
グラフの変形操作における単純性の保存

伊藤 大雄
京都大学 大学院情報学研究科 通信情報システム専攻

〒 606-8501 京都市左京区吉田本町
itohiro@i.kyoto-u.ac.jp

概要 ラベル付きグラフ上の半順序関係である、カットサイズ順序、枝長和順序、交
叉操作順序の三つは同値であることが知られている。グラフGがこの半順序関係にお
いて G′ に先行するとき、Gを G′ に変形する交叉操作の列が存在するが、仮に Gと
G′の両方が単純グラフだとしても、中間に単純でないグラフが現れる可能性がある。
このことは、Hakimiによる名高い次数不変変換においても同様に起こる問題である。
本稿では、このような場合に単純グラフのみを介して、変形しうるか否かという問題
を取り扱う。結果、Hakimiの次数不変変換については、常に単純グラフによる変形が
可能であることを示した。しかし一方で、上記の半順序関係に基づく変形の場合は、
例え交叉操作以外の操作も許容したとしても、与えられた操作の種類が有限だとする
と、その半順序関係にありながら単純グラフのみを介しての変換ができないグラフの
組が必ず存在することを証明した。

On Transformation of Graphs with Preserving their Simpleness

ITO Hiro
Dept. of Communications and Computer Engineering,

School of Informatics, Kyoto University,
Kyoto 606-8501, JAPAN.
itohiro@i.kyoto-u.ac.jp

Abstract Three partial orders, cut-size order, length order, and operation order,
defined between labeled graphs with the same order are known to be equivalent. If G
precedes G′ with regard to the partial order, there is a sequence of cross-operations
such that G is transformed into G′ by using the sequence. Even if both G and G′ are
simple graphs, non-simple graphs may appear on the way of the transformation. The
same problem occurs in the well-known Hakimi’s d-invariant transformation. This
paper considers whether we can transform them without using non-simple graphs.
First, we show that we can do it in Hakimi’s d-invariant transformation. Second,
however, we prove that there is no efficient finite set of operations for the partial
order’s transformation in the general case.

1 Introduction

Let N = {x0, x1, . . . , xn−1} be a set of vertices of a convex polygon P in the plane, where the
vertices are arranged in this order counter-clockwisely, and hence (xi, xi+1) is an edge of P for

1

研究会temp
テキストボックス
社団法人 情報処理学会　研究報告
IPSJ SIG Technical Report

研究会temp
テキストボックス
2004－AL－98　(1)

研究会temp
テキストボックス
2004／11／5

研究会temp
テキストボックス
－1－

i = 0, 1, . . . , n− 1 (We adopt the residue class on n for treating integers in N , i.e., i± j is i′ ∈ N
such that i′ ≡ i ± j (mod n)). An internal angle of P may be π. We consider graphs whose
node set corresponds to N , i.e., the node set is {0, 1, . . . , n − 1} and each node i is assigned to
xi, and each edge e = (i, j) of the graph is represented by a line segment xixj .

We adopt the cyclic order for treating integers (or numbered vertices) in N . Thus for i, j ∈ N ,

[i, j] =

{
{i, i + 1, . . . , j}, if i ≤ j,
{i, i + 1, . . . , n − 1, 0, 1, . . . , j}, if i > j;

for i, j, k ∈ N , i ≤ j ≤ k means j ∈ [i, k]; for i, j, k, h ∈ N , i ≤ j ≤ k ≤ h means i ≤ j ≤ k,
j ≤ k ≤ h, k ≤ h ≤ i, and h ≤ i ≤ j; and so on. For notational simplicity, [i, i] may be written
as [i] or i. For a graph G, E(G) means the edge set of G.

2 Preliminaries

In this section we consider weighted graphs, i.e., we introduce a weight function wG : E(G) → R.
a weighted graph G always has a weight function wG in this paper. We introduce some terms
as follows.

Linear cuts. For a graph G and a pair of distinct nodes i, j ∈ N , a linear cut CG(i, j) is an
edge set:

CG(i, j) = {(k, h) ∈ E(G) | k ∈ [i, j − 1], h ∈ [j, i − 1]}.
The capacity of a linear cut CG(i, j) is defined as

cG(i, j) =
∑

e∈CG(i,j)

wG(e).

For two subsets N ′ and N ′′ of nodes, wG(N ′, N ′′) =
∑

i∈N ′,j∈N ′′ wG(i, j). The degree of a node
i ∈ N of a graph G is defined as cG(i, i+ 1) = wG(i, [i+ 1, i− 1]) and may be simply denoted by
dG(i). We introduce a relation based on sizes of linear cuts as follows. For two weighted graph
G and G′, G �c G′ means that cG(i, j) ≤ cG′(i, j) for all i, j ∈ N , i �= j. This relation is known
to be a partial order, since the following result presented by Skiena [5].

Theorem 1 For two weighted graphs G and G′, if cG(i, j) = cG′(i, j) for all i, j ∈ N , i �= j,
then G = G′. �

Sum of edge lengths. For an edge (i, j) of a weighted graph G and a convex n-gon P , let
dist(i, j) be a length of the line segment xixj . We define a sum of weighted edge length of G
with respect to P as

sP (G) =
∑

e∈E(G)

w(e) · dist(e).

We introduce a relation based on the measure as follows. For two weighted graph G and G′,
G �l G′ means that sP (G) ≤ sP (G′) for all convex n-gons P .

Cross operation. We introduce an operation transforming a graph to another one. For a
weighted graph G, two distinct i, j ∈ N and a real value ∆, ADDG(i, j;∆) means adding ∆ to
w(i, j) (if (i, j) /∈ E(G), adding a edge (i, j) to E(G) previously). The reverse operation of ADD
can be defined, i.e., REMOVEG(i, j;∆) means ADDG(i, j;−∆). We extend these operations in
the case i = j, i.e., both ADDG(i, i;∆) and REMOVEG(i, i;∆) mean doing nothing. For nodes
i, j, k, h ∈ N with i ≤ j ≤ k ≤ h and a positive ∆ > 0, a cross operation XG(i, j, k, h;∆) is
applying

2

研究会temp
テキストボックス
－2－

REMOVEG(i, j;∆), REMOVEG(k, h;∆), ADDG(i, k;∆), and ADDG(j, h;∆).

If some of {i, j, k, h} are equal, a cross operation may increase edges. In fact, if i = j < k < h < i
or i = j < k = h < i (or the cases symmetric with respect to one of them), then the total edge
weights increases. If j = k or i = h, the edge set is not changed. We introduce a relation based
on cross operations as follows. For two weighted graph G and G′, G �o G′ means that G′ can
be obtained from G by applying finite number (including zero) of cross operations.

Equivalence of the three relations. We have the following theorem.

Theorem 2 Three relations �c, �l, and �o are equivalent. �

This theorem was shown in [4] for graphs with the same size (number of edges), and for the
general case in [3].

Corollary 1 Three relations �c, �l, and �o are all partial orders.

Proof: Clear from Theorem 2 and that �c is a partial order. �

From Theorem 2, these three partial orders can be denoted by � simply.

3 Preserving their simpleness

A cross operation sometimes violates the simpleness of graphs: Let G and G′ be a pair of
weighted graphs with G � G′. This means there is a sequence of weighted graphs

G = G0 � G1 � · · · � Gk = G′,

such that Gi is obtained by applying a cross operation on Gi−1 for i = 1, 2, . . . , k. Even if G and
G′ are both simple (all weights are 1 or 0), there may be a nonsimple graph on the sequence.

3.1 Hakimi’s d-invariant transformations

Cross operation is very similar to Hakimi’s d-invariant transformation [1, 2]. Let G be a graph
and (i, j) and (k, h) are two distinct edges (i, j, k, h are all distinct) of G. A d-invariant transfor-
mation of G is removing (i, j) and (k, h) from G and adding two edges (i, k) and (j, h). Note that
if (i, k) or (j, h) have existed in the original G, the new graph becomes including parallel edges.
Hakimi showed that all two graphs G and G′ with the same node set N and dG(i) = dG′(i) for all
i ∈ N can be transformed each other by using a finite sequence of d-invariant transformations.

As mentioned above, however, there may be a nonsimple graph in the sequence even if G
and G′ are both simple. In fact, if we use the operation shown in Hakimi’s proof, we can
easily construct such examples. For this problem, we found that simple graphs are enough for
transforming any pair of simple graphs as shown in the following theorem.

Theorem 3 For a pair of simple graphs G and G′ with the same node set N and dG(i) = dG′(i)
for all i ∈ N , there is a sequence which includes only simple graphs of d-invariant transforma-
tions transforming G into G′. �

For proving this theorem we prepare a lemma. Let E and E′ be the edge set of G and G′,
respectively. We define an edge colored complete graph G∗ representing the symmetric difference
between G and G′ as follows. An edge (i, j) of G is colored

• red if (i, j) ∈ E and (i, j) /∈ E′,

3

研究会temp
テキストボックス
－3－

• blue if (i, j) /∈ E and (i, j) ∈ E′,

• black if (i, j) ∈ E and (i, j) ∈ E′,

• white if (i, j) /∈ E and (i, j) /∈ E′.

A red-blue alternating cycle is a cycle such that it consists of red and blue edges only and a
red edge and a blue edge appears alternatively by traversing the cycle. The length of a red-blue
alternating cycle is clearly even.

Lemma 1 If G �= G′, then G∗ has a red-blue alternating cycle

〈i0, i1, . . . , ik, jk, jk−1, . . . , j0, i0〉

such that i0 �= j0, i1 �= j1, . . ., ik−1 �= jk−1.

Proof: If G �= G′, there exists at least one red edge and one blue edge. For each node, the
number of red edges incident to the node is equal to the one of blue edges incident to the node.
Thus, by traversing red edges and blue edges alternatively, a red-blue alternating cycle is found.
Let C be a red-blue alternating cycle with the shortest length in G∗. We show that C must be
a desired one. We express C as 〈c0, c1, . . . , c2k−1, c0〉. First, we label c0 by i0, c1 by i1, and so
on. If there is no h ∈ {1, . . . , k − 1} such that ih = jh, C is a desired one, and hence we assume
that there is at least one h ∈ {1, . . . , k − 1} such that ih = jh. Then we find a pair of the same
nodes. Second, we label c1 by i0, c2 by i1, and so on. From the same discussion, we can assume
that there is at least one h ∈ {1, . . . , k − 1} such that ih = jh, and we find a pair of the same
nodes in this case also. Note that this pair is a different from the above one. This discussion
can be used until ck−1 is labeled by i0. Then we can get k distinct pairs. We express the pairs
by chords of C. We have k distinct chords and 2k nodes. From this we can see that there is
at least one pair of crossing chords. Let (ci, ck) and (cj , ch) be the crossing chords (ci, cj , ck,
ch appear in this order when we traverse C). We obtain four path by cutting C at ci, cj , ck,
and ch. We denote them as Pij , Pjk, Pkh, Phi (Pij is a path between ci and cj , and so on). If
path Pij ∪ Pjk (or Pjk ∪ Pkh) has even length, then it constructs a shorter red-blue alternating
cycle, contradiction. Then we assume that both Pij ∪Pjk and Pjk ∪Pkh have odd length. Hence
Pij ∪ Pkh has an even length, and we can easily observe that it constructs a shorter red-blue
alternating cycle, contradiction. �.

Proof of Theorem 3: Er and Eb denote the set of red edges and blue edges, respectively.
If Er ∪ Eb = ∅, G = G′. Then we suppose that Er ∪ Eb �= ∅. We will outline a process to
find a d-invariant transformation which preserve simpleness of the graph and deletes the size
of Er ∪ Eb. By applying the process iteratively, we can finally find the desired sequence of
d-invariant transformations.

Let C be a red-blue alternating cycle satisfying the condition of Lemma 1, whose existence is
guaranteed by the lemma. We can suppose edge (i0, j0) is red without loss of generality (If it is
blue, we can change the name of red and blue each other). Hence (i0, i1) and (j0, j1) are blue. If
(i1, j1) is red or black, we find a desired d-invariant transformation, which consists of removing
(i0, j0) and (i1, j1) from G and adding (i0, i1) and (j0, j1) to G. Then we assume (i1, j1) is blue
or white. Here, if (i2, j2) is blue or white, we find a desired d-invariant transformation, which
consists of adding (i1, j1) and (i2, j2) from G and removing (i1, i2) and (j1, j2) to G. Then we
assume (i1, j1) is red or black. We apply the above discussion iteratively, until we find a desired
d-invariant transformation. Assume that we can’t find such a transformation until we reached
onother side of C. This results in that

4

研究会temp
テキストボックス
－4－

(i0, j0), (i2, j2), (i4, j4), . . . are red or black, and

(i1, j1), (i3, j3), (i5, j5), . . . are blue or white.

However (ik, jk) is blue if k is odd, and red otherwise from the definition of red-blue alternating
cycle (note that we assume (i0, j0) is red), contradiction. Therefore we can find a desired d-
invariant transformation in any case. �

3.2 Cross operations

Here we return to the subject on cross operations. We have a conjecture that simple graphs are
enough in this case too.

Conjecture 1 For a pair of simple graphs G and G′ with the same node set N such that
dG(i) = dG′(i) for all i ∈ N and G � G′, there is a sequence which includes only simple graphs
of cross operations transforming G into G′. �

The above conjecture considers a pair of graphs with the same number of edges. However,
Theorem 2 assures us cross operations can transform any graph G = (N,E) to any other graph
G′ = (N,E′) as long as G � G′ even if |E| < |E′|. Here we reached to another question: does
Conjecture 1 hold even if the degree condition is deleted?

To this question, we have a simple counter example shown in Fig. 1. If we don’t mind
breaking the simpleness, there is a sequence X(0, 0, 1, 3; 0.5), X(2, 2, 3, 1; 0.5), X(1, 1, 2, 0; 0.5),
X(3, 3, 0, 2; 0.5). However there is no efficient cross operation that doesn’t break the simpleness.
Thus we should to introduce other operations to complete transformations in general case. The
example of Fig. 1 can be solved if we introduce a new operation consisting of REMOVE(i, k),
REMOVE(j, h), ADD(i, j), ADD(j, k), ADD(k,h), and ADD(h, i), for i ≤ j ≤ k ≤ h. Precisely,
it may not be sufficient for general case. If we find another counter example, which can’t be
solved yet, then we should add another new operation.

0

1

3

2

0

1

3

2

Figure 1: Counter example.

Then we reach to another question: is there a finite set of operations that transforms general
pair of simple graphs without breaking simpleness of the graphs? For treating this question, we
must define what is a “operation”? The following definition seems appropriate.

An operation is a set of finite number of ADDs and REMOVEs such that it doesn’t decrease
the size of any linear cut.

For example, cross-operation consists of two ADDs and two REMOVEs, and it doesn’t
decrease the size of any linear cut. The operation introduced for solving the example of Fig. 1
consists of four ADDs and two REMOVEs, and it doesn’t decrease the size of any linear cut
also. Thus they satisfy the above definition.

5

研究会temp
テキストボックス
－5－

Let O be a finite set of operations and let G and G′ be simple graphs with G � G′. A
simple transformation sequence of O for G and G′ is a set of operations of O such that it
transforms G into G′ and every graph appeared in the process of the transformation is simple.
We obtained the following theorem.

Theorem 4 There is no finite set of operations such that there is a simple transformation
sequence of the set for any pair of simple graphs G and G′ with G � G′.

For assuming this theorem, we define an even-complete graph Ke
n and an odd-complete graph

Ko
n of even order n as follows.

Ke
n = (N,Ee

n = {(i, j) | i, j ∈ N, |i − j| is even}),
Ko

n = (N,Eo
n = {(i, j) | i, j ∈ N, |i − j| is odd}).

For any even n, they are well defined. By comparing the sizes of linear-cuts on them, we see
that

cKe
n
(i, j) < cKo

n
(i, j) if |i − j| is odd, and (1)

cKe
n
(i, j) = cKo

n
(i, j) if |i − j| is even. (2)

Hence,
Ke

n ≺ Ko
n.

We will show that Ke
n can’t be transformed into Ko

n if n is enough large as follows.

Proof of Theorem 4: Suppose otherwise, i.e.,
there is a finite set of operations O satisfying
the condition of the theorem. For an operation
o in O, the order of o is the number of nodes
such that one or more edges incident to the
node are added or removed by o. For example,
the order of cross-operation is four.

Let k∗ be the maximum order of the oper-
ations in O. Let n ≥ 2k be an even number.
We will prove that any operation in O can’t
transform Ke

n to another graph G such that
Ke

n ≺ G � Ko
n. (This is enough to prove the

theorem.)
Assume otherwise, i.e., there is an oper-

ation o ∈ O that transform Ke
n to another

graph G such that Ke
n ≺ G � Ko

n. We
construct a {−1, 1}-weighted graph Go as fol-
lows. Go has a node set N , an edge set Eo =
{(i, j) | ADD(i, j) or REMOVE(i, j) is in o}
and a weight function wo such that wo(i, j) =
1 if ADD(i, j) ∈ o and wo(i, j) = −1 if
REMOVE(i, j) ∈ o.

We can easily see that the edge set of G is

E = {(i, j) | wEe
n
(i, j) + wo(i, j) = 1}.

(Remember that the weights of a simple graphs
are defined as 1 if there is an edge and 0 oth-
erwise.) From G � Ko

n, every linear-cut on G1

has the size zero or one.
Let i0, i1, . . . , ik−1 (i0 < i1 < · · · < ik−1) be

the nodes which have at least one edge incident
to the nodes in Go, where k is the order of o.
Since k ≤ n/2, we can assume i0 − ik−1 ≥ 2
w.l.o.g. (Note that the residue class is used for
the difference.) Thus for any j ∈ {1, . . . , k− 1}
there is a linear-cut separating i0, . . . , ij−1 and
ij , . . . , ik−1 such that the size on both Ke

n and
Ko

n are the same, and hence, we see that the
size of these linear-cuts on Go is zero, i.e.,

cGo(i0, ij) = 0 for every j ∈ {1, . . . , k − 1}.
(3)

Thus

0 = cGo(i0, i1)
= wGo(i0, i1) + wG1(i0, [i2, ik−1]),

0 = cGo(i0, i2)
= wGo(i1, [i2, ik−1]) + wGo(i0, [i2, ik−1]).

Therefore,

wGo(i0, i1) = wGo(i1, [i2, ik−1]). (4)

6

研究会temp
テキストボックス
－6－

Moreover,

0 ≤ cGo(i1, i2)
= wGo(i0, i1) + wGo(i1, [i2, ik−1])
≤ 1. (5)

From (4), (5), and that all edge weights are
integers, we obtain

wGo(i0, i1) = wGo(i1, [i2, ik−1]) = 0. (6)

For an assumption for an induction, we as-
sume that

wGo(i, j) = 0 for all i, j ∈ {i0, . . . , iq}. (7)

By using this assumption, we will derive the
result such that

wGo(i, j) = 0 for all i, j ∈ {i0, . . . , iq+1}
as follows.

ah = wGo(ih, ih+1) for h = 0, . . . , q,

Ah = wGo(ih, [iq+2, ik1−1])
for h = 0, . . . , q + 1.

From (7),

0 = cGo(i0, i1) = a0 + A0,

0 = cGo(i0, i2) = a0 + a1 + A0 + A1

= a1 + A1,

0 = cGo(i0, i3)
= a0 + a1 + a2 + A0 + A1 + A2

= a2 + A2,
...

Generally, we have

0 = ah + Ah for h = 0, . . . , q. (8)

By summing them from h = 1 to q,

0 =
q∑

h=0

(ah + Ah) (9)

Moreover,

0 = cGo(i0, iq+2) =
q+1∑
h=0

Ah. (10)

By comparing (9) and (10), we have
q∑

h=0

ah = Aq+1 (11)

The capacity of any linear-cut of G1 is between
zero and one, and hence

0 ≤ cGo(iq+1, iq+2) =
q∑

h=0

ah + Ah+1 ≤ 1. (12)

From (11), (12), and that all edge weights are
integers, we see

q∑
h=0

ah = Aq+1 = 0. (13)

From
∑q

h=0 ah = 0 (13) and 0 = ah + Ah (8),
we get

q−1∑
h=0

ah = Aq. (14)

Moreover,

0 ≤ cGo(iq, iq+2) =
q−1∑
h=0

ah + Aq + Aq+1 ≤ 1.

Since Aq+1 = 0 (13),

0 ≤
q−1∑
h=0

ah + Aq ≤ 1. (15)

From (14), (15), and that all edge weights are
integers, we see

q−1∑
h=0

ah = Aq = 0.

By using similar discussions, we finally obtain
the following equation.

Aq = Aq−1 = · · · = A0 = 0.

From this and (8), we see

aq = aq−1 = · · · = a0 = 0.

That is

wGo(i, j) = 0 for all i, j ∈ {i0, . . . , iq+1}.

By induction, we conclude that there is no edge
between any pair of nodes in {i0, i1, . . . , ik−1},
i.e., o consists of no ADD and REMOVE, con-
tradiction. �

7

研究会temp
テキストボックス
－7－

4 Concluding remarks

First, this paper presents a simple proof for the equivalence of the three partial orders defined
between labeled graphs. Next, it considers graph transformation preserving simpleness. For
this problem, we show that there always be such a transformation for Hakinmi’s d-invariant
transformation. However, we proved that there is no efficient finite set of operations for the
partial order’s transformation in the general case.

If the number of edges of the graphs are the same, we conjecture that simple transformation
sequences of cross-operations are always exists (Conjecture 1). It remains for future research.

References

[1] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph.
I, J. Soc. Indust. Appl. Math., 10 (1962) 496–506.

[2] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph
II. Uniqueness, J. Soc. Indust. Appl. Math., 11 (1963) 135–147.

[3] H. Ito, Relation among edge length of convex planar drawings, size of linear cuts, and
cross-operations on graphs, IPSJ SIG Notes, 2002, 29 (2002) 27–34.

[4] H. Ito, Sum of edge lengths of a multigraph drawn on a convex polygon, Computational
Geometry, 24 (2003) 41–47.

[5] S. S. Skiena, Reconstructing graphs from cut-set sizes, Information Processing Letters, 32
(1989) 123–127.

8

研究会temp
テキストボックス
－8－

