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Abstract A semimagic square of order n is an n x n matrix containing the integers 0,....#? — 1 arranged
in such a way that each row and column add up to the same value. We generalize this notion to that of a
zero k x k-discrepancy matrix by replacing the requirement that the sum of each row and each column be
the same by that of requiring that the sum of the entries in each & x k square contiguous submatrix be the
same. We show that such matrices exist if k and » are both even, and do not if k and # are are relatively
prime. Further, the existence is also guaranteed whenever n = k", for some integers k,m > 2 We present
a space-efficient algorithm for constructing such a matrix. -

'A prelininary version of this paper appeared in Proceedings of International Sympesium on Algorithms and Computation,
Hong Kong, December, 2004.
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1 Introduction

A Latin square of order # is an n x n matrix consists of » sets of the numbers 0 to »— 1 arranged in such a
way that no row or column contains the same two numbers. A semimagic square is an n X n matrix filled
with the numbers 0,...,n2 — 1 in such a way that the sum of the numbers in each row and each column
are the same. Magic squares and related classes of integer matrices have been studied extensively (for an
exhaustive bibliography, see [8] and the references therein).

This paper generalizes the notion of a semimagic square by replacing the requirement that all row
and column sums be the same by the analogous requirement for all k x k contiguous square submatrices;
we call such n x n matrices zero k x k-discrepancy matrices of order (k,n). Let N(k,n) be the set of all
such matrices. In this paper we prove that N(k,n) is non-empty if k and » are both even, and empty if
they are relatively prime. Further, we show by an explicit construction that N(k, k™) # 0 for any integers
k,m> 2.

Another property plays an important role in the latter construction of zero k x k-discrepancy matrices.
A characterization of matrices with this property is also given in this paper.

Our investigation is motivated by an application described below, but intuitively we seek a matrix
filled with distinct integers in an as uniform a manner as possible. The analogous geometric problem
of distributing » points uniformly in a unit square has been studied extensively in the literature [6, 12].
Usually, a family of regions is introduced to evaluate the uniformity of a point distribution. If the points
of an n-point set P are uniformly distributed, for any region R in the family the number of points in R
should be close to %area(R), where L is the point density of P in the entire square. Thus, the discrepancy
of P in a region R is defined as the difference between this value and the actual number of points of P
in R. The discrepancy of the point distribution P with respect to the family of regions is defined by the
maximum such difference, over all regions.

The problem of establishing discrepancy bounds for various classes of regions has been studied
extensively [10]. One of the simplest families is that of axis-parallel rectangles for which ©(log#) bound
is known [6, 12]. In the context of digital halftoning, a family of axis-parallel squares (contiguous square
submatrices) over a matrix is appropriate for measuring the uniformity since human eye perception is
usually modeled using weighted sum of intensity levels with Gaussian coefficients over square regions
around each pixel [3]. Thus, the matrices discussed in this paper can be used as dither matrices in which
integers are arranged in an apparently random manner to be used as variable thresholds. Small matrix
size tends to generate visible artifacts. In this sense the dither matrix of size 8 x 8 designed by Floyd and
Steinberg [7] may be too small. A common way to construct a larger dither matrix is to use local search
under some criterion based on spatial frequency distribution of the resulting matrix. Such dither matrices
are called blue-noise masks [13, 15, 16, 17]. One disadvantage of a blue-noise mask is its high space
complexity. There appears to be no way to avoid storing the entire matrix. The zero k x k-discrepancy
matrices of order (k, k") we construct, on the other hand, are such that we can generate any one element
by a simple integer calculation requiring only m seed matrices, each of size k x k.

2 Preliminaries

Generalizing the notion of a semimagic square, we consider an »n x n matrix containing all the integers
0,...,n* — 1 such that the entries contained in every contiguous k x k submatrix add up to the same value.

More formally, for integers m,n > 1, let Z(n,m) be the class of all n x n integer matrices with entries
from the set {0,...,m — 1} and let Z(n) C Z(n, n?) be the set of those # x n matrices which contain every
value 0,...,n* — 1 exactly once.

A contiguous k x k submatrix (or region, hereafter) R; ; = Rf’;) with its upper left corner at (i, j) is
defined by

RY = {(. /)| =i....i+k=1and /' =j....j+k=1}.



where indices are calculated modulo 7. Given a matrix P and a region R; ; of size k, P(R; ;) denotes
the sum of the elements of P in locations given by R, ;. Analogously, define a C; ; = C,(AI;) to be the k x 1
region of a matrix starting at (i, /) and P(C; ;) to be the sum of elements of P in the locations given by
C.j. We are interested in all k x k regions in an »# X »n matrix:

Fin = {R,(I;) i, j=0,1,....n—1}.
The k x k-discrepancy P ,(P) of an n x n matrix P for the family .%, , is defined as

#(P) = R)— min P(R').
Dkn(P) = max P(R) — min P(R

In this paper we focus on the existence of matrices P € Z(n) with k x k-discrepancy Dr.n(P) = 0. In other
words, we are interested in the existence and construction of matrices in Z(n) all of whose contiguous
k x k submatrices have equal sums. Let N(k, ) be the set of all such zero-k x k-discrepancy matrices of
order (k,n).

Theorem 1 The set N(k,n) of zero-k x k-discrepancy matrices of order (k, n) has the following proper-
ties:

(a) N(k.n) is non-empty if k and n are both even.

(b) N(k,n) is empty if k and n are relatively prime.

(c) N(k,n) is empty if k is odd and n is even.

(d) N(k,k™) is non-empty for any integers k and m, k > 2,m > 2.

In addition, using the above results, we can show that there is no n x » matrix P that achieves zero-
discrepancy simultaneously for the families %, , and %3 ,, i.e., N(2,n) NN(3,n) =0,

Proof: [Theorem 1, parts (a)—(c)] To prove part (a), it suffices to show N(2,n) # 0 if n is even since
any k x k region can be partitioned into 2 x 2 regions if & is even. (More generally, if ' divides k,
N(¥'.n) C N(k,n).)

Let P = (p; ;) € Z(n) be the matrix in which the numbers are arranged in the row-major order, that is,
pij=in+j,i.j=0,1,....n—1. We classify matrix elements by their parity and rotate all the elements
of odd parity by 180 degrees, i.e., for every (i, ) with i+ j odd, we swap pj; and p,_i_i,—1-;. Itis
easily checked that the sum of elements in any 2 x 2 region is always 2n* — 2. An example for n = 8 is
shown in Fig. 1.

01234567 062 2 60 4 58 6 56
8 9 101112131415 55 9 5311 5113 49 15
16 17 18 19 20 21 22 23 16 46 18 44 20 42 22 40
24 25 26 27 28 29 30 31 = | 392537273529 3331
32 33 34 35 36 37 38 39 32 30 34 28 36 26 38 24
40 41 42 43 44 45 46 47 23412143 1945 17 47
48 49 50 51 52 53 54 55 48 14 50 12 52 10 54 8
56 57 58 59 60 61 62 63 757559361163

Figure 1: Parity rotation used in the proof of Theorem 1(a).

Turning to part (b), for a contradiction, assume that there exists a matrix P € Z(n) in which the sum
P(R; ;) of elements of P over a k x k region R, ; is independent of i, j. In particular, P(R; ;) =P(R; j4+1) =c
for some constant ¢ and therefore P(C; ;) = P(C; j4k) = c/k, forall i, ;. :

Since k and n are relatively prime, the last relation implies that in fact P(C;;) is independent of ;.
Similar reasoning leads to the conclusion that it is independent of i as well. In particular, P(Cyp) =

4Throughout this paper, index arithmetic is performed modulo matrix dimensions unless otherwise noted.
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P(Cyp), and therefore, by definition of Cyy and C; o, we must have p;o = p;4x0, contradicting our
assumption that all the elements of P are distinct.

Finally, we consider part (c) of Theorem 1. Let P € Z(n) and let k be odd and » be even. For a
contradiction, assume that the values in any k x k region add up to the same number, say S, which must
clearly be an integer. Summing P(R; ;) over all i and j and observing that every entry in P appears
precisely &2 times in these sums, we conclude that

2
RS =O0+1+  +nt—1)= 12"7(,;2 -1).
and therefore § = k*(n> — 1) /2, which cannot be an integer if # is even and k is odd. This contradiction
concludes the proof of Theorem 1(a)—(c). a

3 Construction of a k" x k"-Matrix of Zero k x k-Discrepancy

In this section we finish the proof of Theorem 1 by designing a k" x k" matrix from Z (k") for any positive
integer m such that its k x k-discrepancy is zero; in fact we present a proof of a stronger statement, see
Theorem 5. We first show that there exists a k? x k% matrix in Z(k?) whose k x k discrepancy is zero, and
then extend the result to £ x k" matrices.

Definition 1 The simple expansion P of a k x k matrix P is the matrix formed by repeating P k x k times,
as follows:
PP - P
. |lppP P
P=
ppP ... P

Note that the k x k-discrepancy of P is zero, as every k x k region contains the same set of numbers.

Definition 2 A cyclic column shift of a matrix P is the matrix obtained by shifting each column of P to
the right (i.e., shifting the jth column to the (j + 1)st column) and moving the last column to the first
column. A cyclic row shift is similarly defined: It means shifting each row of P down to the next lower
row (i.e., shifting ith row to the (i+ 1)st row) and moving the bottom row 1o the top row.

We denote the matrix obtained by applying cyclic column shift ¢ times and cyclic row shift r times
to a k x k matrix P by P("). That is, element (i, f) in P moves to position ((i+r) mod &, (j +¢) mod k)
in P<) The cvelic expansion P = (p; ;) of a k x k matrix P is a k* x k* matrix defined by

p.0) po.1) ... plok=1)
. pU0) pLy) ... pllk=1)
P=

plk=19) P(kdl.l). . ple-lk-1)

An easy calculation shows that, for all i, j, pi j = pr j, with
i =i-|j/kland j'=j—|i/k] (mod k). (M
Definition 3 A constant-gap matrix P = (p; ) is one for which

pij— Pij = Pij— Dij 2

holds for all choices of i, i, j, and j'.



Figure 2: Illustration to the proof of Lemma 3.

Intuitively, this means that for any two columns ;j and /’ the gap between elements in the same row -
is independent of the row, hence the “constant gap™ name. Since (2) can be rewritten as

Pij=Prj = Pij = Pij O Pij+piy = pij+pi .

rows and columns play symmetric roles in the definition. Moreover, a constant-gap matrix has the strong
Monge property [1] since the sum of the main diagonal elements is equal to that of the off diagonal
elements in any 2 x 2 submatrix.

Lemma 2 The constant-gap property is preserved (1) under exchange of any two rows, (2) under ex-

change of any two columns, and, for square matrices, (3) under mirror reflection across the main diago-
nal. .

Proof: Immediate from the definition. 0

The following lemma is a key to our construction of zero discrepancy matrices.
Lemma 3 [f P is a k x k constant-gap matrix, the k x k-discrepancy of its cyclic expansion P is zero.

Proof: Recall that R; ; and C;; denote k x k and k x 1 contiguous submatrices of A, and P(R; ) and
P(C; ;) the sums of the corresponding elements in P, respectively. We aim to prove P(R; j)= P(R; J+1)s
foralli, j. Together with P(R; ;) = P(Ri11 ), which is proven by a symmetric argument, this implies the
statement of the theorem. By definition, P(R,-_H.,) — P(R,-_,-) = P(C;,_,-Jrk) - P(C,;,); recall that all indices
in P are calculated modulo 42.

Put ip = k|i/k] and jo = k|j/k]. To prove P(Cij) = P(C; j+x) we compare the two columns. As
illustrated in Fig. 2, the part above the element (ig + k — 1,/) and the one above the element (i+k — 1, f)
in C;; both appear in C; ;4. Differences between C; j and C; ¢ comprise only four elements: g =
Dig+k=1j+b = Piyi—1 j.c = Dij+k;d = Pig+kj+k- By cyclic row and column shifts, the four elements
move in P as follows:

a = Pigtk-1,j —r Pio j+k = Dig+k jrk+1,
b= Pitk-1j —=r Pitk j+hs

€= Pij+k —c Pisk jht1s

d = Piyrk j+ks

where — represents the cyclic x shift and indices are calculated modulo 42.
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When j # k—1 (mod k) and i # k — 1 (mod k), all four elements d: Pjy .k j4k: A° Pigrk jtht1
b: Pirkj+ks and ¢: Pirk jk+1 belong to the same submatrix, namely, to P{Lo/kI+1Lo/kl+1)  Gince the
constant gap property is preserved by cyclic row and column shifts, we have d — b = a — ¢, and thus
a+b=c+d. It may happen that j+k and j+ k+ 1 belong to different contiguous submatrices. In
fact, it happens when j =k—1 (mod k) and i =k — 1 (mod k). If j =k—1 (mod k), we extend the
sequence as follows:

a = Pigrk—1j —r Dig.j+k ¢ Pig+hjo+k —r Dig+k+1.jo+2k = Pig+k+1,j+k+1
b= Pivk-1j =r Pirkjth> =+ Pirh+1.j+2k:

¢ = Pijtk —r Ditl j+2k —¢ Ditk+1 j+k+15

d = Pigtk j+k —r Pig+k+1.j+2k-

Then, the four elements lie in the same contiguous submatrix as we required. The case for i =k — 1
(mod k) is similar. This completes the proof of P(C; ;) = P(C; +4) and of the lemma. O

Lemma 4 Let P = (p;;) and Q = (qi;) be matrices in Z(k). Combine P and Q into a single matrix in two
different ways, namely, put C) = C()(P,Q) = (¢;;) = O+ k*P and C?) = cAPQ) = (cij)= P+KO.
In other words, ¢; j = §; +i2p; jorc, j=Pij +k%G;. j. for all i, j. If P has the constant gap property,
then

(a) CY and C? are in Z(k?), and
(b) their k x k-discrepancy is zero.

In addition, C1") and C?) are distinct if P # Q. Thus |N(k.k?)| > 2.

Proof: The resulting matrices obviously belong to Z(k*,k*) and have zero discrepancy, as linear com-
binations of matrices of zero discrepancy. It is easy to check that C' M £C@ ifP#Q.

Thus to prove (b), it suffices to show that the elements of the matrices are all distinct. We focus
on C(V the argument for C?) is analogous. Since P,Q € Z(k*.k?), c;; = c; implies p;; = p;y and
§ij = Gy In other words, for a repeated value to occur in ¢, there must exist two positions (i, j) and
(7', ') so that in P the same number occurs at (i, ) and (', j'), and this also happens in 0. We argues
that this is impossible. Indeed, since 0 is defined by just repeating the same matrix (with all entries
distinct) ? times, each element stays in the same relative position in each submatrix. On the other hand,
no element in a submatrix P(*) of P occurs in the same position in any other submatrix. O

We now prove a stronger version of Theorem 1d.

Theorem 5 N(k,k™) # 0 for any integers k,m > 2. Moreover. a zero-discrepancy matrix in N(k, k™) can
be explicitly computed in time linear in its size using O(mk?) space.

Proof: We generalize the construction presented in Lemma 4. A matrix M € Z(k™) with zero discrep-
ancy is defined using m — 1 constant-gap matrices Py, Py, ..., P,_3 of size k and one arbitrary matrix B,
of the same size (all in Z(k)) as follows:
M, j) = k?.(m—l)PéU/km’] |~U/k"'7|J)(i mod k, j mod k)
. g2tm=2) pll/kr = mod k Li/k" 2Imodb) (i mod k, j mod k)

+ k2P(Lr/2kj mod k.| j/k] mod k)(i mod k,j mod k)

m—

+ B,,_1(i mod k, j mod k).



For example, when k = 3 and m = 3, M is constructed as follows, where we have used R.Q.P for
Py, Py, Py, respectively, to avoid cumbersome notation.

P(O0) pl0.0) p(0.0) p(0.1) p(0.1) plo) pl0.2) p(0.2) pi0.2)
P(0.0) pl00) pl0.0) p(0.1) p(0.1) p(0.1) pl02) pl0.2) p(0.2)
Ppl0.0) p00) p(0.0) p(0.1) p(0.1) p(o.1) p(02) p(0.2) p(0.2)
pU0) p(1.0) p(1.0) p(1.1) p(1.1) pl(1.h) p(12) p(12) p(1.2)
M = | p(1o) p(1.0) p(1.0) p(L1) p(L1) pi11) p(1.2) p(1.2) p(12)
PUO) p(L0) p(1.0) p(L1) p(L1) pl11) p(12) p(1.2) p(1.2)
PO p20) p(20) p(2.1) p(2.1) pi21) p(22) p(2.2) p(22)
P(20) p(20) p20) p(2.1) p2.h) p(21) p(22) p(2.2) p(22)
P2O) p20) p(20) p2.1) p2.1) p(21) p(22) p(22) p2.2)
[0 g (02) N0.0) H(o.1) Q(o.i) 0000 gO.1) §02)]
QUO gLh g(i2) (Lo G (12 H(1.0) (k1) o)
000 g gi22) g0 p21) G2 G GR.1) 022
Q00 9O (0.2} 00N RO GO.2) KON H0.1) 002
+k2 QU0 ol g12) G10) (11 G(12) G(ILO) UL (1.2)
QR0 g1 P22) (20) G GR2) GO HRI) H(22)
Q0 QO PO2) GIOO) GO §O2) KOO GO0} (0.2
QU101 g1 gl12) (10) G G(12) PLY) (LY (1)
L 020 g21) g22) g20) G21) P2 G0) 02N g2 |

1
]
=
]
>
)

+i*
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The remainder of the proof proceeds just as in that of Lemma 4; we omit the details. Recall that
P (1,/) = Pu((i+b) mod k,(j+a) mod k). Thus we can generate every entry of such a matrix without
explicitly storing any information besides the m k x k matrices Py, ..., P,_;: the computation requires at
most O(m) additional working space. a

4 Concluding Remarks

We have introduced a discrepancy-based measure of uniformity of an » x n square matrix containing
0,1,...,n° — 1 as a generalization of a semimagic square. We have succeeded in obtaining matrices of
even dimension with zero discrepancy for families of 2k x 2k contiguous submatrices. For arbitrary &,
we can construct a k" x k™ matrix of k x k-discrepancy zero. Moreover, such a matrix can be explicitly
computed in time linear in its size using only O(mk?) space, which is a great advantage over the heuristic
algorithms used for designing blue-noise masks in digital halftoning. This paper serves as a starting
point of this type of investigation. A number of issues are still left open. One of the most interesting
and attractive problems is to find low-discrepancy matrices, when » (dimension of the matrix) and k (the
dimension of submatrix) are relatively prime to each other.
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