line segments. A 3-D orthogonal drawing of a graph G is a 3-D drawing of G such that each edge is drawn by a sequence of contiguous axis-parallel line segments. Notice that a graph G has a 2-D[3-D] orthogonal drawing only if $\Delta(G) \leq 4[\Delta(G) \leq 6]$. An orthogonal drawing with no more than b bends per edge is called a b-bend orthogonal drawing.

Biedl and Kant [2], and Liu, Morgana, and Simeone [7] showed that every planar 4-graph has a 2-bend 2-D orthogonal drawing with the only exception of the octahedron, which has a 3-bend 2-D orthogonal drawing. Moreover, Kant [6] showed that every planar 3-graph has a 1-bend 2-D orthogonal drawing with the only exception of K_4 . Nomura, Tayu, and Ueno [8] showed that every outerplanar 3-graph has a 0-bend 2-D orthogonal drawing if and only if it contains no triangle as a subgraph. On the other hand, Garg and Tamassia proved that it is NP-complete to decide if a given planar 4-graph has a 0-bend 2-D orthogonal drawing [5]. Battista, Liotta, and Vargiu showed that the problem can be solved in polynomial time for planar 3-graphs and series-parallel graphs [1]. We show in Section 3 the following theorem.

Theorem 1. Every series-parallel 4-graph has a 1-bend 2-D orthogonal drawing.

Eades, Symvonis, and Whitesides [4], and Papakostas and Tollis [9] showed that every 6-graph has a 3-bend 3-D orthogonal drawing. Moreover, Wood showed that every 5-graph has a 2-bend 3-D orthogonal drawing [11]. Nomura, Tayu, and Ueno [8] showed that every outerplanar 6-graph has a 0-bend 3-D orthogonal drawing if and only if it contains no triangle as a subgraph. On the other hand, Eades, Stirk, and Whitesides proved that it is NP-complete to decide if a given 5-graph has a 0-bend 3-D orthogonal drawing [3]. We show in Section 4 the following theorem.

Theorem 2. Every series-parallel 6-graph has a 2-bend 3-D orthogonal drawing.

- 25 -

2 Preliminaries

A *series-parallel graph* is defined recursively as follows:

- (1) A graph consisting of two vertices joined by a single edge is a series-parallel graph. The vertices are the terminals.
- (2) If G_1 is a series-parallel graph with terminals s_1 and t_1 , and G_2 is a series-parallel graph with terminals s_2 and t_2 , then a graph G obtained by either of the following operations is also a series-parallel graph:
 - (i) Series composition: identify t_1 with s_2 . Vertices s_1 and t_2 are the terminals of G.
 - (ii) Parallel composition: identify s_1 and s_2 into a vertex s, and t_1 and t_2 into a vertex t. Vertices s and t are the terminals of G.

A series-parallel graph G is naturally associated with a binary tree T(G), which is called a *decomposition tree* of G. The nodes of T(G) are of three types, S-nodes, P-nodes, and Q-nodes. T(G) is defined recursively as follows:

- (1) If G is a single edge, then T(G) consists of a single Q-node.
- (2-i) If G is obtained from series-parallel graphs G_1 and G_2 by the series composition, then the root of T(G) is a S-node, and T(G) has subtrees $T(G_1)$ and $T(G_2)$ rooted at the children of the root of G.
- (2-ii) If G is obtained from series-parallel graphs G_1 and G_2 by the parallel composition, then the root of T(G) is a P-node, and T(G) has subtrees $T(G_1)$ and $T(G_2)$ rooted at the children of the root of G.

Notice that the leaves of T(G) are the Q-nodes, and an internal node of T(G) is either an S-node or P-node. Notice also that every P-node has at most one Q-node as a child, since G is a simple graph. If G has n vertices then T(G) has O(n) nodes, and T(G) can be constructed in O(n) time [10].

3 Proof of Theorem 1 (Sketch)

Let G be a series-parallel 4-graph with terminals s and t. We generate for G several 1-bend 2-D orthogonal drawings of distinct types depending on $d_G(s)$ and $d_G(t)$. The number of distinct types $\nu(d_G(s), d_G(t))$ is no more than 4 for every pair of $d_G(s)$ and $d_G(t)$. We denote by $\tau(d_G(s), d_G(t), i)$ a type of drawing for G, where $0 \leq i \leq \nu(d_G(s), d_G(t))$. Fig. 1 shows the types of 1-bend 2-D orthogonal drawings of G, where terminals are indicated by circles. We denote by $\Gamma_i(G)$ a 1-bend 2-D orthogonal drawing of type $\tau(d_G(s), d_G(t), i)$ for G. The drawings $\Gamma_i(G)$ are generated by Algorithm 1 below.

Algorithm 1 (Outline)

Input: a series-parallel 4-graph G with terminals s and t.

Output: 1-bend 2-D orthogonal drawings $\Gamma_i(G)$, $0 \le i \le \nu(d_G(s), d_G(t))$.

Step 0 Compute T(G).

Step 1 If G consists of a single edge, let $\Gamma_0(G)$ be a drawing of type $\tau(1, 1, 0)$ and $\Gamma_1(G)$ be a drawing of type $\tau(1, 1, 1)$ for G.

Step 2 If G is the series composition of G_1 and G_2 , drawings $\Gamma_j(G_1)$ and $\Gamma_k(G_2)$ are first recursively generated for $0 \le j \le \nu(d_{G_1}(s_1), d_{G_1}(t_1))$ and $0 \le k \le \nu(d_{G_2}(s_2), d_{G_2}(t_2))$. Then for each $i, 1 \le i \le \nu(d_G(s), s_G(t))$, generate $\Gamma_i(G)$ by combining appropriate $\Gamma_j(G_1)$ and $\Gamma_k(G_2)$ as shown in Table 1.

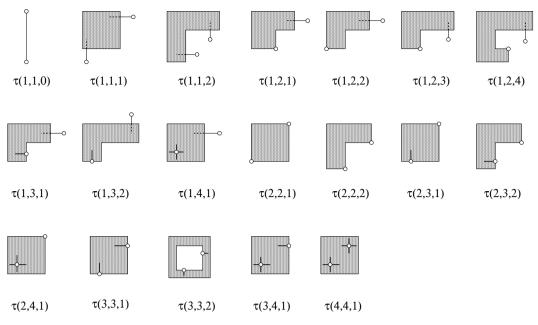


Fig. 1. Types of 1-bend 2-D orthogonal drawings, where $\tau(i, j, k) = \tau(j, i, k)$.

Step 3 If G is the parallel composition of G_1 and G_2 , drawings $\Gamma_j(G_1)$ and $\Gamma_k(G_2)$ are first recursively generated for $1 \leq j \leq \nu(d_{G_1}(s_1), d_{G_1}(t_1))$ and $1 \leq k \leq \nu(d_{G_2}(s_2), d_{G_2}(t_2))$. Then for each $i, 1 \leq i \leq \nu(d_G(s), s_G(t))$, generate $\Gamma_i(G)$ by combining appropriate $\Gamma_j(G_1)$ and $\Gamma_k(G_2)$ as shown in Table 2.

The correctness of the algorithm is guaranteed by the following lemma.

Lemma 1. If G contains more than one edge, then for any $\tau(d_G(s), d_G(t), i)$, $1 \le i \le \nu(d_G(s), d_G(t))$, there always exist a drawing $\Gamma_j(G_1)$, $0 \le j \le \nu(d_{G_1}(s_1), d_{G_1}(t_1))$, and a drawing $\Gamma_k(G_2)$, $0 \le k \le \nu(d_{G_2}(s_2), d_{G_2}(t_2))$, such that we can generate $\Gamma_i(G)$ by combining $\Gamma_j(G_1)$ and $\Gamma_k(G_2)$ with the only exception of $\tau(3, 3, 2)$ for G with edge (s, t).

The proof of the lemma is obvious from the tables 1 and 2 below, which show types of such $\Gamma_j(G_1)$ and $\Gamma_k(G_2)$ for each type of $\Gamma_i(G)$, where $\tau(i, j, k)$ is indicated by (i, j, k) in the tables. It is tedious but easy to check the tables.

4 Proof of Theorem 2 (Sketch)

Let G be a series-parallel 6-graph with terminals s and t. We use a vector $R(G) \in \{+1, -1\}^3$ to represent relative positions of terminals in the space. For vectors $\boldsymbol{a} = (a_1, a_2, a_3)$ and $\boldsymbol{b} = (b_1, b_2, b_3)$, define that $\boldsymbol{a} * \boldsymbol{b} = (a_1b_1, a_2b_2, a_3b_3)$. Let $\mathcal{D}^+ = \{X, Y, Z\}, \mathcal{D}^- = \{-X, -Y, -Z\}, \mathcal{D} = \mathcal{D}^+ \cup \mathcal{D}^-$, and let $D_G(s)$ and $D_G(t)$ be subsets of \mathcal{D} satisfying the following conditions:

1. $|D_G(s)| = d_G(s)$ and $|D_G(t)| = d_G(t)$.

2. There exist $A \in D_G(s)$ and $B \in D_G(t)$ such that $A \neq -B$.

The conditions above implies that the elements of $D_G(s)$ and $D_G(t)$ can be ordered $A_1, A_2, \ldots, A_{d_G(s)}$ and $B_1, B_2, \ldots, B_{d_G(t)}$, respectively, such that $A_i \neq -B_i$ for each $i, 1 \leq i \leq \min\{d_G(s), d_G(t)\}$. We denote by $[D_G(s)]$ and $[D_G(t)]$ such sequesces of elements. $D_G(s)$ and $D_G(t)$ are said to be inner-directed if there exist $A \in D_G(s)$ and $B \in D_G(t)$ satisfying the following conditions:

- 1. $A \in \mathcal{D}^-$ and $B \in \mathcal{D}^+$
- 2. $A \neq -B$
- 3. If $D_G(s) \{A\} \neq \phi$ and $D_G(t) \{B\} \neq \phi$ then there exist $A' \in D_G(s) \{A\}$ and $B' \in D_G(t) \{B\}$ such that $A' \neq -B'$.

A 2-bend 3-D orthogonal drawing $\Gamma(G)$ of G is generated by Algorithm 2 in section 4.1.

4.1 Algorithm 2: 3D-DRAW $(G, D_G(s), D_G(t), R(G))$ (Outline)

3D-DRAW $(G, D_G(s), D_G(t), R(G))$

Input: a series-parallel 6-graph G with terminal s and t, $D_G(s)$, $D_G(t)$, and R(G)**Output:** 2-bend 3-D orthogonal drawing $\Gamma(G)$ begin Compute T(G)if G consists of a single edge **then** draw $\Gamma(G)$ depending on $D_G(s)$, $D_G(t)$, and R(G)else if G is the series composition of G_1 and G_2 SER-DECOM $(G, G_1, G_2, D_G(s), D_G(t), R(G))$ (in Section 4.1.1) end if if G is the parallel composition of G_1 and G_2 , PAR-DECOM $(G, G_1, G_2, D_G(s), D_G(t), R(G))$ (in Section 4.1.2) end if $\Gamma(G_1) = 3D\text{-}DRAW(G_1, D_{G_1}(s_1), D_{G_1}(t_1), R(G_1))$ $\Gamma(G_2) = 3D\text{-}DRAW(G_2, D_{G_2}(s_2), D_{G_2}(t_2), R(G_2))$ if G is the seires composition of G_1 and G_2 , SER-COM($\Gamma(G_1), \Gamma(G_2)$) (in Section 4.1.3) end if if G is the parallel composition of G_1 and G_2 , PAR-COM($\Gamma(G_1), \Gamma(G_2)$) (in Section 4.1.4) end if end if end

4.1.1 SER-DECOM $(G, G_1, G_2, D_G(s), D_G(t), R(G))$

Input: $G, G_1, G_2, D_G(s), D_G(t), R(G)$

- **Output:** $D_{G_1}(s_1), D_{G_1}(t_1), D_{G_2}(s_2), D_{G_2}(t_2), R(G_1), R(G_2)$
- Step 1 Define that $(X_G, Y_G, Z_G) = (X, Y, Z) * R(G)$, $\mathcal{D}_G^+ = \{X_G, Y_G, Z_G\}$, and $\mathcal{D}_G^- = \{-X_G, -Y_G, -Z_G\}$.
- **Step 2** If $D_G(s)$ and $D_G(t)$ are inner-directed, then select $A \in D_G(s)$ and $B \in D_G(t)$ such that $A \in \mathcal{D}_G^-$ and $B \in \mathcal{D}_G^+$. Else select $A \in D_G(s)$ and $B \in D_G(t)$ such that $A \neq -B$.
- **Step 3** Output $D_{G_1}(s_1)$, $D_{G_1}(t_1)$, $D_{G_2}(s_2)$, $D_{G_2}(t_2)$, $R(G_1)$, and $R(G_2)$ depending on A and B as follows:
 - Case 1 $A \in \mathcal{D}_G^-, B \in \mathcal{D}_G^+$:
 - **Case 1-1** $B \in \{X_G, Z_G\}$: Let $D_{G_1}(s_1) = D_G(s)$. If $D_{G_1}(t_1) \leq 2$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $S \subseteq \mathcal{D}_G^+ \{-A\}$. If $D_{G_1}(t_1) \geq 3$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $\mathcal{D}_G^+ \subseteq S \subseteq \mathcal{D} \{-Y_G\}$. If $D_{G_2}(s_2) \leq 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$, $\{-Y\} \subseteq S' \subseteq \mathcal{D}_G^-$, and $D_{G_1}(t_1) \cap S' = \emptyset$. If $D_{G_2}(s_2) \geq 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$, $\{-Y\} \subseteq S' \subseteq \mathcal{D}_G^-$, and $D_{G_1}(t_1) \cap S' = \emptyset$. If $D_{G_2}(s_2) \geq 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$ and $\mathcal{D}_G^- \subseteq S' \subseteq \mathcal{D} S$. Let $D_{G_2}(t_2) = D_G(t)$. Let $R(G_1) = R(G)$ and $R(G_2) = R(G)$.

Case 1-2 $B = Y_G$: Let $D_{G_1}(s_1) = D_G(s)$. If $D_{G_1}(t_1) \le 2$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $S \subseteq \mathcal{D}_G^+ - \{-A\}$. If $D_{G_1}(t_1) \ge 3$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $\mathcal{D}_G^+ \subseteq S \subseteq \mathcal{D} - \{-X_G\}$. If $D_{G_2}(s_2) \le 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$, $\{-X\} \subseteq S' \subseteq \mathcal{D}_G^-$, and $D_{G_1}(t_1) \cap S' = \emptyset$. If $D_{G_2}(s_2) \ge 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$ and $\mathcal{D}_G^- \subseteq S' \subseteq \mathcal{D} - S$. Let $D_G(t_2) = D_G(t)$. Let $R(G_1) = R(G)$ and $R(G_2) = R(G)$.

Case 2 $A \in \mathcal{D}_G^+, B \in \mathcal{D}_G^-$:

- Case 2-1 $A = X_G$: Let $D_{G_1}(s_1) = D_G(s)$. If $D_{G_1}(t_1) \leq 2$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $S \subseteq \mathcal{D}_G^+ \{A\}$. If $D_{G_1}(t_1) \geq 3$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $\mathcal{D}_G^+ \subseteq S \subseteq \mathcal{D} \{-A\}$. If $D_{G_2}(s_2) \leq 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$, $\{-A\} \subseteq S' \subseteq \mathcal{D}_G^-$, and $D_{G_1}(t_1) \cap S' = \emptyset$. If $D_{G_2}(s_2) \geq 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$, $\{-A\} \subseteq S' \subseteq \mathcal{D}_G^-$, and $D_{G_1}(t_1) \cap S' = \emptyset$. If $D_{G_2}(s_2) \geq 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$ and $\mathcal{D}_G^- \subseteq S' \subseteq \mathcal{D} S$. Let $D_G(t_2) = D_G(t)$. Let $R(G_1) = (-1, +1, +1) * R(G)$ and $R(G_2) = (+1, -1, -1) * R(G)$. Case 2-2 $A = Y_G$: $D_{G_1}(s_1), D_{G_1}(t_1), D_{G_2}(s_2)$, and $D_{G_2}(t_2)$ are same as Case 2-1. Let $R(G_1) = (+1, +1, -1) * R(G)$ and $R(G_2) = (-1, -1, +1) * R(G)$.
 - **Case 2-3** $A = Z_G$: $D_{G_1}(s_1), D_{G_1}(t_1), D_{G_2}(s_2)$, and $D_{G_2}(t_2)$ are same as Case 2-1. Let $R(G_1) = (+1, -1, +1) * R(G)$ and $R(G_2) = (-1, +1, -1) * R(G)$.

Case 3 $A \in \mathcal{D}_G^-, B \in \mathcal{D}_G^-$:

- **Case 3-1** $A = B = -Z_G$: Let $D_{G_2}(t_2) = D_G(t)$. If $D_{G_2}(s_2) \le 2$, let $D_{G_2}(s_2)$ be any set S' such that $|S| = D_{G_2}(s_2)$ and $S \subseteq \mathcal{D}_G^- \{B\}$. If $D_{G_2}(s_2) \ge 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S| = D_{G_2}(s_2)$ and $\mathcal{D}_G^- \subseteq S' \subseteq \mathcal{D} \{X_G\}$. Let $D_{G_1}(s_1) = D_G(s)$. If $D_{G_1}(t_1) \le 3$, let $D_{G_1}(t_1)$ be any set S such that $|S'| = D_{G_1}(t_1)$, $\{X\} \subseteq S' \subseteq \mathcal{D}_G^+$, and $D_{G_2}(s_2) \cap S = \emptyset$. If $D_{G_1}(t_1) \ge 3$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$, and $\mathcal{D}_G^+ \subseteq S \subseteq \mathcal{D} S'$. Let $R(G_1) = R(G)$ and $R(G_2) = (+1, +1, -1) * R(G)$.
- **Case 3-2** $A = B = -Y_G$: $D_{G_1}(s_1), D_{G_1}(t_1), D_{G_2}(s_2)$, and $D_{G_2}(t_2)$ are same as Case 3-1. Let $R(G_1) = R(G)$ and $R(G_2) = (+1, -1, +1) * R(G)$.
- **Case 3-3** $A = B = -X_G$: Let $D_{G_2}(t_2) = D_G(t)$. If $D_{G_2}(s_2) \le 2$, let $D_{G_2}(s_2)$ be any set S' such that $|S| = D_{G_2}(s_2)$ and $S \subseteq \mathcal{D}_G^- \{B\}$. If $D_{G_2}(s_2) \ge 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S| = D_{G_2}(s_2)$ and $\mathcal{D}_G^- \subseteq S' \subseteq \mathcal{D} \{Z_G\}$. Let $D_{G_1}(s_1) = D_G(s)$. If $D_{G_1}(t_1) \le 3$, let $D_{G_1}(t_1)$ be any set S such that $|S'| = D_{G_1}(t_1)$, $\{Z_G\} \subseteq S' \subseteq \mathcal{D}_G^+$, and $D_{G_2}(s_2) \cap S = \emptyset$. If $D_{G_1}(t_1) \ge 3$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$, $\{Z_G\} \subseteq S' \subseteq \mathcal{D}_G^+$, and $\mathcal{D}_G^+ \subseteq S \subseteq \mathcal{D} S'$. Let $R(G_1) = R(G)$ and $R(G_2) = (-1, +1, +1) * R(G)$.
- **Case 3-4** $A \neq B$: Let $D_{G_1}(s_1) = D_G(s)$. If $D_{G_1}(t_1) \leq 2$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $S \subseteq \mathcal{D}_G^+ \{-A\}$. If $D_{G_1}(t_1) \geq 2$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $\mathcal{D}_G^+ \{-A\} \subseteq S \subseteq \mathcal{D} \{-A\}$. If $D_{G_2}(s_2) \leq 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$, $\{-A\} \subseteq S' \subseteq \mathcal{D}_G^- \{A\} + \{-A\}$, and $D_{G_1}(t_1) \cap S' = \emptyset$. If $D_{G_2}(s_2) \geq 4$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$ and $\mathcal{D}_G^- + \{-A\} \subseteq S' \subseteq \mathcal{D} S$. Let $D_G(t_2) = D_G(t)$. Let $R(G_1) = R(G)$ and $R(G_2) = (-1, -1, -1) * R(G)$.

Case 4 $A \in \mathcal{D}_G^+, B \in \mathcal{D}_G^+$:

- **Case 4-1** $A = B = Z_G$: Let $D_{G_1}(s_1) = D_G(s)$. If $D_{G_1}(t_1) \le 2$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $S \subseteq \mathcal{D}_G^+ \{A\}$. If $D_{G_1}(t_1) \ge 3$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $\mathcal{D}_G^+ \subseteq S \subseteq \mathcal{D} \{-Y\}$. If $D_{G_2}(s_2) \le 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$, $\{-Y\} \subseteq S' \subseteq \mathcal{D}_G^-$, and $D_{G_1}(t_1) \cap S' = \emptyset$. If $D_{G_2}(s_2) \ge 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$, $\{-Y\} \subseteq S' \subseteq \mathcal{D}_G^-$, and $\mathcal{D}_G^-(t_1) \cap S' = \emptyset$. If $D_{G_2}(s_2) \ge 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$ and $\mathcal{D}_G^- \subseteq S' \subseteq \mathcal{D} S$. Let $D_G(t_2) = D_G(t)$. Let $R(G_1) = (-1, +1, +1) * R(G)$ and $R(G_2) = R(G)$.
 - **Case 4-2** $A = B = Y_G$: Let $D_{G_1}(s_1) = D_G(s)$. If $D_{G_1}(t_1) \le 2$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $S \subseteq \mathcal{D}_G^+ \{A\}$. If $D_{G_1}(t_1) \ge 3$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $\mathcal{D}_G^+ \subseteq S \subseteq \mathcal{D} \{-Z_G\}$. If $D_{G_2}(s_2) \le 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$, $\{-Z_G\} \subseteq S' \subseteq \mathcal{D}_G^-$, and $D_{G_1}(t_1) \cap S' = \emptyset$. If

 $D_{G_2}(s_2) \ge 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$ and $\mathcal{D}_G^- \subseteq S' \subseteq \mathcal{D} - S$. Let $D_G(t_2) = D_G(t)$. Let $R(G_1) = (+1, -1, +1) * R(G)$ and $R(G_2) = R(G)$.

Case 4-3 $A = B = X_G$: $D_{G_1}(s_1), D_{G_1}(t_1), D_{G_2}(s_2)$, and $D_{G_2}(t_2)$ are same as Case 4-1. Let $R(G_1) = (-1, +1, +1) * R(G)$ and $R(G_2) = R(G)$.

Case 4-4 $A \neq B$: If $D_{G_2}(s_2) \leq 2$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$, $S' \subseteq \mathcal{D}_G^- \{-B\}$. If $D_{G_2}(s_2) \geq 3$, let $D_{G_2}(s_2)$ be any set S' such that $|S'| = D_{G_2}(s_2)$ and $\mathcal{D}_G^- \{-B\} + \{B\} \subseteq S' \subseteq \mathcal{D} - \{-B\}$. Let $D_G(t_2) = D_G(t)$. Let $D_{G_1}(s_1) = D_G(s)$. If $D_{G_1}(t_1) \leq 3$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $\{-B\} \subseteq S \subseteq \mathcal{D}_G^+ \{-B\} + \{-B\}$, and $D_{G_1}(t_1) \cap S' = \emptyset$. If $D_{G_1}(t_1) \geq 4$, let $D_{G_1}(t_1)$ be any set S such that $|S| = D_{G_1}(t_1)$ and $\mathcal{D}_G^+ + \{-B\} \subseteq S \subseteq \mathcal{D} - S'$. Let $R(G_1) = (-1, -1, -1) * R(G)$ and $R(G_2) = R(G)$.

4.1.2 PAR-DECOM $(G, G_1, G_2, D_G(s), D_G(t), R(G))$

Input: $G, G_1, G_2, D_G(s), D_G(t), R(G)$ **Output:** $D_{G_1}(s_1), D_{G_1}(t_1), D_{G_2}(s_2), D_{G_2}(t_2), R(G_1), R(G_2)$ **Step 1** Define that $(X_G, Y_G, Z_G) = (X, Y, Z) * R(G), \mathcal{D}_G^+ = \{X_G, Y_G, Z_G\}, \text{ and } \mathcal{D}_G^- = \{-X_G, -Y_G, X_G, Z_G\}$ $-Z_G$. **Step 2** Construct $[D_G(s)] = (A_1, A_2, \dots, A_{D_G(s)})$ and $[D_G(t)] = (B_1, B_2, \dots, B_{D_G(t)})$ such that $A_i \neq -B_i, 1 \leq i \leq \min\{d_G(s), d_G(t)\}$. If $D_G(s)$ and $D_G(t)$ are inner-directed, we assume without loss of generality that $A_1 \in \mathcal{D}_G^-$ and $B_1 \in \mathcal{D}_G^+$. **Step 3** Output $D_{G_1}(s_1)$, $D_{G_1}(t_1)$, $D_{G_2}(s_2)$, $D_{G_2}(t_2)$, $R(G_1)$, and $R(G_2)$ depending on $d_{G_1}(s_1)$ and $d_{G_1}(t_1)$ as follows: **Case 1** $k_1 = d_{G_1}(s_1) \le d_{G_1}(t_1)$: **Case 1-1** $e = (s,t) \in G_1 : D_{G_1}(s_1) = \{A_1, A_2, \dots, A_{k_1}\},\$ $D_{G_1}(t_1) = \{B_1, B_2, \dots, B_{k_1}, B_{k_1+D_{G_2}(t_2)+1}, \dots, B_{D_G(t)}\},\$ $D_{G_2}(s_2) = \{A_{k_1+1}, A_{k_1+2}, \dots, A_{D_G}(s)\}, D_{G_2}(t_2) = \{B_{k_1+1}, B_{k_1+2}, \dots, B_{k_1+D_{G_G}}(t_2)\},$ $R(G_1) = R(G_2) = R(G).$ **Case 1-2** $e = (s,t) \in G_2 : D_{G_1}(s_1) = \{A_2, A_3, \dots, A_{k_1+1}\},\$ $D_{G_1}(t_1) = \{B_2, B_3, \dots, B_{k_1+1}, B_{k_1+D_{G_2}(t_2)+1}, \dots, B_{D_G(t)}\},\$ $D_{G_2}(s_2) = \{A_1, A_{k_1+2}, A_{k_1+3}, \dots, A_{D_G(s)}\},\$ $D_{G_2}(t_2) = \{B_1, B_{k_1+2}, B_{k_1+3}, \dots, B_{k_1+D_{G_2}(t_2)}\}, \text{ and } R(G_1) = R(G_2) = R(G).$ **Case 2** $d_{G_1}(s_1) \ge d_{G_1}(t_1) = k_1$: **Case 2-1** $e = (s,t) \in G_1 : D_{G_1}(s_1) = \{A_1, A_2, \dots, A_{k_1}, A_{k_1+D_{G_2}(s_2)+1}, \dots, A_{D_G(s)}\},\$ $D_{G_1}(t_1) = \{B_1, B_2, \dots, B_{k_1}\}, D_{G_2}(s_2) = \{A_{k_1+1}, A_{k_1+2}, \dots, \overline{A}_{k_1+D_{G_2}(s_2)}\},\$ $D_{G_2}(t_2) = \{B_{k_1+1}, B_{k_1+2}, \dots, B_{D_G(t)}\}, \text{ and } R(G_1) = R(G_2) = R(G).$ **Case 2-2** $e = (s,t) \in G_2 : D_{G_1}(s_1) = \{A_2, A_3, \dots, A_{k_1+1}, A_{k_1+D_{G_2}(s_2)+1}, \dots, A_{D_G(s)}\},\$ $D_{G_1}(t_1) = \{B_2, B_3, \dots, B_{k_1+1}\}, D_{G_2}(s_2) = \{A_1, A_{k_1+2}, A_{k_1+3}, \dots, \overline{A}_{k_1+D_{G_2}(s_2)}\},\$ $D_{G_2}(t_2) = \{B_1, B_{k_1+2}, B_{k_1+3}, \dots, B_{D_G(t)}\}, \text{ and } R(G_1) = R(G_2) = R(G).$

4.1.3 SER-COM($\Gamma(G_1), \Gamma(G_2)$)

Input: $\Gamma(G_1), \Gamma(G_2)$ Output: $\Gamma(G)$ Step 1 Translate $\Gamma(G_1)$ and $\Gamma(G_2)$ so that t_1 and s_2 can be identified. Step 2 Generate $\Gamma'(G)$ by identifying t_1 with s_2 . Step 3 Generate $\Gamma(G)$ by modifying $\Gamma'(G)$ so that there are no overlaps.

4.1.4 PAR-COM($\Gamma(G_1), \Gamma(G_2)$)

Input: $\Gamma(G_1), \Gamma(G_2)$ Output: $\Gamma(G)$ Step 1 Modify and translate $\Gamma(G_1)$ and $\Gamma(G_2)$ so that the terminals can be identified. Step 2 Generate $\Gamma'(G)$ by identifying s_1 with s_2 , and t_1 with t_2 . Step 3 Generate $\Gamma(G)$ by modifying $\Gamma'(G)$ so that there are no overlaps.

4.2 Analysis of Algorithm 2

Omitted.

5 Concluding Remarks

It should be noted that $K_{2,3}$, which is a series-parallel 3-graph, has no 0-bend 2-D orthogonal drawing. It is an interesting open problem to decide if every series-parallel 6-graph has a 1-bend 3-D orthogonal drawing.

References

- G. Battista, G. Liotta, and F. Vargiu. Spirality and optimal orthogonal drawings. SIAM J. Comput., 27:1764– 1811, 1998.
- 2. T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. LNCS, 855:24–35, 1994.
- 3. P. Eades, C. Strik, and S. Whitesides. The techniques of komolgorov and bardzin for three-dimensional orthogonal graph drawings. *Information Processing Letters*, 60:97–103, 1996.
- 4. P. Eades, A. Symvonis, and S. Whitesides. Three-dimensional orthogonal graph drawing algorithms. *Discrete Applied Mathmatics*, 103:55–87, 2000.
- A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput., 31:601–625, 1995.
- 6. G. Kant. Drawing planar graphs using the canonical ordering. *Algorithmica*, 16:4–32, 1996.
- Y. Liu, A. Morgana, and B. Simeone. A linear algorithm for 2-bend embeddings of planar graphs in the two-dimensional grid. *Discrete Applied Mathematics*, 81:69–91, 1998.
- 8. K. Nomura, S. Tayu, and S. Ueno. On the orthogonal drawing of outerplanar graphs. LNCS, 3106:300–308, 2004.
- 9. A. Papakostas and I. G. Tollis. Algorithm for incremental orthogonal graph drawing in three dimensions. J. Graph Algorithms and Applications, 3:81–115, 1999.
- 10. J. Valdes, R. Tarjan, and E. Lawler. The recognition of series parallel digraphs. SIAM J. Comput., 11:298–313, 1982.
- 11. D. R. Wood. Optimal three-dimensional orthogonal graph drawing in the general position model. *Theoretical Computer Science*, 299:151–178, 2003.

$\Gamma_i(G) = \Gamma_i(G_1) - \Gamma_k(G_2)$	$\Gamma_i(G)$	$\Gamma_i(G_1)$	$\Gamma_k(G_2)$	$\Gamma_{\cdot}(G)$	$\Gamma_i(G_1)$	$\Gamma_k(G_2)$
		3、 /		1 i(G)	5. ,	
(1,1,1) $(1,1,1)$ $(1,1,1)$		(1,2,1)	(2, 2, 2)	-	(2,2,1)	(1,3,2)
(1,1,1) $(2,1,2)$	11	(1, 3, 1)	(1, 2, 1)	-	(2,2,1)	(2,3,1)
	(1, 3, 1)		(1, 3, 1)		(2,3,1)	(1, 3, 2)
(1,2,2) $(1,1,1)$		(1, 1, 1)		(2, 3, 2)		(1, 3, 1)
(1,2,1) $(2,1,2)$		(1, 1, 1)	(3, 3, 1)		(2, 1, 2)	(2, 3, 2)
(1,3,2) $(1,1,1)$		(1, 2, 2)		-	(2,1,1)	(3, 3, 1)
(1,1,2) $(1,1,1)$ $(1,1,1)$	++	(1, 2, 1)		-	(2, 2, 2)	(1, 3, 2)
(1,1,1) $(2,1,1)$		(1, 3, 1)		-	(2, 2, 1)	(2, 3, 2)
	(1, 3, 2)		(1, 3, 1)		(2, 3, 2)	(1, 3, 2)
(1,2,1) $(1,1,1)$		(1, 1, 1)		(2, 4, 1)		(1, 4, 1)
(1,2,1) $(2,1,1)$		(1, 1, 1)		-	(2, 1, 2)	(2, 4, 1)
(1,3,1) $(1,1,1)$		(1, 2, 2)		-	(2, 1, 2)	(3, 4, 1)
(1,2,1) $(1,1,1)$ $(1,2,1)$		(1, 2, 2)			(2, 2, 1)	(1, 4, 1)
(1,1,1) $(2,2,1)$		(1, 3, 2)			(2, 2, 1)	(2, 4, 1)
	(1, 4, 1)				(2, 3, 1)	
(1,2,1) $(1,2,2)$		(1, 1, 1)		(3, 3, 1)		(1, 3, 2)
(1,2,1) $(2,2,1)$		(1, 1, 1)			(3, 1, 2)	(2, 3, 1)
(1,3,1) $(1,2,2)$			(1, 4, 1)		(3, 1, 2)	(3, 3, 1)
(1,2,2) $(1,1,1)$ $(1,2,2)$			(2, 4, 1)		(3, 2, 1)	(1, 3, 2)
(1,1,1) $(2,2,1)$			(1, 4, 1)	-	(3, 2, 1)	(2, 3, 1)
	(2, 2, 1)				(3, 3, 1)	(1, 3, 2)
(1,2,2) $(1,2,2)$		(2, 1, 2)		(3, 3, 2)		(1, 3, 1)
(1,2,2) $(2,2,1)$	-++	(2, 1, 2)			(3, 1, 1)	(2, 3, 1)
(1,3,2) $(1,2,2)$	-++	(2, 2, 1)			(3, 1, 2)	(3, 3, 2)
(1,2,3) $(1,1,1)$ $(1,2,2)$	++	(2, 2, 1)		-	(3, 2, 1)	(1, 3, 1)
(1,1,1) $(2,2,2)$		(2, 3, 1)			(3, 2, 2)	(2, 3, 2)
	(2, 2, 2)				(3, 3, 2)	(1, 3, 2)
(1,1,0) $(3,2,2)$		(2, 1, 1)		(3, 4, 1)		(1, 4, 1)
(1,2,1) $(1,2,2)$		(2, 1, 1)			(3, 1, 1)	(2, 4, 1)
(1,2,2) $(2,2,2)$		(2, 2, 1)			(3, 1, 2)	(3, 4, 1)
(1,3,1) $(1,2,2)$		(2, 2, 1)			(3, 2, 1)	(1, 4, 1)
(1,2,4) $(1,1,1)$ $(1,2,1)$		(2, 3, 1)			(3, 2, 1)	
	(2, 3, 1)				(3, 3, 1)	(1, 4, 1)
(1,1,1) $(3,2,2)$	-++	(2, 1, 2)				
(1,2,1) $(1,2,1)$		(2, 1, 2)	(3, 3, 1)]		

 Table 1. Series composition.

$\Gamma_i(G)$ $\Gamma_j(G_1)$ $\Gamma_k(G_2)$	$\Gamma_i(G)$ $\Gamma_j(G_1)$	$\Gamma_k(G_2) \Gamma_i(G)$	$\Gamma_j(G_1)$ $\Gamma_k(G_2)$
(2,2,1)(1,1,1)(1,1,1)			(1,1,1) $(3,3,2)$
(2,2,2) $(1,1,1)$ $(1,1,2)$			(1,1,2) $(3,3,1)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			(1,2,1) $(3,2,2)$
(2,3,2)(1,1,1)(1,2,4)			(1,3,1) $(3,1,1)$
(2,4,1) $(1,1,1)$ $(1,3,1)$			(2,2,2) $(2,2,2)$
(3,3,1)(1,1,1)(2,2,2)	(1,3,1)	(2,1,1)	

 Table 2. Parallel composition.