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Abstract We study the problem of detecting a moving target using a groupof k+1 (k is a
positive integer) mobile guards inside a simple polygon. Our guards always form a simple polygonal
chain within the polygon such that consecutive guards along the chain are mutually visible. In this
paper, we introduce the notion of the link-k diagram of a polygon, which records all the pairs of
points on the polygon boundary such that the link distance between any of these pairs is at most
k and a transition relation among minimum-link (< k) paths as well. An O(n2) time algorithm
is then presented to compute the minimum number r* of guards required to detect the target, no
matter how fast the target moves. Moreover, a sweep schedule can be reported in O(r*n?) time.

Our results improve upon the previously known time bounds by a linear factor.



1 Introduction

Recently, much attention has been devoted to the problem of detecting an unpredictable, moving
target in an n-sided polygon P by a group of mobile guards. Both the target and the guards are
modeled by points that can continuously move in P. The goal of the guards is to eventually ”see”
the target, or to verify that no target is present in the polygon, no matter how fast the target
moves. Many types of polygon shapes and the vision sensors of the guards have been studied by
now. See [1, 2, 4, 5, 6, 3, 8, 9, 10, 11].

In this paper, we focus on the model of the guards studied in [1], in which &+ 1 (k is a positive
integer) guards form a polygonal chain inside the polygon P such that consecutive guards along the
chain are mutually visible. The goal here is to sweep P with a continuously moving chain of guards
8o that at any instant, the chain of guards partitions P into a ”cleared” regidn (not containing
the target) and an n ﬁncleared” region (it may contain the target). Thus, the first guard and the
last guard in the chain should always be kept on the boundary of P. In the end, we would like to
make sure that the whole polygon P be cleared. This target-finding model may have applications
in adversarial settings, as it has obvious advantages for safety and communication between guards.
Efrat et al. [1] presented an O(n3) time and O{(n?) space algorithm for computing the minimum
number 7* of guards required to sweep P, and an O(r*n®) time algorithm for generating a sweep
schedule. Also, they gave an O(n?) time and O(n?) space (resp. O(nlogn) time and O(n) space)
algorithm for computing an integer » < r* + 2 (resp. r < r* + 16) such that one can sweep P
using r guards. Their algorithms are based on the so-called link diagram, which encodes the link
distance between all pairs of points on the boundary of the polygon. Note that the link diagram
can actually be applied to the two-point link-distance query problem [1], which is much stronger
that the original problem of sweeping a simple polygon with a chain of guards.

The main contribution of this paper is an O(n?) time and space algorithm for computing the
minimum number 7* of guards required to detect the target, and an O(r*n2) time algorithm for
generating a sweep schedule. To this end, we introduce the notion of the link-k diagram of a
polygon, which records all the pairs of points on the polygon boundary such that the link distance
between any of these pairs is at most k and a transition relation among minimum-link (< k) paths
as well. Our link-k diagram is much simpler than the link diagram, as it does not contain all link
distances between any pairs of points on the boundary of the polygon. The link-k diagram can
be construted in O(n?) time and space. Furthermore, the link-k diagram can simply be modified
so that whether there exists a sweep schedule for a chain of k + 1 guards can be determined in
O(n?) time, and a sweep schedule (if it exists) can be output in O(kn?) time. Combining with the

approximation algorithms of Efrat et al. [1], the main results of this paper can then be obtained.

2 Preliminary

Let P denote a simple polygon of n vertices, and let P denote the boundary of P. Two points
p and g are visible from each other if the segment connecting them does not intersect the exterior
of P.



Let G = {g1,92,...,9k+1} be a set of point guards in P. Let v;(t), 1 < i < k + 1, denote the
position of the guard g; in P at time ¢; we require that v;(t) : [0,00) = P be a continuous function.
A configuration of G at time ¢ is the set of points {¥;()|1 <i < k+ 1}. We say a configuration is
legal if 1 (t), Yx+1(t) lie on AP and every line segment 7;(¢)Y;+1(f) (1 < i < k) does not intersect
the exterior of P. A motion action is a specification of +;(t), which is an algebraic path (uéually a
line segment in P) along which the guard g; moves at time %. :

Assume that the chain corresponding to the configuration of the guards is oriented from g; to
9k+1, and the guards g1, go, ..., gk41 are in counterclockwise order if k > 2. Also, assume that
the initial positions of all guards are located at a vertex or on an edge of P. Let P(t) deﬁote the
fraction of the area of P to the right of the configuration of guards at time ¢. Clearly, P(0) =
We say a sweep schedule exists for P if P(t) = 1 for some t > 0. The complezity of a sweep schedule
is the total number of motion actions it consists of.

3 The link-k diagram

In this section, we introduce the notion of the link-k diagram of a polygon, which records the link
distance of at most k between the pairs of points on the polygon boundary and a transition relation
among minimum-link (< k) paths. Also, we show that the link-k diagram can be constructed in
O(n?) time and space.

Let M = {m;|i € Z»,} denote the set of vertices and edges of P numbered in counterclockwise
order, where my; denotes the ith vertex and mo;4; denotes the edge between two vertices mo; and
;2. Throughout of this paper, we assume that all edges of the polygon P are open, that is, the
edge my;41 does not contain the vertices mg; and ma;o. The indices are computed modulo 2n.

Given two points p, ¢ € P, a minimum-link path between p and q is a piecewise-linear path
between p and ¢ that does not intersect the exterior of P and has the minimum number of line
segments; the link distance dr(p,q) between p and q is the number of line segments of such a
path. Similarly, we define the link distance dr.(m;,m;) between m; and m; (possibly i = j) as the
minimum value of dr,(p,q), where p € m; and g € m;.

. The window partition W), of a point p € P is a partition of P into maximal regions of constant
link distance from p. An edge of W, is either a portion of an edge of P or a segment that separates
two regions of W,; we call such a segment a window of W,. Suri [7] introduced the notion of
window partition and showed that it can be constructed in O(n) time and space. The definition
of window partitions extends naturally to the case when the source is a line segment, instead of a
point.

Our link-k diagram G is constructed on the grid 2n x 2n. Given a positive integer k, all vertices
and edges having the link distance of at most k to an element m; of M can be computed in
O(n) time, using the window partition of m; [7]. The polygon shown in Figure 1(a) consists of
36 elements, and the sets of the elements which are link-2 visible from the first five elements are
shown in Figure 1(b). We define the node set V(G) as {(mi,m;)|dr(mi,m;) < k}. The edge
set E(G) is obtained by connecting all the pairs of nodes such that two nodes are vertically or
horizontally adjacent in the grid. Note that the nodes on the boundary of the grid are considered

to be adjacent to the corresponding nodes on the other side of the grid, i.e., we "glue” together the



top side and the bottom side of the grid, and together the left side and the right side of the grid.
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B 1 A simple polygon P (a), and the sets of the elements link-2 visible from the first five
elements of P (b).

It is easy to see that the node set V(G) records the link distance of at most k between the pairs
of points on the polygon boundary, and an edge of E(G) shows the transition relation between the
sets of minimum-link (< k) paths represented by two nodes adjacent in the grid.

Lemma 1 The link-k diagram of a simple polygon can be constructed in O(n?) time and space.

Proof. Since all vertices and edges having the link distance of at most k to an element m; of the
set M can be computed in linear time [7], the total time required for computing the node set V(G)
is O(n?). After V(G) is obtained, each edge of E(G) can be constructed in constant time. Hence,
the lemma follows. O

4 Algorithms

We first describe how to modify the diagram G into a new diagram G’ so that whether there
exists a sweep schedule for a group of k + 1 guards can be determined. Assume without loss of
generality that the chain of k£ + 1 guards starts at some m;. So we add a starting node s to the
diagram and connect s to all nodes (m;,m;), for 1 < i < 2n.

Suppose that a sweep schedule exists for P. Since we have assumed that the cleared region is
to the right of the chain of guards (as viewed from g;), a sweep schedule is complete if it ever
reaches some node (m;,m;—1). Thus, we also add an ending node ¢ to G and connect t to all nodes
(mj,m;_1), for 1 < j < 2n. In order to avoid an empty (or trivial) sweep schedule, we delete all
edges connecting (m;,m;) and (m;,m;—1) from G. Let G’ denote the diagram obtained after these

modifications are made.

Lemma 2 The polygon P can be swept by a chain of k + 1 guards if and only if the graph G’
contains an st-path.

Proof. Assume first that P can be swept by a chain of k + 1 guards. Fix a sweep schedule S.The
configuration of k + 1 guards at any time instant can be mapped to a node in G’ as follows: If the
first guard is located at some point of m; and the last guard at some point of m, this configuration



corresponds to the node (m;,m;). Note that several consecutive configurations may correspond
to the same node in G’. (Actually, it is an onto mapping.) Thus, the sweep schedule S can be
mapped to a sequence of nodes in G’. Add s and ¢ to two ends of the sequence, and denote the
resulting sequence by S’.

What we need to do is then to show that S’ is an st-path in G'. It suffices to show that any two
consecutive (and different) nodes, say, u and v, of S’ are connected by an edge in G’. (Since the
cleared region at any instant of the sweep schedule S is to the right of the configuration of guards,
we have assumed that S does not contain any trivial motion action from (m;,m;) to (m;, m;_1).)
Ifu=so0rv=t G clearly contains an edge from u to v. Otherwise, the difference between the
indices of u and v is exactly one, which occurs due to a motion action of g1 OF gx4+1 between an
edge and one of its incident vertices. So there is an edge in G’ that connects u and v. Hence, we
have that if P can be swept by a chain of k + 1 guards, then G’ contains an st-path.

Assume now that G’ contains an st-path. Fix an edge of the st-path, say, from (m;,m;) to
(m;,m;41). Take two points p € m;, g € m; such that the link distance between p and q is at most
k, and two points p’ € m;, ¢’ € m;4; such that the link distance between p/ and ¢’ is at most k.
(Possibly, p = p’ or/and g = ¢'.) Let 7, 4 (resp. my o) denote a minimum-link path between p and
q (resp. p’ and ¢'). Two paths m, 4 and 7, o may cross (Figure 2(a)) or not (Figures 2(b)-2(c)).

In the following, we show that a morphing from the configuration of guards represented by mp.q
to that by 7(p',¢') needs O(k) motion actions. Assume that m; is an edge of the polygon P. (The
simple case that m; is a vertex can be dealt with analogously.) So p and p' are mutualy visible,
as they belong to the same edge m;. Since one of m; and m,; is an edge and the other is the
vertex incident to that edge, two points q and ¢' are mutually visible, too. Let k1 = d (p, q) and
k2 = dr(p',¢'). Clearly, |k1 — k2| < 2 holds. Without loss of generality, assume that if k1 < k
(vesp. k2 < k), then the guards g1,92,...,0k_x141 (resp. 91,92,--.,9k—k2+1) are located at the
starting point p (resp. p’), and other guards are located at all other vertices of the path Tp,q (T€8p.
Tp,g’), ODE Per vertex.

(@) ] ®)
2 Two paths 7p,q and 7, 4.

Suppose first that k1 = k2. Let mp, = (P1,0,P1,15---»P1,k1) and Ty g = (92,0:02,1+ -+ - s D2.k1)s
with p10 = p, p2o =9, pre1 = g and pog1 = ¢'. The morphing strategy between 7, , and Ty gt
is then performed by moving all the guards located at the vertices of Tp,q to the corresponding

vertices of 7y o. This can be shown by an induction on the number of the intersections, denoted




by I, between 7, 4 and m, . Note that as the path 7, 4 or 7y o is 2 minimum-link path, no point
Ph, i8 visible from pj ;9 Or pp 142, for b =1 or 2. If I = 0, then any two points p1; and py,
0 <! < k1, are mutually visible within the polygon P, and the morphing between 7, 4 and 7y 4
can be done by moving all the guards along their corresponding segments B1,pz, for 0 <! < k1, at

time ¢ simultaneously. See Figure 2(a) for an example. In the case I > 0, if the intersections occur

only between the Ith segments p1;-1P1,; and P5;-1p2; of two paths, any two points p;; and pay,
1 <1 < k1, are also mutually visible, and thus the morphing between Tp,q and Ty o can similarly
be done (Figure 2(b)). Suppose now that an intersection occurs between a lth segment of a path
and a (I+ 1)-th segment of the other. (It is impossible for a lth segment of a path to intersect with
the (I + 2)-th segment of the other; otherwise, either 7,4 or mp ¢ is not a minimum-link path, a
contradiction.) Let f denote the first of such intersections, say, the intersection between p77_1p1;
and PzP31+1- See Figure 2(c) for an example. By induction hypothesis, we can first morph the
part of mp 4 from pq 41 to ¢ into the part of my o from f to ¢'. (Note that the guard at py ;41
is temporarily moved to f.) Next, we morph the part of m, 4 from p to f into the part of mpy o
from p’ to py;. So we obtain a morphing between 7, , and 7, 4. Since we only need to check the
intersections along two paths 7, , and 7, o, our morphing takes O(k) time.

(b)

a
3 Iﬁlt)xstmtion for the case 1 < |kl — k2| < 2.

Turn to the case 1 < |kl — k2| < 2. The difference between k1 and k2 occurs because an edge
of P can be partitioned into at most three intervals of constant link distance from a point inside
P (Figure 3). Since the numbers of the guards located at turn points of two paths are different in
this case, two gaurds at the point p (resp. ¢’) may move to the first (resp. last) two vertices of
7y, (Figure 3(a)), or two guards on the path mp, , may move to the same point p’ or ¢’ (Figure
3(b)). Moreover, a guard may have to transfer along mp , befor, or along m, o after the morphing
between 7, 4 and Ty -

Without loss of generality, assume that that the edge m; (resp. m;) is partitioned into three
intervals of constant link distance to the point p (resp. ¢). Suppose first that g belongs to the
middle interval of m; and ¢’ belongs to the other interval. In this case, we take the guard gi_x141
from p and move it to the first turn point of 7, 4. A guard is then transferred along mp , until
it reaches the point g. See Figure 3(a) for an example. Two guards located at ¢ are then moved
to ¢' and the last turn point of 7y o by the following morphing between 7, , and 7, 4. In the

case that ¢’ belongs to the middle interval of m; and ¢’ belongs to the other interval, the guard



at the last turn point of 7, 4 is first moved to ¢’ by the morphing of m, 4 into 7, 4, and then a
guard is tranferred along 7, o, starting at ¢', until it reaches p’. See also Figure 3(b). Suppose
now that p belongs to the middle interval of m; and p’ belongs to the other interval. In this case,
the morphing between 7, ; and 7, o described above can be performed, except that the last of
the guards currently located at p is moved to the first turn point of 7, , (and all others are still
moved to p’). See Figure 3(a). On the other hand, if p’ belongs to the middle interval of m; and p’
belongs to the other interval, then the guard at the first turn point of 7, , is moved to p' (Figure
3(b)). Hence, the morphing of 7, 4 into m, ; also takes O(k) time in this case. ,

In conclusion, any st-path can be translated to a sweep schedule for P. This completés the proof.
m]

Lemma 3 It takes O(kn?) time to generate a sweep schedule (if it exists) in the graph G. .

Proof. When a node (m;,m;) of G' is constructed [7], we can arbitrarily take two points p € m;
and g € mj, such that they are mutually link-k visible, and find a minimum-link path between
p and g. The partition of the edge m3 (resp. m;) into at most three intervals of constant link
distance to the point p (resp.' q) can also be precdmpixted.

To construct a sweep schedule, we ‘only need to find a simple st-path in the diagram G’. This can
be done in by performing a reachability query in G'. Since the size of G’ is O(n?), a simple‘st-pa‘tth
(if it exists) can be found in O(n?) time. Any.edge of the st-path corresponds to a morphing
between the minimum-link paths for two pairs of chosen points. Then, it follows the proof of

Lemma 2 that the morphing of a configuration of guards into the other takes O(k) time. O

Theorem 1 Given a simple polygon P, we can compute in O(n?) time the minimum number r*
of guards needed to sweep P. Moreover, a sweep schedule can be generated in O(r*n?) time.

Proof. Using the approximation algorithm of Efrat et al. [1], we first compute in O(n?) time a
number r, so that P can be swept with r guards and r < r* +2. By making use of Lemma 2 at
most three times, for k41 =r,7~1 and r — 2, we can then determine the real value of r*. Finally,

it follows from Lemma 3 that a sweep schedule can be output in O(r*n?2) time. O

5 Conclusions

We have proposed an O(n?) time algorithm for computing the minimum number r* of guards
required to detect a moving target in a simple polygon, and an O(r*n?) time algorithm for gener-
ating a sweep schedule. Our results improve upon the previously known time bounds by a linear
factor.

It is worth pointing out that our algorithms run in O(n?) time, even when k = 1; In this case, it
is well known as the two-guard problem [2, 3, 11]. An interesting work is then to find a linear time
algorithm for determining whether a polygon is swept by two guards. Moreover, it is challenging
to find a solution to the polygon search problem [8], without requiring that the guards always from
a simple polygonal chain.
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