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Abstract— The 3-D channel routing is a fun-
damental problem on the physical design of 3-D
integrated circuits. The 3-D channel is a 3-D grid
G and the terminals are vertices of G located in the
top and bottom layers. A net is a set of terminals
to be connected. The object of the 3-D channel
routing problem is to connect the terminals in each
net with a tree (wire) in G using as few layers as
possible and as short wires as possible in such a
way that wires for distinct nets are disjoint. This
paper shows that any set of n 2-terminal nets can
be routed in a 3-D channel with O (y/n) layers
using wires of length O (\/ﬁ) We also show that
there exists a set of n 2-terminal nets that requires
a 3-D channel with  (1/n) layers to be routed.

I. INTRODUCTION

The three-dimensional (3-D) integration is an
emerging technology to implement large circuits,
and currently being extensively investigated. (See
[1]-[6], [8], for example.) In this paper, we con-
sider a problem on the physical design of 3-D
integrated circuits.

The 3-D channel routing is a fundamental
problem on the physical design of 3-D integrated
circuits. In the 3-D channel routing, the channel
is a 3-D grid G consisting of columns, rows, and
layers which are planes defined by fixing -, y-,
and z-coordinates, respectively. (See Fig. 1.) A
terminal is a vertex of G located in the top or
bottom layer. A net is a set of terminals to be
connected. A net containing k terminals is called
a k-net. A tree connecting the terminals in a net
is called a wire. The object of the 3-D channel
routing problem is to connect the terminals in
each net with a wire in G using as few layers
as possible and as short wires as possible in such
a way that wires for distinct nets are disjoint. The
number of layers is called the height of the 3-D
channel. The purpose of this paper is to show the
following two theorems.

top layer —»/ height

Trow

bottom layer —»-

column

Fig. 1. The three-dimensional channel.

Theorem 1: If the layers are square 2-D grids,
the terminals are located on vertices with even
z- and y-coordinates, and each net has terminals
both in top and bottom layers, then any set of n
2-nets can be routed in a 3-D channel of height
O(y/n) using wires of lenght O(y/n).

Theorem 2: There exists a set of n 2-nets that
requires a 3-D channel of height Q (y/n) to be
routed.

Theorem 1 implies that any set of n 2-nets can
be routed in a 3-D channel of volume O(n?*/2). It
should be noted that for the ordinary 2-D channel
routing there exists a set of n 2-nets requiring a
2-D channel of area Q(n?) to be routed [7].

Other models for the 3-D channel routing can
be found in the literature [3], [5], [8].

II. PRELIMINALIES

We consider a 3-D channel of height h, which
is a 2y/n X 2y/n x h 3-D grid. Each grid point
is denoted by (x,y,z) with 0 < z,y < 2y/n—1
and 0 < z < h — 1. The column, row, and layer
defined by z = 4, y = j, and z = k are called
the ¢-column, j-row, and k-layer, respectively.
The (h — 1)-layer and 0O-layer are corresponding
to the top and bottom layers, respectively. Let
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N = {NJ0 < i < n— 1} be a set of n 2-
nets, and let (Xi(h_l),Yi(h_l),h —1) and (XZ-(O),
Yi(o),O) be the terminals of N; (0 <7 <n —1),
where Xi(h_l), Yi(h_l), XZ-(O), and Yi(o) are even,
and (Xi(h—1)7Yi(h—1)7h 1 £ (X](h—l)7},j(h—1)7
h—1) and (X2, ¥{7,0) # (x2,v7,0) if
i

If f : A — B is a mapping, f(A)) =
{f(a)la € A’} is the image of A C A and
f~Y(B") = {a|f(a) = B'} is the pre-image of
B’ C B. We denote by f| 4 the restriction of f to
A’ Thatis, f|a : A’ — B and f|a/(d') = f(d')
for Va' € A’. If g : B — C is also a mapping,
go f is a composite mapping from A to C' defined
as go f(a) = g(f(a)) for Ya € A. A bijection
m: A — Ais called a permutation on A.

For a positive integer I, let [I] = {0,1,...,1—

1.

III. 2-D CHANNEL ROUTING

We consider in this section a 2-D channel of
height m, which is a 2m x 2xm 3-D grid G’. Let
N"={N/|0 <i<m—1} be a set of m 2-nets,
and let (Xi(m_l),O, m—1) and (XZ-(O),O, 0) be the
terminals of N/ (0 <4 < m — 1), where XZ-(m_l)
and X* are even, and (XY, 0,m — 1) #
(x{™ Y, 0,m~1) and (X”,0,0) # (x\*,0,0)
if i # j.

Lemma 1: N can be routed in G’.

Proof: Let pg,p1,...,pr be grid points
of G’ such that p; and p;;1 differ in just one
coordinate, 0 < ¢ < k — 1. Then, we denote
by [po,p1,-..,pr] a wire connecting py and py
obtained by connecting p; and p;y; by an axis-
parallel line segment, 0 <7 < k — 1. Suppose
without loss of generality that X" = X9
Then, if m > 3, N can be routed in G’ using a
wire defined by (1) for N/, a wire defined by
(2) for Ni, and wires defined by (3) for N/,
2 < ¢ < m — 1. It is not difficult to see that
the wires defined above are disjoint. If m = 2,
N’ can be routed in G’ as shown in Fig. 2. ®

The routing defined in the proof of Lemma 1
is called a T-routing for N'. An example of -
routing is shown in Fig. 3.

Fig. 2. A routing for a set of two 2-nets.
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Fig. 3. A 7-routing for a set of six 2-nets.

IV. PROOF OF THEOREM 1
A. Technical Lemmas

For positive integers I and J, we define that
M = {myli € [l.j € [J]}, and My =
{mi;|i € [I]}, and M;, = {m;;|j € [J]}. Let
D be aset with |[D| = J and f: M — D be a
mapping such that

IfHd)| = )

Let m; be a permutation on M,; for Vj € [J],
and IT = {m;|j € [J]}. Define that Ryy(i) =
Ujern W{l(mi,j). |Rr1(7)| = J, by definition. For
such II and each ¢ € [I], we define that

I for Vd € D.

. [ 1 ifde f(Ru(i)),
Wn(d,i) = {0 ifngf(RE(i)),
Wnli) = 3 Wul(d,i), and

deD

I-1
W = > Wn().

=0

By definition, 1 < Wy (i) < J and Wy(i) = J
if and only if f|r, ;) is a bijection, that is,
|f(Rr(7))] = J. Thus we have the following
lemma.

Lemma 2: If Wyi(i) < J, there exists d € D
such that |f |}_2111(Z.) (d)‘ > 2, and there exists an
integer i’ € [I] suth that d & f(Rp(i')).
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Proof: 1f Wri(i) < J then f[g,(; is not a
bijection, and so ’f|Rn(i) > 2 for some d € D.
It follows that d ¢ f(Rr(i')) for some ' € [I]
by (4). m

We need the following easy lemma on directed
multi-graphs.

Lemma 3: For a directed multi-graph H with
the vertex set D, if there exists a vertex dy €
D with deg,;(do) > deg;,(do) + 1 then there
exists a vertex d, € D such that deg;,(d,) >
deg, (dp)+1 and there exists a directed path (do,
di,...,d,) in H, where deg;,(d) and deg,(d)
is the in- and out-degrees of d in H.

Proof: Let D' C D be a set of vertices d’
such that there exists a directed path from dj to
d in H, and let H[D'] be the induced subgraph
of H on D'. Let deg! (d') and deg. .(d’') be
the in- and out-degrees of d' € D’ in H[D'],
respectively. Notice that degl (d') = deg,(d’)
and degl (d') < deg;,(d') for every d' € D'
Since deg:)ut(dO) = degout(dO) > degin(do) +
1 > degl,(do) + 1, there exists a vertex d’' € D’
such that degl . (d') < degi,(d) — 1, which
follows from the fact that >, . p degy . (d) =
Zd’eD’ degin(d,)‘ Since deg:)ut(d,) = degout (d/)
and deg! (d') < deg;,(d'), we have deg, . (d') <
deg;, (d')—1. By the definition of D’, there exists
a directed path from dy to d’. Thus, we have the
lemma. [ |

Lemma 4: There exists a set II of permutations
mj on M,; (j € [J]) such that for every i € [I],
/|Rn(z') om; (mij) # flra omy (maye) if j #

J
Proof: By definition, J < W(II) < IJ,
and W(II) = IJ if and only if II satisfies the
condition in the lemma. In order to prove the
lemma, it suffices to show the following.
Claim 1: Let X be a set of permutations o;
on M,; (j € [J]) with W(X) < IJ — 1. Then,

X 0,4) (Xm0 10) (X0 4 1,10) (%0 +1,1,0),

(" 0m =), (" 1,0m —1), (XY +1,0,0), (XY +1,1,0)

(

(x6”,1,0), (x5”,0,0)]
( 2
)

3)

(x4 1,0,0), (x{,0,0)

there exists a set II of permutations 7; on M,;
(7 € [J]) such that W(II) > W (X) + 1.

Proof of Claim 1: Since W (%) < IJ —1, there
exists 79 € [I] such that Wx(ip) < J — 1. By
Lemma 2, there exists dg € D such that

-1
IRl oy (o) > 2 5)
and there exists an integer i, € [I] with

do ¢ f(Rs(i1)) (6)

Consider a directed multi-graph H
with vertex set D which has an arc
aj = (f(oj(mi,;)), f(oj(mi, ;) for each

j € [J]. From (5) and (6), we have

degout(dO) > 2?
degin(do) = 0,

respectively, where deg;, (d) and deg,,(d) is the
in- and out-degrees of d in H, respectively. From
Lemma 3, there exists a vertex d, € D with

deg;y, (dp) €))

and there exists a directed path P = (dg, dy, . ..,
d,). Let a;, be an arc (d;,d;+1), | € [p]. Notice
that f(ajz(mio,jz)) = d; and f(o-jz(mihjz)) =
di+1 for VI € [p]. Therefore, f(o;, (m;, ;) =
flojo(Migjiyy)) for 1€ [p]. Let T’ = {jo, 1,

., Jp—1}, and D" = {do,dy,...,dy,}. For each
j € [J], define that

(M
(®)

2 degout(dp) + 17

my if ¢ Q {io,il} Ol‘j ¢ j/,
pj(mi ;) = m;, ; ifi=1ipand j€J’,
Miy . j if 1 =14 andj S j/.

Let m; = oj o p;, and II = {mj|j € [J]}. By
definition, Rx;(7) = Ry (7) if ¢ & {io, 41} and so
Wn(j) if @ & {io, i1}

Ws(j) = (10)
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Also, for j & J', f(oj(mij)) = f(mj(m;)),

1.€.,

Ws(d,i) = Wrl(d,q) for ¥d ¢ D'. (11)
For Vi € [p], Wx(d;,ig) = 1, since
f(ajo (mio,jz)) = d;. Thus,

p—1
> Wx(dio) = > Wsl(dy,io) + We(dy,io)
deDr 1=0
= p+ Wx(dp,io). (12)
For Vi € [p], Wx(di+1,11) = 1, since
f(oi,(mi,i,)) = di+1. On the other hand,

Wx(dp,i1) = 0 from (6). Therefore,

> Wx(diy) = p. (13)
deD’
For Vi € [p|, Wn(di41,i0) = 1, since
fmj(mij,,)) = flog, (Mg g,,)) = dia

by the definitions of 7; and p;. By the defi-
nition of dy, there is an integer j ¢ J' such
that f(a,-(mio,j)) = dy. Since f(ai(miw-)) =
f(ﬂ'j(mio,j)) fOI‘j §Z j/, Wn(do,io) =1. Thus,

> Wald,ig) =

deD’

p+1. (14)

Since f(ﬂ-jz (mil,jz)) = f(ajl (mimjl)) = d; for
Vi € [p], Wri(dy,i1) = 1, and we have

> Wu(d,i) =
deD

p+ Wn(dp, il). (15)

From (9), if Wx,(dp,ip) = 1 then there exists j ¢
J' such that f(oj(mil,j)) = f(ﬂ'j(mil,j)) = dp.
This implies that Wi (dp, i1) = 1 if Wx(dp,i0) =
1, i.e.,

Wﬂ(dmil)

> Wx(dp, io). (16)

From (11)~(16),

Wn(io) + Wn(i1) > Ws(io) + Wx(ir) + 1.

Thus from (10), we have W (II) > W(X) + 1
This completes the proof of the claim and the
lemma. ]
A set of permutations II satisfying the con-
dition in Lemma 4 is called a set of shuffle
permutations. It is easy to see that a set of shuffle
permutations can be found in O(|M|?) time.

B. 3-D Channel Routing Algorithm

In this section, we show a polynomial time
algorithm for computing a routing of A in a 3-D
channel with h = 3/n layers. We use two virtual
terminals (X", V;¥' 1) and (X™ V™ m) for
each net N; such that Xi(h_l) = Xi(l), Yi(l) =
Yi(m), and Xi(m) = XZ-(O), where [ = 2,/n and
m = y/n. The algorithm consists of three phases
and each of which uses /n layers. For each
net V;, we connect (X,gh_l), Yk(h_l), h —1) with
(Xlgl), Yk(l), [) in the first phase, (X,gl), Yk(l), [-1)
with (X lgm),Yk(m),m) in the second phase, and
(x™ v ™ m = 1) with (X\2,%?,0) in the
last phase.

The virtual terminals can be cmoputed as fol-
lows. Let I = J = /n and let M = {m, ;|i €
1], € [ ]} be the set defined as m;; = Ny

if j = Xk /2 and i = Y(h 2 /2. Define that
D = ZE[I]{XZ } = {0,2,,2ﬁ—2} and
f(Ng) = X,go)/2 for Vk € [n]. It is easy to see
that f satisfies (4). By Lemma 4, we can obtain
in polynomial time permutations 7; such that if
j#j then fom; (mi;) # fomy (miy). We
define virtual terminals (X lgl), k(), ), keln],a
X,g) = Xlgh b and Yk() = 214, where 7 is such an
integer that 7;(Ny) = m; ; for j = (h Yo n
should be noted that if V" = v\" then X0
XY, since fom N miy) # fomy (miy) if
i#7.

We define (X ,gm),Yk(m),m) as X ,gm)
and Yk(m) = Yk(l) for Vk € [n].

Our 3-D channel routing algorithm is shown
in Fig. 4. Since each of Steps 1-3 uses /n
layers, we can obtained a 3-D routing of N
in a 3-D channel with height 3\/n. Since the
length of every wire of a 7-routing is at most
2y/n+ O(1), the maximum length of a wire is at
most 6y/n + O(1). This completes the proof of
Theorem 1.

= x

V. PROOF OF THEOREM 2

LetN:{Ni|0<z’<n—1} beasetoan—
nets such that Xi( 2 < Vn—2 and X >/n
ifi <n/2,and X"V > /mand XV < \/n—2
if i > n/2+1. Consider an arbitrary rouiting of A/
on a 3-D channel G and let h be the height of G.
Then a path for every net in A/ must go through
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for Vk € [n].
Output Routing of .

Step 0 for Vk € [n],

Step 1 for Vi € [\/n],

X,gh_l) _ X}gz)
for V& € [n],
Step 2 for Vj € [\/n],

for Vk € [n],

Step 3 for Vi € [\/n],

Step 4
terminals and virtual terminals.

Input N = {Ni|k € [n]} with terminals (X\*, ¥? 0) and (X", v""V h - 1)

Compute virtual terminals (X", ¥V 1) and (X{™,v,(™ m).

Apply 7-routing to connect (X,gh_l),Yk(h_l),h — 1) and (Xl(l),Yl(l),l) with
= 2¢ in a (2 x 24/n X /n)-subgrid consisting of 2i-column
and (2¢ + 1)-column, and z-layers (I < z < h —1).

connect (X,gl),Yk(l),l) with (X,gl),Yk(l),l —1).

Apply 7-routing to connect (X,gl_l),Yk(l_l),l —1) and (Xl(m),Yl(m),m) with
X,gl_l) = X,gm) = 27 in a (2 x 2y/n X y/n)-subgrid consisting of 2j-row and
(2j + 1)-row, and z-layers (m < z <[ —1).

connect (X,gm), Yk(m), m) with (X,gm), Yk(m), m—1)

Apply 7-routing to connect (X,Em_l),Yk(m_l),m — 1) and (Xl(o),Yl(O),O) with
X,gm_l) = X}go) =27 in a (2 X 24/n x y/n)-subgrid consisting of 2i-column and
(2i + 1)-column, and z-layers (0 < z <m — 1).

Output a wire for each 2-net by concatenating three paths above connecting

Fig. 4.

the column defined by x = \/n — 1. Since the

area of every column is 2/nh, we have 2h\/n >
IN| = n. Thus, h = Q (v/n).
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