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Abstract— The 3-D channel routing is a fun-
damental problem on the physical design of 3-D
integrated circuits. The 3-D channel is a 3-D grid
G and the terminals are vertices of G located in the
top and bottom layers. A net is a set of terminals
to be connected. The object of the 3-D channel
routing problem is to connect the terminals in each
net with a tree (wire) in G using as few layers as
possible and as short wires as possible in such a
way that wires for distinct nets are disjoint. This
paper shows that any set of n 2-terminal nets can
be routed in a 3-D channel with O

(
√

n
)

layers
using wires of length O

(
√

n
)

. We also show that
there exists a set of n 2-terminal nets that requires
a 3-D channel with Ω

(
√

n
)

layers to be routed.

I. INTRODUCTION

The three-dimensional (3-D) integration is an
emerging technology to implement large circuits,
and currently being extensively investigated. (See
[1]–[6], [8], for example.) In this paper, we con-
sider a problem on the physical design of 3-D
integrated circuits.

The 3-D channel routing is a fundamental
problem on the physical design of 3-D integrated
circuits. In the 3-D channel routing, the channel
is a 3-D grid G consisting of columns, rows, and
layers which are planes defined by fixing x-, y-,
and z-coordinates, respectively. (See Fig. 1.) A
terminal is a vertex of G located in the top or
bottom layer. A net is a set of terminals to be
connected. A net containing k terminals is called
a k-net. A tree connecting the terminals in a net
is called a wire. The object of the 3-D channel
routing problem is to connect the terminals in
each net with a wire in G using as few layers
as possible and as short wires as possible in such
a way that wires for distinct nets are disjoint. The
number of layers is called the height of the 3-D
channel. The purpose of this paper is to show the
following two theorems.
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Fig. 1. The three-dimensional channel.

Theorem 1: If the layers are square 2-D grids,
the terminals are located on vertices with even
x- and y-coordinates, and each net has terminals
both in top and bottom layers, then any set of n
2-nets can be routed in a 3-D channel of height
O(

√
n) using wires of lenght O(

√
n).

Theorem 2: There exists a set of n 2-nets that
requires a 3-D channel of height Ω(

√
n) to be

routed.
Theorem 1 implies that any set of n 2-nets can

be routed in a 3-D channel of volume O(n3/2). It
should be noted that for the ordinary 2-D channel
routing there exists a set of n 2-nets requiring a
2-D channel of area Ω(n2) to be routed [7].

Other models for the 3-D channel routing can
be found in the literature [3], [5], [8].

II. PRELIMINALIES

We consider a 3-D channel of height h, which
is a 2

√
n × 2

√
n × h 3-D grid. Each grid point

is denoted by (x, y, z) with 0 ≤ x, y ≤ 2
√

n − 1
and 0 ≤ z ≤ h − 1. The column, row, and layer
defined by x = i, y = j, and z = k are called
the i-column, j-row, and k-layer, respectively.
The (h − 1)-layer and 0-layer are corresponding
to the top and bottom layers, respectively. Let
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N = {Ni|0 ≤ i ≤ n − 1} be a set of n 2-
nets, and let (X

(h−1)
i , Y

(h−1)
i , h − 1) and (X

(0)
i ,

Y
(0)
i , 0) be the terminals of Ni (0 ≤ i ≤ n − 1),

where X
(h−1)
i , Y

(h−1)
i , X

(0)
i , and Y

(0)
i are even,

and (X
(h−1)
i , Y

(h−1)
i , h − 1) 6= (X

(h−1)
j , Y

(h−1)
j ,

h − 1) and (X
(0)
i , Y

(0)
i , 0) 6= (X

(0)
j , Y

(0)
j , 0) if

i 6= j.
If f : A → B is a mapping, f(A′) =

{f(a)|a ∈ A′} is the image of A′ ⊆ A and
f−1(B′) = {a|f(a) = B ′} is the pre-image of
B′ ⊆ B. We denote by f |A′ the restriction of f to
A′. That is, f |A′ : A′ → B and f |A′(a′) = f(a′)
for ∀a′ ∈ A′. If g : B → C is also a mapping,
g◦f is a composite mapping from A to C defined
as g ◦ f(a) = g(f(a)) for ∀a ∈ A. A bijection
π : A → A is called a permutation on A.

For a positive integer I , let [I] = {0, 1, . . . , I−
1}.

III. 2-D CHANNEL ROUTING

We consider in this section a 2-D channel of
height m, which is a 2m×2×m 3-D grid G′. Let
N ′ = {N ′

i |0 ≤ i ≤ m − 1} be a set of m 2-nets,
and let (X

(m−1)
i , 0,m−1) and (X

(0)
i , 0, 0) be the

terminals of N ′

i (0 ≤ i ≤ m− 1), where X
(m−1)
i

and X
(0)
i are even, and (X

(m−1)
i , 0,m − 1) 6=

(X
(m−1)
j , 0,m−1) and (X

(0)
i , 0, 0) 6= (X

(0)
j , 0, 0)

if i 6= j.
Lemma 1: N ′ can be routed in G′.

Proof: Let p0, p1, . . . , pk be grid points
of G′ such that pi and pi+1 differ in just one
coordinate, 0 ≤ i ≤ k − 1. Then, we denote
by [p0, p1, . . . , pk] a wire connecting p0 and pk

obtained by connecting pi and pi+1 by an axis-
parallel line segment, 0 ≤ i ≤ k − 1. Suppose
without loss of generality that X

(m−1)
0 = X

(0)
1 .

Then, if m ≥ 3, N ′ can be routed in G′ using a
wire defined by (1) for N ′

0, a wire defined by
(2) for N ′

1, and wires defined by (3) for N ′

i ,
2 ≤ i ≤ m − 1. It is not difficult to see that
the wires defined above are disjoint. If m = 2,
N ′ can be routed in G′ as shown in Fig. 2.

The routing defined in the proof of Lemma 1
is called a τ -routing for N ′. An example of τ -
routing is shown in Fig. 3.
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Fig. 2. A routing for a set of two 2-nets.
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Fig. 3. A τ -routing for a set of six 2-nets.

IV. PROOF OF THEOREM 1

A. Technical Lemmas

For positive integers I and J , we define that
M = {mi,j|i ∈ [I], j ∈ [J ]}, and M∗j =
{mi,j|i ∈ [I]}, and Mi∗ = {mi,j |j ∈ [J ]}. Let
D be a set with |D| = J and f : M → D be a
mapping such that

|f−1(d)| = I for ∀d ∈ D. (4)

Let πj be a permutation on M∗j for ∀j ∈ [J ],
and Π = {πj |j ∈ [J ]}. Define that RΠ(i) =
⋃

j∈[J ] π
−1
j (mi,j). |RΠ(i)| = J , by definition. For

such Π and each i ∈ [I], we define that

WΠ(d, i) =

{

1 if d ∈ f(RΠ(i)),
0 if d 6∈ f(RΠ(i)),

WΠ(i) =
∑

d∈D

WΠ(d, i), and

W (Π) =
I−1
∑

i=0

WΠ(i).

By definition, 1 ≤ WΠ(i) ≤ J and WΠ(i) = J
if and only if f |RΠ(i) is a bijection, that is,
|f(RΠ(i))| = J . Thus we have the following
lemma.

Lemma 2: If WΠ(i) < J , there exists d ∈ D

such that
∣

∣

∣f |−1
RΠ(i)(d)

∣

∣

∣ ≥ 2, and there exists an
integer i′ ∈ [I] suth that d 6∈ f(RΠ(i′)).
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[(

X
(m−1)
0 , 0,m − 1

)

,
(

X
(m−1)
0 + 1, 0,m − 1

)

,
(

X
(m−1)
0 + 1, 0, 0

)

,
(

X
(m−1)
0 + 1, 1, 0

)

,
(

X
(0)
0 , 1, 0

)

,
(

X
(0)
0 , 0, 0

)]

(1)
[(

X
(m−1)
1 , 0,m − 1

)

,
(

X
(m−1)
1 , 0, 1

)

,
(

X
(m−1)
1 , 1, 1

)

,
(

X
(0)
1 , 1, 1

)

,
(

X
(0)
1 , 0, 1

)

,
(

X
(0)
1 , 0, 0

)]

(2)
[(

X
(m−1)
i , 0,m − 1

)

,
(

X
(m−1)
i , 0, i

)

,
(

X
(m−1)
i , 1, i

)

,
(

X
(0)
i + 1, 1, i

)

,
(

X
(0)
i + 1, 1, 0

)

,
(

X
(0)
i + 1, 0, 0

)

,
(

X
(0)
i , 0, 0

)]

(3)

Proof: If WΠ(i) < J then f |RΠ(i) is not a
bijection, and so

∣

∣

∣f |RΠ(i)

∣

∣

∣ ≥ 2 for some d ∈ D.
It follows that d 6∈ f(RΠ(i′)) for some i′ ∈ [I]
by (4).

We need the following easy lemma on directed
multi-graphs.

Lemma 3: For a directed multi-graph H with
the vertex set D, if there exists a vertex d0 ∈
D with degout(d0) ≥ degin(d0) + 1 then there
exists a vertex dp ∈ D such that degin(dp) ≥
degout(dp)+1 and there exists a directed path (d0,
d1, . . . , dp) in H , where degin(d) and degout(d)
is the in- and out-degrees of d in H .

Proof: Let D′ ⊆ D be a set of vertices d′

such that there exists a directed path from d0 to
d′ in H , and let H[D′] be the induced subgraph
of H on D′. Let deg′in(d

′) and deg′out(d
′) be

the in- and out-degrees of d′ ∈ D′ in H[D′],
respectively. Notice that deg′out(d

′) = degout(d
′)

and deg′in(d
′) ≤ degin(d

′) for every d′ ∈ D′.
Since deg′out(d0) = degout(d0) ≥ degin(d0) +
1 ≥ deg′in(d0) + 1, there exists a vertex d′ ∈ D′

such that deg′out(d
′) ≤ deg′in(d

′) − 1, which
follows from the fact that

∑

d′∈D′ degout(d
′) =

∑

d′∈D′ degin(d
′). Since deg′out(d

′) = degout(d
′)

and deg′in(d
′) ≤ degin(d

′), we have degout(d
′) ≤

degin(d
′)−1. By the definition of D′, there exists

a directed path from d0 to d′. Thus, we have the
lemma.

Lemma 4: There exists a set Π of permutations
πj on M∗j (j ∈ [J ]) such that for every i ∈ [I],
f |RΠ(i) ◦π−1

j (mi,j) 6= f |RΠ(i) ◦π−1
j′ (mi,j′) if j 6=

j′.
Proof: By definition, J ≤ W (Π) ≤ IJ ,

and W (Π) = IJ if and only if Π satisfies the
condition in the lemma. In order to prove the
lemma, it suffices to show the following.

Claim 1: Let Σ be a set of permutations σj

on M∗j (j ∈ [J ]) with W (Σ) ≤ IJ − 1. Then,

there exists a set Π of permutations πj on M∗j

(j ∈ [J ]) such that W (Π) ≥ W (Σ) + 1.
Proof of Claim 1: Since W (Σ) ≤ IJ −1, there

exists i0 ∈ [I] such that WΣ(i0) ≤ J − 1. By
Lemma 2, there exists d0 ∈ D such that

∣

∣

∣f |−1
RΣ(i0)

(d0)
∣

∣

∣ ≥ 2 (5)

and there exists an integer i1 ∈ [I] with

d0 6∈ f(RΣ(i1)). (6)

Consider a directed multi-graph H
with vertex set D which has an arc
aj = (f(σj(mi0,j)), f(σj(mi1,j))) for each
j ∈ [J ]. From (5) and (6), we have

degout(d0) ≥ 2, (7)

degin(d0) = 0, (8)

respectively, where degin(d) and degout(d) is the
in- and out-degrees of d in H , respectively. From
Lemma 3, there exists a vertex dp ∈ D with

degin(dp) ≥ degout(dp) + 1, (9)

and there exists a directed path P = (d0, d1, . . . ,
dp). Let ajl

be an arc (dl, dl+1), l ∈ [p]. Notice
that f(σjl

(mi0,jl
)) = dl and f(σjl

(mi1,jl
)) =

dl+1 for ∀l ∈ [p]. Therefore, f(σj1(mi1,jl
)) =

f(σj0(mi0,jl+1
)) for l ∈ [p]. Let J ′ = {j0, j1,

. . . , jp−1}, and D′ = {d0, d1, . . . , dp}. For each
j ∈ [J ], define that

ρj(mi,j) =











mi,j if i 6∈ {i0, i1} or j 6∈ J ′,
mi1,j if i = i0 and j ∈ J ′,
mi0,j if i = i1 and j ∈ J ′.

Let πj = σj ◦ ρj , and Π = {πj |j ∈ [J ]}. By
definition, RΣ(i) = RΠ(i) if i 6∈ {i0, i1} and so

WΣ(j) = WΠ(j) if i 6∈ {i0, i1}. (10)
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Also, for j 6∈ J ′, f(σj(mi,j)) = f(πj(mi,j)),
i.e.,

WΣ(d, i) = WΠ(d, i) for ∀d 6∈ D′. (11)

For ∀l ∈ [p], WΣ(dl, i0) = 1, since
f(σj0(mi0,jl

)) = dl. Thus,

∑

d∈D′

WΣ(d, i0) =
p−1
∑

l=0

WΣ(dl, i0) + WΣ(dp, i0)

= p + WΣ(dp, i0). (12)

For ∀l ∈ [p], WΣ(dl+1, i1) = 1, since
f(σil

(mil,i1)) = dl+1. On the other hand,
WΣ(d0, i1) = 0 from (6). Therefore,

∑

d∈D′

WΣ(d, i1) = p. (13)

For ∀l ∈ [p], WΠ(dl+1, i0) = 1, since
f(πjl+1

(mi1,jl+1
)) = f(σjl+1

(mi0,jl+1
)) = dl+1

by the definitions of πj and ρj . By the defi-
nition of d0, there is an integer j 6∈ J ′ such
that f(σi(mi0,j)) = d0. Since f(σi(mi0,j)) =
f(πj(mi0,j)) for j 6∈ J ′, WΠ(d0, i0) = 1. Thus,

∑

d∈D′

WΠ(d, i0) = p + 1. (14)

Since f(πjl
(mi1,jl

)) = f(σjl
(mi0,jl

)) = dl for
∀l ∈ [p], WΠ(dl, i1) = 1, and we have

∑

d∈D′

WΠ(d, i1) = p + WΠ(dp, i1). (15)

From (9), if WΣ(dp, i0) = 1 then there exists j 6∈
J ′ such that f(σj(mi1,j)) = f(πj(mi1,j)) = dp.
This implies that WΠ(dp, i1) = 1 if WΣ(dp, i0) =
1, i.e.,

WΠ(dp, i1) ≥ WΣ(dp, i0). (16)

From (11)–(16),

WΠ(i0) + WΠ(i1) ≥ WΣ(i0) + WΣ(i1) + 1.

Thus from (10), we have W (Π) ≥ W (Σ) + 1.
This completes the proof of the claim and the

lemma.
A set of permutations Π satisfying the con-

dition in Lemma 4 is called a set of shuffle
permutations. It is easy to see that a set of shuffle
permutations can be found in O(|M |2) time.

B. 3-D Channel Routing Algorithm

In this section, we show a polynomial time
algorithm for computing a routing of N in a 3-D
channel with h = 3

√
n layers. We use two virtual

terminals (X
(l)
i , Y

(l)
i , l) and (X

(m)
i , Y

(m)
i ,m) for

each net Ni such that X
(h−1)
i = X

(l)
i , Y

(l)
i =

Y
(m)
i , and X

(m)
i = X

(0)
i , where l = 2

√
n and

m =
√

n. The algorithm consists of three phases
and each of which uses

√
n layers. For each

net Ni, we connect (X
(h−1)
k , Y

(h−1)
k , h− 1) with

(X
(l)
k , Y

(l)
k , l) in the first phase, (X

(l)
k , Y

(l)
k , l−1)

with (X
(m)
k , Y

(m)
k ,m) in the second phase, and

(X
(m)
k , Y

(m)
k ,m − 1) with (X

(0)
k , Y

(0)
k , 0) in the

last phase.
The virtual terminals can be cmoputed as fol-

lows. Let I = J =
√

n and let M = {mi,j|i ∈
[I], j ∈ [J ]} be the set defined as mi,j = Nk

if j = X
(h−1)
k /2 and i = Y

(h−1)
k /2. Define that

D =
⋃

i∈[I]{X(0)
i } = {0, 2, . . . , 2√n − 2} and

f(Nk) = X
(0)
k /2 for ∀k ∈ [n]. It is easy to see

that f satisfies (4). By Lemma 4, we can obtain
in polynomial time permutations πj such that if
j 6= j′ then f ◦ π−1

j (mi,j) 6= f ◦ π−1
j′ (mi,j′). We

define virtual terminals (X
(l)
k , Y

(l)
k , l), k ∈ [n], as

X
(l)
k = X

(h−1)
k and Y

(l)
k = 2i, where i is such an

integer that πj(Nk) = mi,j for j = X
(h−1)
k /2. It

should be noted that if Y
(l)
k = Y

(l)
k′ then X

(0)
k 6=

X
(0)
k′ , since f ◦ π−1

j (mi,j) 6= f ◦ π−1
j′ (mi,j′) if

j 6= j′.
We define (X

(m)
k , Y

(m)
k ,m) as X

(m)
k = X

(0)
k

and Y
(m)
k = Y

(l)
k for ∀k ∈ [n].

Our 3-D channel routing algorithm is shown
in Fig. 4. Since each of Steps 1–3 uses

√
n

layers, we can obtained a 3-D routing of N
in a 3-D channel with height 3

√
n. Since the

length of every wire of a τ -routing is at most
2
√

n+O(1), the maximum length of a wire is at
most 6

√
n + O(1). This completes the proof of

Theorem 1.

V. PROOF OF THEOREM 2

Let N = {Ni|0 ≤ i ≤ n − 1} be a set of n 2-
nets such that X

(h−1)
i ≤ √

n− 2 and X
(0)
i ≥ √

n

if i ≤ n/2, and X
(h−1)
i ≥ √

n and X
(0)
i ≤ √

n−2
if i ≥ n/2+1. Consider an arbitrary rouiting of N
on a 3-D channel G and let h be the height of G.
Then a path for every net in N must go through
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Input N = {Nk|k ∈ [n]} with terminals (X
(0)
k

, Y
(0)
k

, 0) and (X
(h−1)
k

, Y
(h−1)
k

, h − 1)
for ∀k ∈ [n].

Output Routing of N .

Step 0 for ∀k ∈ [n],
Compute virtual terminals (X

(l)
k

, Y
(l)
k

, l) and (X
(m)
k

, Y
(m)
k

, m).

Step 1 for ∀i ∈ [
√

n],
Apply τ -routing to connect (X

(h−1)
k

, Y
(h−1)
k

, h − 1) and (X
(l)
l

, Y
(l)
l

, l) with
X

(h−1)
k

= X
(l)
k

= 2i in a (2 × 2
√

n × √
n)-subgrid consisting of 2i-column

and (2i + 1)-column, and z-layers (l ≤ z ≤ h − 1).

for ∀k ∈ [n],
connect (X

(l)
k

, Y
(l)
k

, l) with (X
(l)
k

, Y
(l)
k

, l − 1).

Step 2 for ∀j ∈ [
√

n],
Apply τ -routing to connect (X

(l−1)
k

, Y
(l−1)
k

, l − 1) and (X
(m)
l

, Y
(m)
l

, m) with
X

(l−1)
k

= X
(m)
k

= 2j in a (2 × 2
√

n × √
n)-subgrid consisting of 2j-row and

(2j + 1)-row, and z-layers (m ≤ z ≤ l − 1).

for ∀k ∈ [n],
connect (X

(m)
k

, Y
(m)
k

, m) with (X
(m)
k

, Y
(m)
k

, m − 1)

Step 3 for ∀i ∈ [
√

n],
Apply τ -routing to connect (X

(m−1)
k

, Y
(m−1)
k

, m − 1) and (X
(0)
l

, Y
(0)
l

, 0) with
X

(m−1)
k

= X
(0)
k

= 2i in a (2 × 2
√

n ×√
n)-subgrid consisting of 2i-column and

(2i + 1)-column, and z-layers (0 ≤ z ≤ m − 1).

Step 4 Output a wire for each 2-net by concatenating three paths above connecting
terminals and virtual terminals.

Fig. 4. 3-D Channel Routing Algorithm

the column defined by x =
√

n − 1. Since the
area of every column is 2

√
nh, we have 2h

√
n ≥

|N | = n. Thus, h = Ω(
√

n).
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