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Abstract In this paper we give a simple coding scheme for plane triangulations. The coding
scheme needs 2m + o(n) bits for each plane triangulation, and supports adjacency, degree and
clockwise neighbour queries in constant time. Our scheme is based on a realizer of a plane
triangulation. The best known scheme needs 2m + (54 1/k)n + o(m + n) bits for each (general)
plane graphs, and 2m + n + o(n) bits for each plane triangulation.

1 Introduction

Given a class C of graphs how many bits are needed to encode a graph G € C into a binary
string Sg so that Sg can be decoded to reconstruct G. If C contains nc graphs, then for any
coding scheme the average length of S¢ is at least log n¢ bits, which is called the information-
theoretically optimal bound.

By using any generating algorithm, we can encode the k-th generated graph into the binary
representation of k, and attain the optimal bound. However such method may need exponential
time for encoding and decoding.

On the other hand, for many application, efficient running time for encoding and decoding
is required. Thus for various classes of graphs many coding schemes with efficient running time
have been proposed. Moreover, some of those coding schemes support several graph operations
in constant time. See [CG98, C01, C98, H99, H00, J89, KW95, MR97, MRO1, T84].

In this paper we consider the problem for plane triangulations. We wish to design a scheme
to encode a given plane triangulation G into a binary string S so that (1) S can be efficiently
decoded to reconstruct G, (2) the length of S¢ is short, and (3) Sg supports several graph
operations in constant time.

The following results are known for the problem. Let m be the number of edges in a graph.

[T62] shows that the information-theoretically optimal bound is 1.08m bits for plane trian-
gulations. However this coding scheme needs exponential time for encoding.

For schemes without any query support the following results are known. [T84] gives a scheme
to encode a general planar graph into asymptotically 4/m bits. [KW95] gives schemes to encode
a general planar graph into mlog12 = 3.58m bits, a triconnected planar graph into 3m bits,
and a plane triangulation into (3 + log 3)m/3 = 1.53m bits. [H99] gives a scheme based on “the
canonical ordering” to encode a plane triangulation into 4m/3 — 1 bits. [P03] gives a scheme
based on a bijection with a class of trees to encode a plane triangulation into 4m/3 bits.

For schemes with query support the following results are known. [J89] gives a scheme to
encode trees achieving the information-theoretically optimal bound to within a lower order term,
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and still supporting some natural query operations quickly. [MR97, MRO1] gives a scheme to
encode a planar graph into 2m + 8n + o(n) bits with supporting adjacency and degree query in
constant time. [CG98| gives a scheme to encode a planar graph into 2m + (5 + 1/k)n + o(n)
bits, where £ is any constant, and a plane triangulation into 2m + n + o(n) bits. [C01] gives a
scheme to encode a planar graph into 2m + 2n + o(n) bits.

Figure 1: An example of a realizer.

In this paper we improve the best known result [CG98] for plane triangulations.

The class of plane triangulations is an important class of graphs, since the standard represen-
tation for 3D models, called triangle meshes, consists of vertex data and connectivity data[R99].
If the triangle mesh is homeomorphic to a sphere then the connectivity data is a plane triangu-
lation.

We give a simple coding scheme for plane triangulations. The coding scheme needs only
2m + o(n) bits for each plane triangulation, and still supports adjacency and degree queries in
O(1) time. Given a vertex u and its neighbour v, many plane graph algorithms need to find the
“next” neighbour of u succeeding v in clockwise order, because with this query one can trace a
face, and it is one of basic operation for plane graph algorithms. Our coding scheme also find
such a neighbour in O(1) time. Our algorithm is based on a realizer[S90] (See an example in
Fig. 1.) of a plane triangulation.

The rest of the paper is organized as follows. Section 2 gives some definitions. Section 3
introduces a realizer of a plane triangulation. Section 4 presents our coding scheme. In Section
5 we explain query support. Finally Section 6 is a conclusion.

2 Preliminaries

In this section we give some definitions.

Let G = (V, E) be a connected graph with vertex set V' and edge set E. We denote n = |V/|
and m = |E|. An edge connecting vertices = and y is denoted by (z,y). The degree of a vertex
v, denoted by d(v), is the number of neighbours of v in G.

A graph is planar if it can be embedded in the plane so that no two edges intersect geomet-
rically except at a vertex to which they are both incident. A plane graph is a planar graph with
a fixed planar embedding. A plane graph divides the plane into connected regions called faces.
The unbounded face is called the outer face, and other faces are called inner faces. We regard
the contour of a face as the clockwise cycle formed by the vertices and edges on the boundary
of the face. We denote the contour of the outer face of plane graph G by C,(G). A vertex is
an outer vertez if it is on C,(G), and an inner vertex otherwise. An edge is an outer edge if it
is on C,(G), and an inner edge otherwise. A plane graph is called a plane triangulation if each
face has exactly three edges on its contour. By Euler’s Formula: n — m + f = 2, where f is the
number of faces, one can show m = 3n — 6 for any plane triangulation.
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3 Realizer

In this section we briefly introduce a realizer[S90] of a plane triangulation.

Let G be a plane triangulation with three outer vertices r,73,7,. We can assume that
Ty, 7, Ty appear on Cy(G) in clockwise order. Those vertices are called red root, blue root and
yellow root, respectively. We denote by V7 the set of inner vertices of G.

A realizer R of G is a partition of the inner edges of G into three edge-distinct trees 17, Tj, Ty
satisfying the following conditions (c1) and (¢2). See an example in Fig. 3.

(c1) For each i € {r,b,y}, T; is a tree with vertex set V7 U {r;}.
(c2) For each i € {r,b,y}, we regard r; as the root of T;, and orient each edge in 7T; from a

child to its parent. Then at each v € V; the edges incident to v appear in clockwise order
as follows. See Fig. 2.

(1) exactly one edge in T, leaving from v.
(2) (zero or more) edges in Ty entering into v.
(3) exactly one edge in T} leaving from v.
(4) (zero or more) edges in 7T, entering into v.
(5) exactly one edge in T} leaving from v.
(6) (zero or more) edges in Ty entering into v.

Figure 2: Edges around an inner vertex v.
Figure 3: The spanning tree and remaining edges.

Let G be a plane triangulation, and R = {T,,T}, T,} be a realizer of G. Again for each
i € {r,b,y} we regard r; as the root of T;, and orient each edge in 7T; from a child to its parent.

Then T' = Ty U {(ry, 1), (y,7r)} is a spanning tree of G with root r,. By preorder traversal
of T' we assign an integer i(v) for each vertex v. See an example in Fig. 3. Note that i(ry) =
1,i(rp) = 2,4(ry) = n always holds.

We have the following lemma.

Lemma 3.1 (a) If e = (u,v) is an edge in T, and orient from u to v, then i(u) < i(v).
(b) If e = (u,v) is an edge in Ty and orient from u to v, then i(u) > i(v).

Proof. (a) Assume otherwise for the contradiction. Now there is an edge e = (u,v) in 7T,
and orient from u to v, but i(u) > i(v).

For each ¢ € {r,b,y} let P; be the path in T; starting at v and ending at the root r;. Then
by those three paths we partite the plane graph into three regions as follows. Region R,: The
region inside of P, U P, U{(rp,7,)}. Region Ry: The region inside of P, U P, U{(ry,r,)}. Region
Ry: The region inside of P, U P, U {(ry,73)}.

By the condition (c¢2) of the realizer, vertex u is in R,.

By assumption i(u) > i(v) above, the path P in Tj starting at u and ending at the root r,
must contain at least one vertex in R, U Ry. See Fig. 4. Thus P must cross P, from R, to R,.
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However, at the crossing point, say vertex y, the condition (c2) of the realizer does not hold. A
contradiction.
(b) Similar to (a). Omitted. Q.£.D.

Figure 4: Tlustration for Lemma 3.1.

Let Gt be the graph derived from G by deleting all edges in the spanning tree T. If G
has an edge (u,v) with i(u) > i(v) then we say v is a smaller neighbour of u and u is a larger
neighbour of v.

We have the following lemma. See Fig. 3.

Lemma 3.2 (a) Each inner vertez v has at least one smaller neighbour and at least one larger
neighbour.

(b) rr has at least one smaller neighbour and no larger neighbour.

(¢) rv has no smaller neighbour and at least one larger neighbour.

(b) ry has neither smaller nor larger neighbour.

Proof. (a)lmmediate from Lemma 3.1 and the condition (c2) of the realizer.

Intuitively each inner vertex has one outgoing edge in 7} connecting to one smaller neighbour,
and one outgoing edge in T, connecting to one larger neighbour. See Fig. 3.
(b)(c)(d) Omitted. Q.£.D.

4 Coding

In this section we give our coding scheme for plane triangulations.

Let G be a plane triangulation with a realizer R = {71}, T}, T, }. Let T = T,,U{(ry,7s), (Ty,7+)}
be a spanning tree of G with root r,. Assume that by preorder traversal of T' each vertex v has
an integer label i, as explained in the previous section. Again G be the graph derived from G
by deleting all edges in T'. See Fig. 3.

We first encode T into string S1, then the rest of the graph G into string Sy. See an example
in Fig. 5(a) and (c).

In S7 each vertex except the root corresponds to a pair of matching parentheses, and if
vertex p is the parent of vertex ¢ then the matching parentheses corresponding to p immediately
enclose the matching parentheses corresponding to c. See Fig. 5(a).

Sy consists of |S1| — 2 blocks. See Fig. 5(b). Blocks are hatched alternately to show their
boundary. Each block consists of one or more (square) brackets. Each matching brackets
corresponds to an edge in Gr. See Fig. 5(c). Each parenthesis (except for the first and the
last one) in S; has a corresponding block in S3. Each open parenthesis “(” in S; (except for
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Figure 5: The code.

”

the first one) has a corresponding block, denoted by s(v), consisting of some “]” ’s, and each
close parenthesis “)” in S; (except for the last one) has a corresponding block, denoted by I(v),
consisting of some “[” ’s. The length of s(v) is the number of smaller neighbours of v. Thus
s(v) consists of |s(v)| of consecutive “|” ’s. Similarly, the length of I(v) is the number of larger
neighbours of v, and I(v) consists of |[(v)| of consecutive “[” ’s.

Since s(v) > 1 always holds, we can encode the block s(v) as s(v) —1 consecutive 0’s followed
by one 1. See Fig. 5(d). Similarly we encode the block I(v) as I(v) — 1 consecutive 0’s followed
by one 1. By the encoding above we can easily recognize the boundary of each block. Note that
each block always ends with 1, and 1 is always the end of some block.

Now we explain how to encode given G into S; and So.

First we encode T as follows. Given a (ordered) trees T we traverse T starting at the root
with depth first manner. If we go down an edge then we code it with 1, and if we go up an edge
then we code it with 0. Let S; be the resulting bit string. The length of S; is 2(n — 1) bits. By
regarding the 0 as the open parenthesis “(” and the 1 as the close parenthesis “)”, we can regard
S1 as a sequence of balanced parentheses. In S; each vertex v except the root r, correspond to
a pair of matching parentheses. Moreover if i(v) = k, then v corresponds to the (k — 1)-th “(”
and its matching “)”. Note that the root 7, has no corresponding “(”.

Next we encode G7 as follows. We first copy S; above into So, and then replace each “»
and “)” by some “]” ’s, and “[” ’s as follows.

Let i(v) = k and |s(v)| be the number of smaller neighbours of v. If k¥ # 1,2 then we replace
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the (k — 1)-th “(” by consecutive |s(v)| — 1 zeros followed by one “1”. Similarly, let |I(v)| be the
number of larger neighbour of v. If £ # 1,7n then we replace the “)” which matches the (k—1)-th
“(” by consecutive |l(v)| — 1 zeros followed by one “1”. Note that s(v) > 1 and I(v) > 1 always
hold for inner vertex v by Lemma 3.2.

The idea is similar to [CO1], however by utilizing the claim of Lemma 3.2 we can save two
bit for So at each inner vertex.

Now estimate the length of S; +.S2. We have |Si| =2(n—1) and |S2| =2(83n—6—(n—1)) =
4n —10. Thus |S1+ So| =2(n — 1) +4n — 10 = 6n — 12 = 2m.

For example the code in Fig. 5 has lenght |S1| + |S2| = 24 + 42 = 66 bits.

We have the following lemma.

Lemma 4.1 Given a triangulation G we can encode G into Sy + Sz in O(n) time, where |S1 +
Sa| = 2m.

5 Query

In this section we give an efficient algorithm to answer an adjacency and degree queries with a
help of an additional string S4 of o(n) bits. We can construct S4 in O(n) time. We also give
an algorithm to answer “the clockwise neighbour” query.

We first define several basic operations. Using those basic operations, we can solve each
adjacency, degree and clockwise neighbour queries in constant time.

Given a bitstring, rank(p), the rank of the bit at position p is the number of 1’s up to and
including the position p, and select(i) is the position of the i-th 1 in the bitstring.

Given a sequence of balanced parentheses, the following operations are defined. Operation
findclose(p) computes the position of the close parenthesis that matches the open parenthesis at
position p. Operation findopen(p) computes the position of the open parenthesis that matches
the close parenthesis at position p. Given an open parenthesis at position p, assume g is the
position of p’s matching close parenthesis, then enclose(p) is the position of the open parenthesis
which immediately encloses the pair, p and ¢, of the matching parentheses. Operation wrapped(p)
computes the number of the positions ¢; of open parentheses such that enclose(c;)=p. Intuitively
wrapped(p) is the number of matching parenthesis pairs which are immediately enclosed by the
given matching parenthesis pair. The following lemmas are known.

Lemma 5.1 [MR97, MR01] Given a bitstring of length 2n, using o(n) auziliary bits, we can
perform the operations rank(p), select(i), in constant time. One can construct the o(n) auziliary
bits in O(n) time.

Lemma 5.2 [MR97, MR01] Given a sequence of balanced parentheses of length 2n, using o(n)
auziliary bits, we can perform the operations findclose(p), findopen(p), enclose(p) in constant
time. One can construct the o(n) auziliary bits in O(n) time.

Lemma 5.3 [C01] Given a sequence of balanced parentheses of length 2n, using o(n) auziliary
bits, we can perform wrapped(p) in constant time. One can construct the o(n) auziliary bits in
O(n) time.

Then using the basic operations above we can solve an adjacency query in constant time as
follows.

Given two integers a and b we are going to decide where G has edge (u,v) such that i(u) = a
and i(v) = b. We consider the following two cases.
Case 1: (u,v) € T.
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For convenience we regard that S is enclosed by a pair of parentheses corresponding to 7y
for operation enclose().

Assume that ¢ < b. (The other case is similar.) Then (u,v) € T iff select(a — 1) =
enclose(select(b — 1)) in S; and we can check this in constant time. Note that since the root
ry has no corresponding “(” thus we need “-1” above. Also note that for operation select() we
regard S1 as a bitstring, and for operation enclose() we regard S as a sequence of balanced
parentheses.

Case 2: (u,v) € Gr.

Assume that a < b. (The other case is similar.) Then (u,v) € G7 iff some “[” in [(u) matches
some “” in s(v). We can check this as follows.

We can recognize the block [(u) in Sy as follows. First ¢ = findclose(select(a — 1)) is the
position of “)” corresponding to u in S;. The block corresponding to I(u) starts at position
sy = select(q — 2) + 1 and ends at e, = select(q — 1) in Se. Note that S has no block
corresponding to s(2), thus we need “-1” above. Similarly we can recognize the block s(v), and
assume that the block starts at position s, and ends at e,.

< (LI T DT s CEEEEEE el D pp R

I (u) s(v) I (u) s(v)
(a) (b)

s (T AT P ET < OO A P T

I (u) s(v) I'(u) s(v)
(c) (d)

Figure 6: Illustration for the adjacency query.

If findclose(sy) is located among the block s(v), as shown in Fig. 6(a), then (u,v) € Gr.
Otherwise, if findclose(sy) < sy, then (u,v) € Gr. See Fig. 6(b). Otherwise, findclose(sy) > e,
always holds. If findopen(e,) is located among the block I(u), then (u,v) € Gr. See Fig. 6(c).
Otherwise findopen(e,) > e, always holds, and (u,v) € Gr. See Fig. 6(d). Thus we can decide
whether (u,v) € Gr in constant time.

Also we can solve a degree query in constant time as follows. Given a vertex v we first count
the neighbours in T, then the neighbours in Gr. The sum of them is the degree.

First we count the neighbours in T" as follows.

If i(v) = 1, then the number nr of neighbours in 7' is the number of matching parenthesis
pairs which are not enclosed by any matching parenthesis pairs in S7. For convenience we regard
that Sp is enclosed by a pair of parentheses corresponding to ry, and compute nr by so-called
“wrapped(select(0))”. Note that if i(v) = 1 then v is the root and has no parent in 7T'.

Otherwise, the number is 1 + wrapped(select(i(v))).

Then we count the neighbours in G as follows. If we can recognize the blocks s(v) and I(v)
then the number is |s(v)| + |I(v)].

If i(v) = 1 then |s(v)| + |I(v)| = 0. If i(v) = 2 then |s(v)| = 0. If i(v) = n then |[(v)| = 0.
Otherwise, we can recognize s(v) and [(v) as above, and compute the number in constant time.

Thus we can compute the degree of a given vertex in constant time.

Given two vertex u and its neighbour v with i(u) = a and i(v) = b, many plane graph
algorithm need to find the neighbour of u succeeding v in clockwise (or counterclockwise) order,
since with this query we can (1) trace the boundary of a face, (2) list up the edges around a
vertex in clockwise order, and (3) reconstruct G. The neighbour is called the clockwise neighbour

0410


研究会temp
テキストボックス
－41－


of u with respect to v, and denoted by cn(u,v). We can compute cn(u,v) in constant time, as
follows.

Assume that a > b. (The other case is similar.) Let e = (u, cn(u,v)) be the edge between u
and cn(u,v). We have two cases.
Case 1: (u,v) € T.

Then v is the parent of u in T'. If ¢(u) = n, then u = 7, v = r, and cn(u,v) = ry. Otherwise
e corresponds to the first “[ 7 in [(u) and its matching “|”. With a similar method for adjacent
query above we can find the block {(u) and then cn(u,v) in constant time.
Case 2: (u,v) € Gr.

In this case e corresponds to some in I(v) and some “] ” in s(u).

Assume that e corresponds to the z-th “[ ” in block I(v) and y-th “] ” in s(u). Now we have
the following lemma.

“[ 7

Lemma 5.4 Either x =1 or x = |l(v)| holds. Either y =1 ory = |s(u)| holds.

Proof. Otherwise, I(v) and s(u) has one more matching parenthesis pair “[” and “]”, which
immediately enclose the matching parenthesis pair corresponding to e. This means G has one
more edge between u and v. This contradicts the fact that G has no multi-edge. Q.£.D.

Theorem 5.5 Given S + S2, one can construct an additional string Sa of o(n) bits in O(n)
time. Then one can compute adjacency, degree, and clockwise neighbour queries in O(1) time,
and decode G in O(n) time.
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