On the Three-Dimensional Channel Routing

Satoshi Tayu, Patrik Hurtig, Yoshiyasu Horikawa, and Shuichi Ueno Department of Communications and Integrated Systems, Tokyo Institute of Technology Tokyo 152-8552-S3-57, Japan

Email: {tayu, ueno}@lab.ss.titech.ac.jp

Abstract—The 3-D channel routing is a fundamental problem on the physical design of 3-D integrated circuits. The 3-D channel is a 3-D grid top lay G and the terminals are vertices of G located in the phasements top and bottom layers. A net is a set of terminals to be connected. The object of the 3-D channel routing problem is to connect the terminals in each net with a tree (wire) in G using as few layers as possible and as short wires as possible in such a way that wires for distinct nets are disjoint. This paper shows that any set of n 2-terminal nets can be routed in a 3-D channel with $O(\sqrt{n})$ layers using wires of length $O(\sqrt{n})$. We also show that there exists a set of n 2-terminal nets that requires a 3-D channel with $O(\sqrt{n})$ layers to be routed.

I. INTRODUCTION

The three-dimensional (3-D) integration is an emerging technology to implement large circuits, and currently being extensively investigated. (See [1]–[6], [8], for example.) In this paper, we consider a problem on the physical design of 3-D integrated circuits.

The 3-D channel routing is a fundamental problem on the physical design of 3-D integrated circuits. In the 3-D channel routing, the channel is a 3-D grid G consisting of columns, rows, and layers which are planes defined by fixing x-, y-, and z-coordinates, respectively. (See Fig. 1.) A terminal is a vertex of G located in the top or bottom layer. A net is a set of terminals to be connected. A net containing k terminals is called a k-net. A tree connecting the terminals in a net is called a wire. The object of the 3-D channel routing problem is to connect the terminals in each net with a wire in G using as few layers as possible and as short wires as possible in such a way that wires for distinct nets are disjoint. The number of layers is called the height of the 3-D channel. The purpose of this paper is to show the following two theorems.

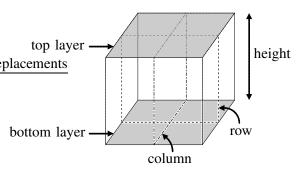


Fig. 1. The three-dimensional channel.

Theorem 1: If the layers are square 2-D grids, the terminals are located on vertices with even x- and y-coordinates, and each net has terminals both in top and bottom layers, then any set of n 2-nets can be routed in a 3-D channel of height $O(\sqrt{n})$ using wires of length $O(\sqrt{n})$.

Theorem 2: There exists a set of n 2-nets that requires a 3-D channel of height $\Omega\left(\sqrt{n}\right)$ to be routed.

Theorem 1 implies that any set of n 2-nets can be routed in a 3-D channel of volume $O(n^{3/2})$. It should be noted that for the ordinary 2-D channel routing there exists a set of n 2-nets requiring a 2-D channel of area $\Omega(n^2)$ to be routed [7].

Other models for the 3-D channel routing can be found in the literature [3], [5], [8].

II. PRELIMINALIES

We consider a 3-D channel of height h, which is a $2\sqrt{n} \times 2\sqrt{n} \times h$ 3-D grid. Each grid point is denoted by (x,y,z) with $0 \le x,y \le 2\sqrt{n}-1$ and $0 \le z \le h-1$. The column, row, and layer defined by $x=i,\ y=j,$ and z=k are called the i-column, j-row, and k-layer, respectively. The (h-1)-layer and 0-layer are corresponding to the top and bottom layers, respectively. Let

 $\mathcal{N} = \{N_i | 0 \leq i \leq n-1\} \text{ be a set of } n \text{ 2-nets, and let } (X_i^{(h-1)}, Y_i^{(h-1)}, h-1) \text{ and } (X_i^{(0)}, Y_i^{(0)}, 0) \text{ be the terminals of } N_i \text{ } (0 \leq i \leq n-1), \text{ where } X_i^{(h-1)}, Y_i^{(h-1)}, X_i^{(0)}, \text{ and } Y_i^{(0)} \text{ are even, and } (X_i^{(h-1)}, Y_i^{(h-1)}, h-1) \neq (X_j^{(h-1)}, Y_j^{(h-1)}, h-1) \text{ and } (X_i^{(0)}, Y_i^{(0)}, 0) \neq (X_j^{(0)}, Y_j^{(0)}, 0) \text{ if } i \neq j.$

If $f:A\to B$ is a mapping, $f(A')=\{f(a)|a\in A'\}$ is the image $\inf_{A'} f(A') \subseteq A$ and $\inf_{A'} f(A')=\{a|f(a)=B'\}$ is the pre-image of $B'\subseteq B$. We denote by $f|_{A'}$ the restriction of f to A'. That is, $f|_{A'}:A'\to B$ and $f|_{A'}(a')=f(a')$ for $\forall a'\in A'$. If $g:B\to C$ is also a mapping, $g\circ f$ is a composite mapping from A to C defined as $g\circ f(a)=g(f(a))$ for $\forall a\in A$. A bijection $\pi:A\to A$ is called a permutation on A.

For a positive integer I, let $[I] = \{0, 1, \dots, I - N_6 \}$.

III. 2-D CHANNEL ROUTING

We consider in this section a 2-D channel of height m, which is a $2m \times 2 \times m$ 3-D grid G'. Let $\mathcal{N}' = \{N_i' | 0 \le i \le m-1\}$ be a set of m 2-nets, and let $(X_i^{(m-1)}, 0, m-1)$ and $(X_i^{(0)}, 0, 0)$ be the terminals of N_i' $(0 \le i \le m-1)$, where $X_i^{(m-1)}$ and $X_i^{(0)}$ are even, and $(X_i^{(m-1)}, 0, m-1) \ne (X_j^{(m-1)}, 0, m-1)$ and $(X_i^{(0)}, 0, 0) \ne (X_j^{(0)}, 0, 0)$ if $i \ne j$.

Lemma 1: \mathcal{N}' can be routed in G'.

Proof: Let p_0, p_1, \ldots, p_k be grid points of G' such that p_i and p_{i+1} differ in just one coordinate, $0 \le i \le k-1$. Then, we denote by $[p_0, p_1, \ldots, p_k]$ a wire connecting p_0 and p_k obtained by connecting p_i and p_{i+1} by an axisparallel line segment, $0 \le i \le k-1$. Suppose without loss of generality that $X_0^{(m-1)} = X_1^{(0)}$. Then, if $m \ge 3$, \mathcal{N}' can be routed in G' using a wire defined by (1) for N_0' , a wire defined by (2) for N_1' , and wires defined by (3) for N_i' , $2 \le i \le m-1$. It is not difficult to see that the wires defined above are disjoint. If m=2, \mathcal{N}' can be routed in G' as shown in Fig. 2.

The routing defined in the proof of Lemma 1 is called a τ -routing for \mathcal{N}' . An example of τ -routing is shown in Fig. 3.

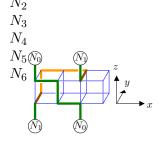


Fig. 2. A routing for a set of two 2-nets.

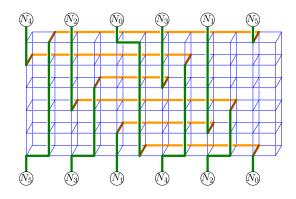


Fig. 3. A τ -routing for a set of six 2-nets.

IV. PROOF OF THEOREM 1

A. Technical Lemmas

For positive integers I and J, we define that $M=\{m_{i,j}|i\in [I],j\in [J]\}$, and $M_{*j}=\{m_{i,j}|i\in [I]\}$, and $M_{i*}=\{m_{i,j}|j\in [J]\}$. Let D be a set with |D|=J and $f:M\to D$ be a mapping such that

$$|f^{-1}(d)| = I \text{ for } \forall d \in D. \tag{4}$$

Let π_j be a permutation on M_{*j} for $\forall j \in [J]$, and $\Pi = \{\pi_j | j \in [J]\}$. Define that $R_{\Pi}(i) = \bigcup_{j \in [J]} \pi_j^{-1}(m_{i,j})$. $|R_{\Pi}(i)| = J$, by definition. For such Π and each $i \in [I]$, we define that

$$W_{\Pi}(d,i) = \begin{cases} 1 & \text{if } d \in f(R_{\Pi}(i)), \\ 0 & \text{if } d \notin f(R_{\Pi}(i)), \end{cases}$$

$$W_{\Pi}(i) = \sum_{d \in D} W_{\Pi}(d,i), \text{ and}$$

$$W(\Pi) = \sum_{i=0}^{I-1} W_{\Pi}(i).$$

By definition, $1 \leq W_{\Pi}(i) \leq J$ and $W_{\Pi}(i) = J$ if and only if $f|_{R_{\Pi}(i)}$ is a bijection, that is, $|f(R_{\Pi}(i))| = J$. Thus we have the following lemma.

Lemma 2: If $W_{\Pi}(i) < J$, there exists $d \in D$ such that $\left| f|_{R_{\Pi}(i)}^{-1}(d) \right| \geq 2$, and there exists an integer $i' \in [I]$ suth that $d \not\in f(R_{\Pi}(i'))$.

$$\left[\left(X_0^{(m-1)}, 0, m-1 \right), \left(X_0^{(m-1)} + 1, 0, m-1 \right), \left(X_0^{(m-1)} + 1, 0, 0 \right), \left(X_0^{(m-1)} + 1, 1, 0 \right), \\ \left(X_0^{(0)}, 1, 0 \right), \left(X_0^{(0)}, 0, 0 \right) \right] \quad (1)$$

$$\left[\left(X_1^{(m-1)}, 0, m-1 \right), \left(X_1^{(m-1)}, 0, 1 \right), \left(X_1^{(m-1)}, 1, 1 \right), \left(X_1^{(0)}, 1, 1 \right), \left(X_1^{(0)}, 0, 1 \right), \left(X_1^{(0)}, 0, 0 \right) \right] \quad (2)$$

$$\left[\left(X_i^{(m-1)}, 0, m-1 \right), \left(X_i^{(m-1)}, 0, i \right), \left(X_i^{(m-1)}, 1, i \right), \left(X_i^{(0)} + 1, 1, i \right), \left(X_i^{(0)} + 1, 1, 0 \right), \\ \left(X_i^{(0)} + 1, 0, 0 \right), \left(X_i^{(0)}, 0, 0 \right) \right] \quad (3)$$

Proof: If $W_{\Pi}(i) < J$ then $f|_{R_{\Pi}(i)}$ is not a bijection, and so $\left|f|_{R_{\Pi}(i)}\right| \geq 2$ for some $d \in D$. It follows that $d \not\in f(R_{\Pi}(i'))$ for some $i' \in [I]$ by (4).

We need the following easy lemma on directed multi-graphs.

Lemma 3: For a directed multi-graph H with the vertex set D, if there exists a vertex $d_0 \in D$ with $\deg_{\mathrm{out}}(d_0) \geq \deg_{\mathrm{in}}(d_0) + 1$ then there exists a vertex $d_p \in D$ such that $\deg_{\mathrm{in}}(d_p) \geq \deg_{\mathrm{out}}(d_p) + 1$ and there exists a directed path (d_0, d_1, \ldots, d_p) in H, where $\deg_{\mathrm{in}}(d)$ and $\deg_{\mathrm{out}}(d)$ is the in- and out-degrees of d in H.

Proof: Let $D' \subseteq D$ be a set of vertices d'such that there exists a directed path from d_0 to d' in H, and let H[D'] be the induced subgraph of H on D'. Let $\deg'_{in}(d')$ and $\deg'_{out}(d')$ be the in- and out-degrees of $d' \in D'$ in H[D'], respectively. Notice that $\deg'_{out}(d') = \deg_{out}(d')$ and $\deg'_{\text{in}}(d') \leq \deg_{\text{in}}(d')$ for every $d' \in D'$. Since $\deg'_{\mathrm{out}}(d_0) = \deg_{\mathrm{out}}(d_0) \ge \deg_{\mathrm{in}}(d_0) +$ $1 \ge \deg'_{\mathrm{in}}(d_0) + 1$, there exists a vertex $d' \in D'$ such that $\deg'_{\text{out}}(d') \leq \deg'_{\text{in}}(d') - 1$, which follows from the fact that $\sum_{d' \in D'} \deg_{\mathrm{out}}(d') =$ $\sum_{d' \in D'} \deg_{\operatorname{in}}(d')$. Since $\deg'_{\operatorname{out}}(d') = \deg_{\operatorname{out}}(d')$ and $\deg'_{\rm in}(d') \leq \deg_{\rm in}(d')$, we have $\deg_{\rm out}(d') \leq$ $\deg_{\mathrm{in}}(d')-1$. By the definition of D', there exists a directed path from d_0 to d'. Thus, we have the lemma.

Lemma 4: There exists a set Π of permutations π_j on M_{*j} $(j \in [J])$ such that for every $i \in [I]$, $f|_{R_{\Pi}(i)} \circ \pi_j^{-1}(m_{i,j}) \neq f|_{R_{\Pi}(i)} \circ \pi_{j'}^{-1}(m_{i,j'})$ if $j \neq j'$.

Proof: By definition, $J \leq W(\Pi) \leq IJ$, and $W(\Pi) = IJ$ if and only if Π satisfies the condition in the lemma. In order to prove the lemma, it suffices to show the following.

Claim 1: Let Σ be a set of permutations σ_j on M_{*j} $(j \in [J])$ with $W(\Sigma) \leq IJ - 1$. Then,

there exists a set Π of permutations π_j on M_{*j} $(j \in [J])$ such that $W(\Pi) \geq W(\Sigma) + 1$.

Proof of Claim 1: Since $W(\Sigma) \leq IJ-1$, there exists $i_0 \in [I]$ such that $W_{\Sigma}(i_0) \leq J-1$. By Lemma 2, there exists $d_0 \in D$ such that

$$\left| f \right|_{R_{\Sigma}(i_0)}^{-1}(d_0) \right| \ge 2$$
 (5)

and there exists an integer $i_1 \in [I]$ with

$$d_0 \notin f(R_{\Sigma}(i_1)). \tag{6}$$

Consider a directed multi-graph H with vertex set D which has an arc $a_j = (f(\sigma_j(m_{i_0,j})), f(\sigma_j(m_{i_1,j})))$ for each $j \in [J]$. From (5) and (6), we have

$$\deg_{\text{out}}(d_0) \ge 2, \tag{7}$$

$$\deg_{\mathrm{in}}(d_0) = 0, \tag{8}$$

respectively, where $\deg_{\mathrm{in}}(d)$ and $\deg_{\mathrm{out}}(d)$ is the in- and out-degrees of d in H, respectively. From Lemma 3, there exists a vertex $d_p \in D$ with

$$\deg_{\mathrm{in}}(d_p) \geq \deg_{\mathrm{out}}(d_p) + 1, \tag{9}$$

and there exists a directed path $P=(d_0,d_1,\ldots,d_p)$. Let a_{j_l} be an arc $(d_l,d_{l+1}),\ l\in[p]$. Notice that $f(\sigma_{j_l}(m_{i_0,j_l}))=d_l$ and $f(\sigma_{j_l}(m_{i_1,j_l}))=d_{l+1}$ for $\forall l\in[p]$. Therefore, $f(\sigma_{j_1}(m_{i_1,j_l}))=f(\sigma_{j_0}(m_{i_0,j_{l+1}}))$ for $l\in[p]$. Let $\mathcal{J}'=\{j_0,j_1,\ldots,j_{p-1}\}$, and $D'=\{d_0,d_1,\ldots,d_p\}$. For each $j\in[J]$, define that

$$\rho_{j}(m_{i,j}) = \begin{cases} m_{i,j} & \text{if } i \notin \{i_{0}, i_{1}\} \text{ or } j \notin \mathcal{J}', \\ m_{i_{1},j} & \text{if } i = i_{0} \text{ and } j \in \mathcal{J}', \\ m_{i_{0},j} & \text{if } i = i_{1} \text{ and } j \in \mathcal{J}'. \end{cases}$$

Let $\pi_j = \sigma_j \circ \rho_j$, and $\Pi = \{\pi_j | j \in [J]\}$. By definition, $R_{\Sigma}(i) = R_{\Pi}(i)$ if $i \notin \{i_0, i_1\}$ and so

$$W_{\Sigma}(j) = W_{\Pi}(j) \text{ if } i \notin \{i_0, i_1\}.$$
 (10)

Also, for $j \notin \mathcal{J}'$, $f(\sigma_j(m_{i,j})) = f(\pi_j(m_{i,j}))$, i.e.,

$$W_{\Sigma}(d,i) = W_{\Pi}(d,i) \text{ for } \forall d \notin D'.$$
 (11)

For $\forall l \in [p]$, $W_{\Sigma}(d_l, i_0) = 1$, since $f(\sigma_{j_0}(m_{i_0, j_l})) = d_l$. Thus,

$$\sum_{d \in D'} W_{\Sigma}(d, i_0) = \sum_{l=0}^{p-1} W_{\Sigma}(d_l, i_0) + W_{\Sigma}(d_p, i_0)$$
$$= p + W_{\Sigma}(d_p, i_0).$$
(12)

For $\forall l \in [p]$, $W_{\Sigma}(d_{l+1}, i_1) = 1$, since $f(\sigma_{i_l}(m_{i_l,i_1})) = d_{l+1}$. On the other hand, $W_{\Sigma}(d_0, i_1) = 0$ from (6). Therefore,

$$\sum_{d \in D'} W_{\Sigma}(d, i_1) = p. \tag{13}$$

For $\forall l \in [p], \ W_\Pi(d_{l+1},i_0) = 1$, since $f(\pi_{j_{l+1}}(m_{i_1,j_{l+1}})) = f(\sigma_{j_{l+1}}(m_{i_0,j_{l+1}})) = d_{l+1}$ by the definitions of π_j and ρ_j . By the definition of d_0 , there is an integer $j \notin \mathcal{J}'$ such that $f(\sigma_i(m_{i_0,j})) = d_0$. Since $f(\sigma_i(m_{i_0,j})) = f(\pi_j(m_{i_0,j}))$ for $j \notin \mathcal{J}', \ W_\Pi(d_0,i_0) = 1$. Thus,

$$\sum_{d \in D'} W_{\Pi}(d, i_0) = p + 1. \tag{14}$$

Since $f(\pi_{j_l}(m_{i_1,j_l})) = f(\sigma_{j_l}(m_{i_0,j_l})) = d_l$ for $\forall l \in [p], W_{\Pi}(d_l, i_1) = 1$, and we have

$$\sum_{d \in D'} W_{\Pi}(d, i_1) = p + W_{\Pi}(d_p, i_1). \quad (15)$$

From (9), if $W_{\Sigma}(d_p, i_0) = 1$ then there exists $j \notin \mathcal{J}'$ such that $f(\sigma_j(m_{i_1,j})) = f(\pi_j(m_{i_1,j})) = d_p$. This implies that $W_{\Pi}(d_p, i_1) = 1$ if $W_{\Sigma}(d_p, i_0) = 1$, i.e.,

$$W_{\Pi}(d_p, i_1) \geq W_{\Sigma}(d_p, i_0). \tag{16}$$

From (11)–(16),

$$W_{\Pi}(i_0) + W_{\Pi}(i_1) \geq W_{\Sigma}(i_0) + W_{\Sigma}(i_1) + 1.$$

Thus from (10), we have $W(\Pi) \geq W(\Sigma) + 1$.

This completes the proof of the claim and the lemma

A set of permutations Π satisfying the condition in Lemma 4 is called a set of shuffle permutations. It is easy to see that a set of shuffle permutations can be found in $O(|M|^2)$ time.

B. 3-D Channel Routing Algorithm

In this section, we show a polynomial time algorithm for computing a routing of $\mathcal N$ in a 3-D channel with $h=3\sqrt{n}$ layers. We use two virtual terminals $(X_i^{(l)},Y_i^{(l)},l)$ and $(X_i^{(m)},Y_i^{(m)},m)$ for each net N_i such that $X_i^{(h-1)}=X_i^{(l)},\,Y_i^{(l)}=Y_i^{(m)},$ and $X_i^{(m)}=X_i^{(0)},$ where $l=2\sqrt{n}$ and $m=\sqrt{n}$. The algorithm consists of three phases and each of which uses \sqrt{n} layers. For each net N_i , we connect $(X_k^{(h-1)},Y_k^{(h-1)},h-1)$ with $(X_k^{(l)},Y_k^{(l)},l)$ in the first phase, $(X_k^{(l)},Y_k^{(l)},l-1)$ with $(X_k^{(m)},Y_k^{(m)},m)$ in the second phase, and $(X_k^{(m)},Y_k^{(m)},m-1)$ with $(X_k^{(0)},Y_k^{(0)},0)$ in the last phase.

The virtual terminals can be emoputed as follows. Let $I=J=\sqrt{n}$ and let $M=\{m_{i,j}|i\in [I],j\in [J]\}$ be the set defined as $m_{i,j}=N_k$ if $j=X_k^{(h-1)}/2$ and $i=Y_k^{(h-1)}/2$. Define that $D=\bigcup_{i\in [I]}\{X_i^{(0)}\}=\{0,2,\ldots,2\sqrt{n}-2\}$ and $f(N_k)=X_k^{(0)}/2$ for $\forall k\in [n]$. It is easy to see that f satisfies (4). By Lemma 4, we can obtain in polynomial time permutations π_j such that if $j\neq j'$ then $f\circ\pi_j^{-1}(m_{i,j})\neq f\circ\pi_{j'}^{-1}(m_{i,j'})$. We define virtual terminals $(X_k^{(l)},Y_k^{(l)},l),k\in [n]$, as $X_k^{(l)}=X_k^{(h-1)}$ and $Y_k^{(l)}=2i$, where i is such an integer that $\pi_j(N_k)=m_{i,j}$ for $j=X_k^{(h-1)}/2$. It should be noted that if $Y_k^{(l)}=Y_{k'}^{(l)}$ then $X_k^{(0)}\neq X_{k'}^{(0)}$, since $f\circ\pi_j^{-1}(m_{i,j})\neq f\circ\pi_{j'}^{-1}(m_{i,j'})$ if $j\neq j'$.

We define $(X_k^{(m)},Y_k^{(m)},m)$ as $X_k^{(m)}=X_k^{(0)}$ and $Y_k^{(m)}=Y_k^{(l)}$ for $\forall k\in[n].$

Our 3-D channel routing algorithm is shown in Fig. 4. Since each of Steps 1–3 uses \sqrt{n} layers, we can obtained a 3-D routing of $\mathcal N$ in a 3-D channel with height $3\sqrt{n}$. Since the length of every wire of a τ -routing is at most $2\sqrt{n} + O(1)$, the maximum length of a wire is at most $6\sqrt{n} + O(1)$. This completes the proof of Theorem 1.

V. Proof of Theorem 2

Let $\mathcal{N}=\{N_i|0\leq i\leq n-1\}$ be a set of n 2-nets such that $X_i^{(h-1)}\leq \sqrt{n}-2$ and $X_i^{(0)}\geq \sqrt{n}$ if $i\leq n/2$, and $X_i^{(h-1)}\geq \sqrt{n}$ and $X_i^{(0)}\leq \sqrt{n}-2$ if $i\geq n/2+1$. Consider an arbitrary rouiting of \mathcal{N} on a 3-D channel G and let h be the height of G. Then a path for every net in \mathcal{N} must go through

Input $\mathcal{N} = \{N_k | k \in [n]\}$ with terminals $(X_k^{(0)}, Y_k^{(0)}, 0)$ and $(X_k^{(h-1)}, Y_k^{(h-1)}, h-1)$ for $\forall k \in [n]$.

Output Routing of \mathcal{N} .

Step 0 for $\forall k \in [n]$, Compute virtual terminals $(X_k^{(l)}, Y_k^{(l)}, l)$ and $(X_k^{(m)}, Y_k^{(m)}, m)$.

Step 1 for $\forall i \in [\sqrt{n}],$ Apply τ -routing to connect $(X_k^{(h-1)}, Y_k^{(h-1)}, h-1)$ and $(X_l^{(l)}, Y_l^{(l)}, l)$ with $X_k^{(h-1)} = X_k^{(l)} = 2i$ in a $(2 \times 2\sqrt{n} \times \sqrt{n})$ -subgrid consisting of 2i-column and (2i+1)-column, and z-layers $(l \le z \le h-1).$

 $\begin{array}{l} \text{for } \forall k \in [n], \\ \text{connect } (X_k^{(l)}, Y_k^{(l)}, l) \text{ with } (X_k^{(l)}, Y_k^{(l)}, l-1). \end{array}$

Step 2 for $\forall j \in [\sqrt{n}]$, Apply τ -routing to connect $(X_k^{(l-1)}, Y_k^{(l-1)}, l-1)$ and $(X_l^{(m)}, Y_l^{(m)}, m)$ with $X_k^{(l-1)} = X_k^{(m)} = 2j$ in a $(2 \times 2\sqrt{n} \times \sqrt{n})$ -subgrid consisting of 2j-row and (2j+1)-row, and z-layers $(m \le z \le l-1)$.

for $\forall k \in [n],$ connect $(X_k^{(m)}, Y_k^{(m)}, m)$ with $(X_k^{(m)}, Y_k^{(m)}, m-1)$

Step 3 for $\forall i \in [\sqrt{n}]$, Apply τ -routing to connect $(X_k^{(m-1)}, Y_k^{(m-1)}, m-1)$ and $(X_l^{(0)}, Y_l^{(0)}, 0)$ with $X_k^{(m-1)} = X_k^{(0)} = 2i$ in a $(2 \times 2\sqrt{n} \times \sqrt{n})$ -subgrid consisting of 2i-column and (2i+1)-column, and z-layers $(0 \le z \le m-1)$.

Step 4 Output a wire for each 2-net by concatenating three paths above connecting terminals and virtual terminals.

Fig. 4. 3-D Channel Routing Algorithm

the column defined by $x = \sqrt{n} - 1$. Since the area of every column is $2\sqrt{n}h$, we have $2h\sqrt{n} \ge |\mathcal{N}| = n$. Thus, $h = \Omega\left(\sqrt{n}\right)$.

REFERENCES

- [1] J. Baliga, "Chips go vertical," *IEEE Spectrum*, vol. 41, pp. 43–47, 2004.
- [2] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, "3-D ICs: A novel chip design for improving deepsubmicrometer interconnect performance and systemson-chip integration," *Proc. of the IEEE*, vol. 89, pp. 602–633, 2001.
- [3] M. L. Brady, D. J. Brown, and P. J. McGuinness, "The three-dimensional channel routing problem," in Algorithmic Aspects of VLSI Layout. World Scientific, 1993, pp. 213–244.
- [4] S. Das, A. Fan, K.-N. Chen, C. S. Tan, N. Checka, and R. Reif, "Technology, performance, and computer-aided design of three-dimensional integrated circuits," *Proc. ISPD*, pp. 92–98, 2004.
- [5] R. Enbody, G. Lynn, and K. Tan, "Routing the 3-D chip," in *Proc. the 28-th Design Automation Conference* DAC'91, 1991.
- [6] S. T. Obenaus and T. H. Szymanski, "Gravity: Fast placement for 3-D VLSI," ACM Trans. Design Automation of Electronic Systems, pp. 298–315, 2003.

- [7] R. Y. Pinter, "On rouing two-point nets across a channel," in *Proc. the 19-th Design Automation Conference DAC*'82, 1982, pp. 894–902.
- [8] C. C. Tong and C.-L. Wu, "Routing in a threedimensional chip," *IEEE Trans. Computers*, pp. 106– 117, 1995.