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Coding Floorplans with Fewer Bits

(Extended Abstract)
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abstract

A naive coding of floorplans needs 2m bits for each floorplan, where m is the number
of edges, in this paper we give a new simple coding of floorplans. Our coding needs only
5m/3 bits for each floorplan.

1 Introduction

In this paper we consider the problem of encoding a given floorplan R into a binary string S so that S
can be decoded to reconstruct R. Furthermore we wish to minimize the length of S.

Succinct representation of graphs are studied for many classes of graphs, for instance, trees[]M97, T84]
and plane graphs[C01, C98, K95, P85].

The well known naive coding of ordered trees is as follows. Given a ordered trees T we traverse T'
starting at the root with depth first manner. If we go down an edge then we code it with 0, and if we
go up an edge then we code it with 1. Thus any n-vertex ordered tree T has a code with 2(n — 1) = 2m
bits, where m is the number of edges in T'. Some examples are shown in Fig. 1.

ol
1 0, 0
o1 o1 % 0 (! AN\
0/ \L 1 0|1
ol1 10 0 o1

000111 001011 001101 010011 010101

Figure 1: A code for ordered trees.

On the other hand, the number of ordered trees with n vertices is known as the Catalan number
Ch-1, and it is defined as follows[R00, p.145].

1 2n!
(n+ 1) nin!
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For example, the number of ordered trees with four vertices is C4_; = 5, as depicted in Fig. 1. We need
at least log C,,_1 bits to code those ordered trees with n vertices. Because the Catalan number can be
denoted as follows[G94, p495],

Cp =

4n 1 1 ) 21 _
v (1 e * o~ g+ 00 70)

8n  128n2  1024n3  32768nt
we need at least log C,—1 = 2n — o(n) = 2m — o(n) bits to code a ordered tree with n vertices. So the
naive coding using 2m bits for each tree is asymptotically optimal.
In this paper we wish to code floorplans with a small number of bits.
A floorplan is a partition of a rectangle into a set of rectangles. For example, all floorplans with three
faces are depicted in Fig. 2.

— L]

Figure 2: Floorplans with three faces.

A naive coding of floorplans needs 2m bits for each floorplan, as we explain in Section 3. In this paper
we give a new simple coding of floorplans, which needs only 5m /3 bits for each floorplan.

Note that we cannot treat floorplans simply as plane graphs. See two floorplans in Fig. 3. They are
identical as plane graphs, however different as floorplans. Because in Fig. 3(a) the two faces F;, and Fy
shares a horizontal line, however in Fig. 3(b) they shares a vertical line. We need to store the direction
(horizontal or vertical) for each edge in a given floorplan.

It is interesting that we need less bits for floorplans than ordered trees.

Fa Fa

Fb Fp

@ (b)
Figure 3: Two floorplans corresponding to the same plane graph.

The rest of the paper is organized as follows. Section 2 gives some definitions. Section 3 explains
the naive coding using 2m bits for each floorplan. Section 4 introduces “the removing sequence” of a
floorplan, which is the main idea of our coding. Section 5 gives our new coding using 5m/3 bits for each
floorplan. Finally Section 6 is a conclusion.

2 Preliminaries

In this section we give some definitions.

Let G be a connected graph. A tree is a connected graph with no cycle. A rooted tree is a tree with
one vertex r chosen as its root . A ordered tree is a rooted tree with fixed orderings for siblings.

A drawing of a graph is plane if it has no two edges intersect geometrically except at a vertex to
which they are both incident. A plane drawing divides the plane into connected regions called faces. The
unbounded face is called the outer face, and other faces are called inner faces. Two faces F; and F are
ns-adjacent (north-south adjacent) if F5 is located to the bottom of F; and they share a horizontal line
segment. Two faces F; and Fy are ew-adjacent (east-west adjacent) if F is located to the left of Fy and
they share a vertical line segment.
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A floorplan is a plane drawing in which every face (including the outer face) is a rectangle. A based
floorplan is a floorplan with one designated bottom line segment on the contour of the outer face. The
designated bottom line segment is called the base, and we always draw the base as the lowermost line
segment of the drawing. For examples, all based floorplans with three faces are shown in Fig. 2, in which
each base is depicted by a thick line. If two based floorplans P; and P, have a one-to-one correspondence
between faces preserving ns- and ew-adjacency, and in which each base corresponding to the other, then
we say P; and P, are isomorphic.

Let n be the number of vertices of a floorplan, m the number of edges, and f the number of faces
(including the outer face). In this paper we only consider based floorplans having no vertex shared by
four (or more) rectangles. Thus G has n — 4 vertices with degree three, and 4 vertices with degree two
(at the four corner of the outer face), and we have 2m = 3(n — 4) + 2 - 4. The equation and the Euler’s
formulan —m+ f =2 givesn =2f and m = 3f — 2.

A vertex with degree three is w-missing (west missing) if it has edges to top, bottom and right. We
denote the number of w-missing vertices as ny . Similarly we define e-missing (east missing), n-missing,
s-missing, ng, ny and ng. Note that, since each w-missing vertex is the left end of a maximal horizontal
line segment, and each e-missing vertex is the right end of a maximal horizontal line segment, ny = ng
holds in any floorplan. Similarly ny = ng holds. Thus nw +ny = (n —4)/2.

An inner face F' of a floorplan is U-active if F' shares a line segment with the uppermost horizontal
line segment of the contour of the outer face. Intuitively, a face is U-active if it touches the uppermost
line segment. For convenience, we regard the outer face also as U-active.

A face F is Uw-active if F' has a U-active face to the left with sharing a vertical line segment.
Intuitively, a face is Uw-active if it touch some U-active face at the left (or west) boundary. Note that
“some U-active face” may be the outer face.

3 The Naive Coding

In this section we sketch a naive code for floorplans, based on the depth first search of a tree. The code
needs 2m + 3 bits for each floorplan.

Given a based floorplan R, we replace each lower right corner vertex of each inner face with two
vertices as depicted in Fig. 4. See an example in Fig. 6. Note that since we only break each cycle
corresponding to an inner face at the lower right corner, the resulting graph has only one face and is still
connected. So the resulting graph R’ is a tree. Also note that we need some tricky replacement at the
two lower corners of the outer face. See Fig. 4.

Starting at the upper left corner, we traverse the tree R’ with depth first manner (with left priority).
When we visit a vertex, we have only two choices for the direction of the next vertex, as shown in Fig. 5.
Since each edge has traced exactly twice, we need two bits for each edge, except for the first edge, which
need only one bit because we always trace the first edge to bottom, and since we have two dummy edges
at the two lower corners, we can code the tree R’ with 2m + 3 bits. Given the 2m + 3 bits code we can
easily reconstruct the original floorplan R with a simple algorithm with a stack.

T+ 4+ A g =

4 4 4 4 4 4 4 4

R T T

Figure 4: The replacement of vertices.
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Figure 5: The code for the DFS.

Figure 6: The 2m + 3 bit code for a floorplan based on the DFS.

4 The Removing Sequence

Let R; be the based floorplan having exactly one inner face. Assume that R(# R;) is a based floorplan
having f > 1 faces.

Let F' be the inner face of R having the upper-left corner of the outer face of R. We call such a face
the first face of the based floorplan R. The first faces of based floorplans are shaded in Figs. 7- 9. Let
v be the lower-right corner of F'. The first face F' is upward removable if R has a vertical line segment
with upper end v. See Fig. 7 (a). Otherwise, R has a horizontal line segment with left end v, and the
first face F' is leftward removable. See Fig. 7 (b). Note that we have assumed that R has no vertex with
degree four.

(@ (b)
Figure 7: (a) An upward removable face and (b) a leftward removable face.

Since R # Rj, the first face of R is either upward removable or leftward removable. If F' is upward
removable, then we can obtain a floorplan with one less faces by continually shrinking the first face F'
into the uppermost horizontal line of R, with preserving the width of F' and enlarging the faces below
F, as shown in Fig. 8. Similarly, if F' is leftward removable, then we can obtain a floorplan with one less
faces by continually shrinking F' into the leftmost line of R with preserving the height of F'. After we
remove the first face from R, the resulting floorplan is again a based floorplan with one less faces. We
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denote such a floorplan as P(R). Thus we can define the based floorplan P(R) for each based floorplan
R # R;.

s

Figure 8: Removing the first face.

> L] iy

Figure 9: The removing sequence.

Given a based floorplan R having exactly f faces, by repeatedly removing the first face, we can have
the unique sequence R, P(R), P(P(R)),--- of based floorplans which eventually ends with Ry, which is
the based floorplan having exactly one inner face. See an example in Fig. 9, in which the first faces are
shaded. We call the sequence R, P(R), P(P(R)),---, the removing sequence of R.

Let Ry be a floorplan with & < f faces. Assume that the first face of Ry has s(Ry) neighbor faces
to the bottom and e(Ry) neighbor faces to the right. Given Ry_; = P(Ry,), if we know (1) whether the
first face of Ry, is upward removable or leftward removable, and (2) the two values s(Ry) and e(Ry), then

we can reconstruct Ry from those information. Thus, for each k = 2,3, - -, n, if we store (1) whether the
first face of Ry, is upward removable or leftward removable, and (2) the two values s(Ry) and e(Ry), then
we can reconstruct Ry, Rz ---, R = Ry.

A simple coding needs f — 1 bits for (1), and 2(f — 1) log f bits for (2). In the next section we give
more efficient coding for floorplans. The coding needs only 5m/3 bits for each floorplan.

5 Our Coding

In this section we give a simple coding for based floorplans. The coding needs only 5m/3 bits for each
floorplan.

Basically, given a floorplan R with f faces, we code R as the removing sequence of R.

Let RS = ( Ry(=R), Ry_1(=P(R)), Ry_2(=P(P(R))), -+, R1 ) be the removing sequence of R.
We construct two new sequences from RS as follows.

By choosing the based floorplans having upward removable first faces from RS, with preserving the
order, we derive a new sequence RSy = (RY,RY, ... ,R?U). Similarly, by choosing the based floorplans
having leftward removable first faces from RS, we derive a new sequence RS;, = (R{,R%,---,R}).
Note that fy + fr +1 = f holds, since R; is contained in neither RSy nor RSy.

The coding consists of the following five sections.

Section 1: This section codes whether the first face of each Ry, k = 2,3, .-, f is upward removable or
leftward removable. For k =1,2,---, f —1, the k-th bit is 0 if the first face of Rj41 is upward removable,
and 1 otherwise. Section 1 has lenght f — 1 bits in total.

Section 2: Section 2 and 5 code each s(Ry), k = 2,3,---,f. If R, € RSy, then we code s(Ry) in

Section 2, otherwise Ry € RSy, and we code s(Ry) in Section 5. Section 2 has lenght f — 1 bits in total.
Assume that Ry = jo € RSy. Now the first face F' of Ry, is upward removable.
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Let s(Ry) be the number of faces which are U-active in Rj_1, but not U-active in Rj. That is the
number of faces which are located to the bottom of F', and become U-active when we remove F. Note
that s(Ry) > 1, since the first face F' always has some face (possibly the outer face) to the bottom.

Also note that s(RY) +s(RY) +---+ S(R?U) < f—1, since each face becomes U-active exactly once,
and Ry has at least one face which is already U-active. We can observe that when we remove a leftward
removable face, no face newly becomes U-active.

We code each s(R?), 1< j < fu, as the consecutive s(R?) —1 copies of “0”s followed by a “1”. (Note
that, as we mentioned above, s(RY) > 1 holds for each k.) For example, we code s(RY) = 5 as 00001.
After we concatenate those codes, we finally append zeroes so that the length of Section 2 becomes f —1
bits in total.

We can easily decode each s(Ry) from the code.

Ry Ri-1
@ (b)

Figure 10: An illustration for Section 3.

Section 3: Section 3 and 4 code each e(Ry), k =2,3,---, f. If Ry € RSy, then we code e(Ry,) in Section
3, otherwise Ry, € RSy, and we code e(Ry) in Section 4.

We don’t directly code each e(Ry), since the sum of them may be large. Our idea is as follows. See
Fig. 10(a). The first face of R has three = s(R}) neighbors to the bottom, and three = e(R},) neighbors
to the right. Let Fi, F»,---, Fy(g,) be the faces located to the bottom of F'. We are going to code the
number e(Ry) = 3.

Given Rp_1, we know the number €' of faces located to the right of Fy(g,). In the example of
Fig. 10(b), ' = 6. Let ej be the number of faces which are located to the right of Fy(g,), and Uw-active
in Rj_1, but not Uw-active in Ry. Those faces are shaded in Fig. 10(b). We can observe that each of
those faces has a w-missing vertex at the upper left corner in R. (This is our idea to bound the length of
Section 3 by ny.) Those vertices are depicted as white circle in Fig. 10(b). If we have Ry_1 and s(Rg),
then we can count the value of e’. Now we can compute e(Ry) by €' — e, if we have e;. Thus we can
store ey, instead of e(Ry).

Now we formally explain the code.

Assume that Ry, = Rg € RSy. Now the first face F' of R;, is upward removable. See Fig. 10(a).

We code each ey, as the consecutive e copies of “0”s followed by a “1”. By concatenating those codes,
we have the code for section 3. We can easily decode each ey, and then compute e(Ry).

Note that e2 +e3 +--- + ey < nw, since each face becomes Uw-active exactly once, and Ry has at
least one face which is already Uw-active. Similar to Section 2, we finally append zeroes so that the
length of Section 3 becomes ny + fy bits in total

Section 4: This section codes each e(Rg),k = 2,3,---, f only for each Ry € RS;. (We code each
Ry € RSy in Section 3.)
Omitted. Similar to Section 2. Section 4 has length f — 1 bits in total.

Section 5: This section codes each s(Ry),k = 2,3,---,n only for each Ry € RSL. (For R, € RSy we
code each s(Ry) in Section 2. )

Omitted. Similar to Section 3.

Section 5 has length ny + fr, bits in total.
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Note that nw +ny = (n —4)/2 = (f — 2) holds. Thus the total length of the code consisting of the
five sections above is

(f=-D+(f-D+nw+fu)+(f-1)+ N+ fL)
=@f-49)+(f-2)=5f-6
_5(m+2) 6= 5m — 8
B 3 3
We have the following theorem.

Theorem 5.1 One can encode a floorplan with 5m/3 bits.

6 Conclusion

In this paper we gave a simple and short coding for floorplans. The coding needs only 5m/3 bits for each
floorplan.

An efficient enumeration algorithm for based floorplans is known[N02a, NO2b]. Let N}, be the number
of based floorplans with k faces. By implementing the algorithm we have counted Ny; = 10948768. Thus
we need at least 24 > log N11 = 23.5 bits to code based floorplans with 11 faces, while the total length
of our coding is 5-11 — 6 = 49 bits. Thus there are still many chances to reduce the length of the code.

For Nj», = 89346128 we need at least 27 > log N12 = 26.4 bits to code based floorplans with 12 faces,
while our coding needs 5 - 12 — 6 = 54 bits.
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