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Abstract A sensor network is a collection of transmitter-receiver devices (referred to as nodes). Clustering
is seen as the step to provide the flat sensor network topology with a hierarchical architecture with prop-
erties such as minimizing communication overhead and minimizing the overall power consumption. In this
paper we improve the architecture [2] maintaining the desirable properties and propose three architecture
and maintenance algorithms which has the better properties about the completion time of tasks, expansions

of tasks, and so on.

ures.
After the nodes of a sensor network are deployed phys-
ically, a flat network topology is formed in which a link

1. Introduction

A wireless network is a collection of transmitter-

receiver devices (denoted as nodes) which can commu-
nicate with each other via radio.

There is increasing interest in self-organizing multi-
hop wireless networks composed of a large number of
autonomous nodes communicating via radio without any
additional infrastructure. These nodes can be static or
mobile, and they are usually constrained as for the crit-
ical resources, such as power and radio frequency band.
A typical example is given by wireless sensor networks
(WSNs), where sensor nodes are usually irreplaceable,
and become unusable after energy depletion or other fail-

exists between two nodes if they are in each others com-
munication range. In such a flat network topology, there
is no established structure on which the nodes could take
efficient communication.

Clustering is seen as the step to provide the flat sensor
network topology with a hierarchical organization. The
basic idea is that of breaking the network into physical
proximity clusters which are smaller in scale and usually
simpler to manage by the nodes called as cluster head.
The subsequent backbone construction uses the clustering
induced hierarchy to form a structure which mainly con-



sists of cluster heads and provides the communication be-
tween the clusters. The structured network is functional
in providing desirable properties such as minimizing com-
munication overhead, choosing data aggregation points,
increasing the probability of aggregating redundant data,
and minimizing the overall power consumption [1].

Considering the mobility and scalability, we need the
operations such as nodes getting out of and nodes join-
ing into an existing network. Even for stationary nodes,
when battery is low, it must get out and go to charge
mode. Then, the charged nodes should join back to the
network once again. Therefore, once a hierarchical clus-
tering established, the maintenance of the cluster orga-
nization turns to be crucial in the presence of network
topology changing.

There are many discussion about distributed cluster-
ing of a flat network. Although many efforts have been
made for establishment of a hierarchical clustering on
a network, and the research for the maintenance of the
cluster organization under the similar scenario is seldom
seen, [2] puts emphasis on the maintenance of the clus-
tering structure of the sensor network.

In[2], they consider a sensor network in which the
network topology dynamically changes, and proposed a
novel cluster structure on which two operations node-
move-in and node-move-out are defined for maintaining
the cluster organization. This work is based on the fol-
lowing radio network model [4]: each node has a distinct
ID, nodes transmit or receive message in each round, and
all nodes use a single radio channel without collision de-
tection capability. Nodes in a flat network G are grouped
into disjoint clusters, and a backbone consist of cluster
heads (simply called heads) and gateway nodes (simply
called gateways). Gateways are used in order to connect
heads. A spanning tree can be obtained from a backbone
and clusters, and the tree is called a cluster-based network
CNet(G). Let n be the number of nodes in G and p be
the number of clusters, CNet(G) has some following new
properties:

(1) A backbone consists of at most 2p — 1 nodes;

(2) pis at most a cardinality of the minimum clique
partition, p < n in a dense graph;

(3) Broadcast on G can be performed via a backbone
in O(p) rounds (on a flat network, it requires at least
Q(n) rounds [5]);

(4) If G is unit disk graph, p < 5 x |MDS]|.

In this paper we improve the architecture (called C) 2]
maintaining the desirable properties, and propose three
architecture and maintenance algorithms which has the
better properties about the size of a backbone, expan-
sions of tasks, and so on. We call the first architecture
as M. In C, only join/leave for one existing cluster-
based network is dealed, merge of two or more cluster-
based networks caused by join of a node and separation
of cluster-based networks are not considered. Even if a
merge is done, there exist the case which requires lin-
ear time for the number of nodes in C. But in M, a
merge (and separation) can be performed more faster.
In the second architecture Z, by extinguishing gateway,
join/leave operation can be performed more flexible and
the completion time is improved as well as M. By chang-
ing Z slightly, in the last architecture U, the size of
BT(Q) is decreased and it is verified that broadcast can
be performed more fast by simulation.

In our clustering, when a CNet(G) is established, each
node has only one hop knowledge (i.e., each node knows
their neighbors in the backbone, CNet(G) and G, respec-
tively). We will show that a CNet(G) can be established
either in a static way which means that all topological
information are gathered somewhere and the problem is
solved there, or in a dynamic way which means that each
node solves the problem locally without gathering all in-
formation, in O(n) time or in O(|E|) time, respectively.
The operations join and leave maintain the cluster struc-
ture for G with the same properties when a node gets
out of or joins into G. Table 1. summarize our proposed
maintenance algorithms for these operations and archi-
tectures with the properties maintained by it.

In this paper, we will omit the proofs of the lemmas
and theorems, which can be found in our technical re-
port [7].

2. Model and Definition

2.1 Model of Sensor Networks

The model of a sensor network G in this paper is as
follows: . .

® Nodes repeat transmissions and receptions in fixed
intervals, called rounds. In each round, each node acts
as either a transmitter or a receiver.

e A round of for node is synchronized (i.e., he start
and the end of each round is the same for each node).

® A node acting as a receiver in a given round gets a
message iff exactly one of its neighbors transmits in this
round. When more than one neighbor transmits simul-
taneously in a given round, collision occurs and none of
the messages is received in this round.

® A node can not notice the occurrence of a collision,
i.e., there is no collision detection in the network.

e FEach node knows its ID, which is distinct for every
node.

3. A Cluster-based Architecture

In this section, first we show the existing architec-
ture [2] and basic structure that is common to our three
proposed architectures, then a broadcast algorithm for
such structure is shown. Next, we present the structure
of each proposed architecture and its maintenance algo-
rithm for it.

3.1 Common Definitions

Let G = (V,E) be a connected bi-directional graph.
Each node has a role called status. Nodes that comprise
a dominating set of G are called head, and a subgraph
of G which satisfies following conditions and consists of
one head and other nodes except head is called cluster:
Nodes except head is called member, and every member
is adjacent to a head in each cluster and there is no edge
between.members. A cluster is a star subgraph of G with
a head as a center. Each head forms one cluster and no
node belongs to two or more clusters.

A backbone tree BT(G) of G is a subtree of G includ-
ing all heads. As G is a connected bi-directional graph,
a backbone tree must exist. All nodes that are not in
BT(G) belong to some cluster as member.

Backbone tree can be considered as a communication
highway on G. To see this, let u and v be two members,
and h. and h, be their heads, respectively. If u wants to



Table. 1 Properties of our architectures

[ M I 1%
BT} - - 2 case without merge S26-1|S2%g-1|S2%6-1| S2c -1 |
a case with merge - L3pg -2| =£2pa < 2p¢
the number of cluters <pe <pc |BT(G)| |BT(G)|
head head head head
status gateway ‘ gateway
member member member | memberl,2
Completion time for merge of CNets O(q + max{|BT(G)| for each CNet})
Completion time for separation of CNets o(T|)

pe : cardinality of the minimum clique partition,

7 : the number of nodes in G,

g : the number of neighbors of joining node in G,
T : subtree of CNet(G) with leaving node as root.

send message to v, u first sends the message to its head
hu. And h, sends the message to h, via BT(G), then h,
sends the message to its member v.

- Now we use the backbone tree to connect the clus-
ters for forming a structured network on G. A cluster-
based network of G = (V, E) is a rooted tree CNet(G) =
(V, Egr(c) U Ec) with one cluster head as a root, where
the edges of Epr(g) come from the backbone tree and
the edges of Ec come from all the clusters (see Fig 1).
CNet(G) forms a spanning tree of G.

—:edgeinG
e : edge in CNet(G)
@ : nodes in BMG)
QO : member

Fig. 1 G, BT(G), CNet(G)

In the following sections, we will show how a flat graph
G can self-organize and self-maintain itself into a cluster-
based network CNet(G). Before we discuss the algo-
rithms, we first declare the data structure for CNet(G)
clearly.

A CNet(G) has two level structures: a set of clusters,
and a backbone tree which is used to connect the clusters.
Each node v in G maintains the information described
below:

e y.stat: v’s status.

® v.prt,v.chd: an ID of v’s parent and a set of IDs
of v's children on CNet(G), respectively. For a root
r, r.prt = 1, and for each node m who has no child,
m.chd =0,

® w.oneigh: aset of IDs of v’s neighbors on G except
v.prt and v.chd.

e .700tID: an ID of a root of CNet(G) to which v
belongs.

Each node maintains its neighbor’s status and ID as a
pair.

Hereafter we use v.neigh as the neighbors of v on G and

v.bneigh as the neighbors of v on BT(G), respectively
(these are derived from v.prt, v.chd and v.oneigh).

We call above information as total 1-hop data. When
the information are maintained for each node v in G, it
is called that G is organized with total 1-hop data.

‘We define two operations join and leave on a CNet(G).

® join: a new node v announces itself by sending a
message to join the existing CNet(G) and the network
re-organizes itself to a new CNet(G’), where G’ is the
graph obtained by adding v to G.

® leave: a node v of CNet(G) announces itself by
sending a message to leave the existing CNet(G), and
the network re-organizes itself to a new CNet(G'), where
G’ is the graph obtained by removing v from G.

We call following operation as merge: Given disjoint
graphs Gl,GQ, e ,Gi and CNet(G:[), ONet(Gz), “oey
CNet(G;), these graphs are connected by join of a new
node and re-organized to one CNet(G). It is considered
as a part of join. We also call separation as follows: Given
graphs G and CNet(G), G is divided into disjoint graphs
G1,Gs,...,G; by leave of a node and these graphs are
re-organized to CNet(G1), CNet(G2), ..., CNet(G;). It
is considered as a part of leave.

3.2 Broadcast

In this section, we show the broadcasting algorithm [2]
using CNet(G). In the algorithm, a broadcasting tech-
nique shown in [4] is used, and we call it as procedure
Eulerian.

Eulerian(H) performs a broadcast on a bi-directional
graph H. A message called token starts from the source
node, visits every node and turns to the source node. At
the beginning, the token is in the source node. It then
visits each node in H from the source node in depth-first
order. When node v gets the token, it sends the token
with the message and its ID to one of its neighbors which
have not received the token yet. If v has no neighbor
which has not been visited by the token yet, v returns
the token to the node from which it got the token for the
first time. The movement of the token forms an Eulerian
cycle of H. It patrols every node in H and returns to the
source node finally.

The following lemma holds for Eulerian.

Lemma 1. [4] Let H = (V,E) be a connected bi-
directional graph. If each node of H knows all its neigh-
bors’ IDs in H, procedure Eulerian(H) completes broad-



casting for H in O(|V|) rounds.’

We now show the broadcasting algorithm Broad-
castALG [2] in CNet(G), where s is the source node with
a message M and needs to be informed to the rest of the
nodes in a given network G.

Since every node in a graph on which Eulerian is per-
formed transmits certainly and only one node transmits
in each round, and BT (G) is consist of a dominating set
of G, a broadcasting in CNet(G) can be completed by
performing Eulerian on BT(G). Algorithm 1 shows the
algorithm BroadcastALG.

Algorithm 1 BroadcastALG
if a source node s is not in BT(G) then
s sends source message M to s.prt;
s.prt calls procedure Eulerian(BT(G));
else
s calls procedure Fulerian(BT(G));
end if '

Theorem 1. [2] Let CNet(G) be a cluster-based net-
work of G and BT(G) be a backbone tree BT(G) =
(Var, Esr) of G. A broadcasting on CNet(G) can be
done in O(|Var|) rounds.

3.3 C .

We show the architecture C [2]. In addition to the def-
inition in subsection 3.1, on C a set of all heads is a
independent set of G. Nodes in BT(G) except for heads
are called gateway. On BT(G), gateways do not adjacent
to each other and adjacent to two or more heads.

Refer to [2] about join/leave algorithms that maintain
such structure C.

C has the following properties.

Lemma 2. Let G be a connected bidirectional graph and
BT(G) be a backbone tree of G. If BT(G) has p heads,
then the number of nodes in BT(G) is at most 2p — 1
nodes on C.

Following lemmas hold by the fact that heads are not
adjacent to each other on G.

Lemma 8. Let G be a connected bidirectional graph and
pc be the cardinality of minimum clique partition of G.
The number of heads in CNet(G) is at most pg.

Lemma 4. Let G = (V,E) be a unit disk graph, and
MDS(G) be the minimum dominating set of G. The
number of heads in a CNet(G) is not larger than 5 x
|MDS(G)|. :

In [2], a merge operation is not- considered.

3.4 M

On architecture C, a merge of two or more cluster-based
networks caused by a join of a node is not considered.

So a new architecture M is proposed in [3] that enable
a merge by allow gateways to adjacent to each other on
BT(G).

As well as C, a set of all heads is a independent set of
G on M. All of leaves on BT(G) are heads, and nodes
in BT(G) except for heads are called gateways. Each
gateway is adjacent to at least one head on BT(G).

Refer to[2] about join/leave algorithms that maintain
such structure M.
M has the following property.

Lemma 5. Let G be a connected bidirectional graph and
BT(G) be a backbone tree of G. If BT(G) has p heads,
then the number of nodes in BT(G) is at most 3p — 2
nodes on M.

By the fact that heads are not adjacent to each other
on G, lemmas 3, 4 are also hold as well as C.

On M, a merge can be performed without changing the
order of the size of a backbone tree, i.e. the order of com-
pletion time for broadcast are not changed. And in the
case that a merge is not caused, the size of a backbone
tree and the completion times of join/leave algorithms
are the same as[2].

3.5 T

3.5.1 Structure

On architecture M, although a merge can be per-
formed without increasing the order of completion time
for each operation, status gateway is used except for
head and member, and the condition of backbone tree
is also complicated. So we propose the architecture 7
constructed by only heads and members.

On Z, a set of heads is not independent set of G and a
backbone tree is constructed by only all heads.

Let CNetz(G) and BTz(G) be CNet(G) and BT(G)
with architecture Z, respectively.

3.5.2 Maintenance Algorithms

First we show the join algorithm for Z.

Let new be a node who wants to join a network
G = (V,E), wherer G consists of disjoint subgraphs
G1,Ga,...,G;. And let G' = (V U {new}, E U Encw)
in this subsection, where Enew = {(u, new)|u is in trans-
mitting range of the node new, u € V}. Let ¢ = |Enew|-
We simply use “neighbors” as “neighbors in G’ in this
subsection.

What should be performed by join operation is to de-
cide the status of new and update the information which
the neighbors of new in G’ have.

First to decide the status of new and whether a merge
is caused, new needs to know the status of its neighbors
and their rootIDs. In case that new receives only one
rootID, no merge is caused. Then, if there exist heads
in the neighbors of new in G’, new selects one to be it’s
head and itself becomes a member. Else there are no
heads in its neighbors, new becomes a head and sets one
neighboring member to be the head. Based on the status
of new has decided, the neighbors of new update their in-
formation. In no matter which cases, the process affects
only 2-hop neighbors of new in G'.

In case that new receives two or more rootIDs, a merge
is caused. Let R be the graph consist of a cluster-based
network with rootID r and new. In a merge, first new
determines the rootID. Then, nodes in BTz for each
CNetz change their status preferentially by a join with-
out merge, and move into R one by one. R grows as nodes
move into it, and we also denote the grown graph as R.
When they become head, since they consist of dominat-
ing sets, member nodes from the first in each CNetz can
be children of them. Otherwise, when a node b does not
become head, check neighboring members of b whether
they are adjacent to other heads in R. If heads in R is



adjacent to them, they set their parent to the head. Then
if all member become children of other heads, b remains
member, else b and one of the members become head.
In order to determine the status of new and update
the information, it is sufficient that the neighbors of new
transmit their own IDs and status one by one. It can be
done by numbering the neighbors of new from 1 to g and
transmitting their information in order of the numbers.

Lemma 6. (2] The neighbors of new can be numbered
from 1 to q in O(q) ezpected rounds, where q is the num-
ber of neighbors of new in G'.

Now, we present our join algorithm Z-join and sub-
routines of it in Algorithm 2, Procedure 3, 4, and 5 to
maintain the architecture Z, respectively.

Algorithm 2 Z-join
1: The joining node new sends AddMe message;
2: The nodes receiving AddMe message are numbered from
1 to g, and send their IDs and status to new one by one;
: if new does not receives two or more rootIDs then
I-status;
: else
I-merge;
: end if

Procedure 3 Z-status

1: if there are heads in neighbors of new then

2:  new sends I'mMember message to the neighboring head
h with minimum ID;

3:  new.rootlD := h.rootID, new.stat := member,
new.prt := h, h.chd := h.chd U {new};

4: else {only member}

5: new sends BeHead message to a neighboring member
m with minimum ID;

6: new.rootID := h.rootID,
new.stat := head, m.stat := head,
new.prt := m, m.chd := m.chd U {new};

7:  m sends ChgHead message to its neighbors;

8:  Neighbors of m change m’status into head in their in-
formation;

9: end if

Lemma 7. Let CNetz(G) be a cluster-based network of
G. When G 1is organized with total 1-hop data, after an
ezecution of Z-join for a node new, G’ is organized with
total 1-hop data.

Theorem 2. For disjoint graphs G1, Ga, ..., Gi and
CNetz(G1), CNetz(Gz), ..., CNetz(Gi), when these
graphs are organized with total 1-hop date, join of new
can be done in O(q) ezpected rounds with no merge or
in O(g + max{|BT(G)| for each CNet}) expected rounds
with merge, and G’ is organized with total 1-hop data,
where q is the number of neighbors of new in G'.

In the execution of Z-join only the neighbors of new,
and neighbors of the neighbors of new receive a message
caused by join. Hence, join can be performed locally in
only 2-hop neighbors of new without changing status of
other nodes.

Procedure 4 T-merge
1: % Let r be the minimum rootID in neighbors of new;
2: % Let R = G[{v|v € CNetz with rootID r}U{new}U{vjv
has called Z-status}};

3: % Let t be a node with a token in Eulerian;
4: new call Z-status for CNetz with rootID r;
5: for each rootID i of new’s neighbors do
6: if there is no head in mew’s neighbors with rootID i
then
7: new sends DoJoin message to a neighboring member
u with rootID i and minimum ID;
8: else '
9: new sends DoJoin message to a neighboring head u
with rootID i and minimum ID;
10:  end if

11:  u call Z-status for R;
12:  u calls Eulerian on the backbone with rootID ¢ which
works as follows in each round:

13: t joins into R by Z-status;

14: if t becomes member then

15: deliver-member(t);

16: end if

17 Nodes in t.chd set their parent into t;
18: end for

Procedure 5 deliver-member(v)

: v.nlist := v.chd — v.bneigh;

: v.chd ;= 0;

v.stat := member;

: while v.mlist+0 and v.stat = member do

v sends ChkM message to a member m € v.mlist;

if there is no head in m.neigh then
m calls Z-status as v is its parent for R;

else
m sends GetNM message to one head h € m.neigh,;
h sends its neighboring members’ IDs NM to v via
m;

11: v sends CoveredM message with CM := v.mlist N

NM, and nodes in CM set their parent to h;

12: m sends CM to h, and h.chd := h.chd U CM;

13: v.mlist := v.mlist — CM;

14:  end if

15: end while

16: v.chd := v.mlist;

17: Nodes in v.chd set their parent into v;

eI H @R

-
4

Next, we show our leave algorithm Z-leave to maintain
T.

Let lev be a node who wants to leave from G and G’
be the graph after lev leaves, that is, G’ = G[V — {lev}]
in this subsection. It is possible to judge whether G’ is
connected in O(|T|) rounds, where T = (V(T), E(T)) is
a subtree of CNetz(G) with the leaving node lev as the
root (see Fig.2).

Our leave algorithm is executed when lev wishes to
leave from the network. If lev is a member, it sends
I’mLeaving message and simply leaves from the network.
Otherwise, the leave algorithm works as follows: First, we
consider the case where lev is not the root of CNetz(G).
The case where lev is the root is described later. If lev
is a head, CNetz(G) is divided into two subtrees. One
is the tree T with lev as the root (not including the root
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Fig. 2 CNetz(G), subtree T, connected components of T

in CNetz(G)), and one is the tree H with the root of
CNetz(G) as the root. The algorithm Z-leave removes
lev from T, and adds other nodes of T to H so that the
resulted tree is CNetz(G).

Let Ci(i = 1,2,...) be the connected components of
G[V(T) — {lev}] (Fig.2). H always changes and grows
larger each time when a node in T is added to H.

The edges in G between T and H are used in order
to add the nodes of T to H. By using join operation
described above, the nodes in T can be merged into H.
Each node already knows its neighbors in G and their
status in CNetz(G), therefore, a join operation can be
performed deterministically in O(1) rounds. First, lev
calls Eulerian(T) to wake up each node of T. Whenever
the waken node v € C; has an edge connected with H,
v moves to H by Z-join, then v calls Eulerian(C;) and
each node in C; moves to H following v by Z-join one by
one. The above process will be repeated until all of lev’s
children have received a token or moved to H. If all of the
nodes in T other than lev are moved to H, the leave op-
eration is completed. Else the remaining nodes devided
into connected components, then separation is performed
and CNets of these components are constructed.

Here we describe about an exception, when lev is a
root of CNetz(G). If lev.bneigh ¥ 0, electing a head
which is 2-hop neighbor of lev and setting it to a new
root of CNetz(G), our algorithm in the general case can
be used. Otherwise lev is the only head in CNetz(G),
select one node in lev.neigh becomes the new root of
CNetz(G'). The new root calls Eulerian(G[V — {lev}])
and a cluster-based network is constructed sequentially
by repeating join for the node with token.

Our leave algorithm Z-leave is described in Algorithm
6 and Procedure 7.

Lemma 8. Let CNetz(G) be a cluster-based network of
G. When G is organized with total 1-hop data, after an
execution of I-leave for a node lev, G' is organized with
total 1-hop data. .

Theorem 8. Let CNetz(G) be a cluster-based network
of G and T be the subtree of CNetz(G) with the leaving
node lev as root. When G is organized with total 1-hop
data, leave of lev can be done in O(|T|) rounds, and G’
is organized with total 1-hop data.

3.5.3 Properties
T which is constructed above two operations has the

Algorithm 6 Z-leave
% Let T = (V(T'), E(T)) be a subtree of CNet(G) with root
lev;
% Let Ci(i = 1,2,..) be the connected components of
GIV(T) - {tev}; -
% Let H = G[V — V(T) U{v|ve V(T),v has called Z-join}];
% Let t be a node with a token in FEulerian; '
1: for each v € G do
v.link := v.neigh;
: end for
: lev sends I'mLeaving message;
: if lev.stat = member then
nodes that received I'mLeaving delete lev from neigh-
bor list in G;
7: else
8: if lev is a root of CNet(G) then
9 if lev.bneigh £+ 0 then

oo N

10: lev sends chkchild message;

11: Each node v € lev.bneigh sends v.child to lev one
by one;

12: end if

13: if There is a head 2-hop away from lev then

14: change-root;

15: else

16: ezception; exit;

17: end if

18: end if

19:  if lev is a head and |(lev.prt).bneigh| = 2 then

20: (lev.prt).chd := (lev.prt).chd — lev;

21: deliver-member(lev.prt);

22: Nodes in (lev.prt).chd set their parent into lev.prt;

23: end if ’

24: % Let T' :=T;

25:  lev calls Eulerian(T) which works as follows in each
round:

26: v.link := v.link — {t} for each node v who receives
messages from t;

27:  while there is a node in lev.chd who has not received
a token and not joined to H do

28: lev calls Eulerian(T"), and it works as follows in each
round:

29: if t.link + @ then the procedure finishes;

30: t € C; calls Eulerian(Cj), and it works as follows in
each round: }

31: t joins into H by Z-join except line 1,2, and each
neighbor v of ¢ adds ¢ to v.link;

32: t sends the token back to lev by Eulerian(T");

33: nodes who have joined to H are removed from T/;

34: end while

35:  while there is a lev’s child v € C; who has not deter-
mined its status do {separation}

36: lev sends a message to v; _

37: v makes CNet(C;) with root v by Eulerian(C;) per-

forming Z-join one by one;
38: end while
39: end if

following property.
Lemma 9. The number of clusters is equal to |BTz(G)|.

Lemma 10. Let G be a connected bidirectional graph
and pg be the cardinality of minimum clique partition of
G. |BTz(G)| is at most 2pc on T which is constructed



Procedure 7 subroutine of Z-leave

Procedure 8 U-status

exception

1: lev sends a message to one of its neighbors r, and 7 be-
comes the root and has a token (¢ :=r);

2: r sends I'mRoot message and v.link := v.link U {r} for
each neighbor v of r;

3: % Let G” := G[{r}};

4: t calls Eulerian(G[G(V)—{lev}]) which works as follows
in each round:

5. if ¢ has not joined then

6: t joins into G” according to the status of nodes in
t.link by I-join;

7 Each neighbor v’ of t adds t to v'.link;

8: end if

change-root
1: lev sends a message to a head h in lev.bneigh;
2: lev.prt := h, h.chd := h.chdU {lev};
3: h sends a message to a head h’ in h.bneigh,;
4: hprt:=h', k'.chd := h'.chdU {h};
5: h/.prt := L and h/ becomes a root;

by I-join/leave.

Lemma 11. Let G = (V,E) be a unit disk graph,
and MDS(G) be the minimum dominating set of G.
|BTz(G)| is not larger than 10 x |MDS(G)|.

The properties shown in lemmas 10, 11 are not derived
from the definition of structure of Z, but derived from
the maintenance algorithm (Algorithm 2, 6).

On Z, a merge can be performed without changing the
order of completion time for broadcast as well as M.
And in the case that a merge is not caused, the size of
a backbone tree and the completion times of join/leave
algorithms are the same as [2]. Kinds of status is reduced
and a backbone tree is simplified on Z. -

3.6 U

We show the last architecture ¢4. On U, the same the-
oretical results on Z are obtained, e.g. the completion
time of operations and the size of backbone tree.

3.6.1 Structure

U follows the basic structure of Z, and attempt to re-
duce the number of clusters (i.e., the size of backbone
tree) by dividing member into two status.

In the structure, a set of heads is not independent set
of G and the backbone tree consists of only heads as well
as Z. We use memberl and member2 as status except
for heads.

Let CNety(G) and BTy(G) be CNet(G) and BT(G)
with architecture U, respectively.

3.6.2 Maintenance Algorithms

First we show the join algorithm for U.

We extract only a part relative to a determination of
status and merge operation in Procedure 8 and 9. By
replacing the name 7 with the name U, most part of the
other algorithm and procedure of U are the same as that
of Z.

Theorem 4. For disjoint graphs G1,G2,... and
CNety(G1), CNetu(Gz),..., when G is organized with
total 1-hop data, U-join can be done in O(q) ezpected

1: if there are heads in neighbors of new then
2: % Let h be a head with minimum ID in neighbors of

new;

3: new.stat := member2, new.prt := h, h.chd := h.chdU
{new}; '

4: else if there are memberls in neighbors of new then

5: % Let m) be a memberl with minimum ID in neighbors
of new;

6:  mew.stat := member2, m;.stat := head;

7. new.prt:=mj, my.chd := my.chdU {new};

8: else {only member2}

9: % Let m2 be a member2 with minimum ID in neighbors

of new;
10: mew.stat := memberl, ma.stat := head;
11:  new.prt := ma, ma.chd := ma.chdU {new};
12: end if

Procedure 9 U-merge
1: % Let 7 be the minimum rootID in neighbors of new;

2 % Let R = G[{v|v € CNetz with rootID r}U{new}U{vlv
has called Z-status}]; o

: % Let t be a node with a token in Eulerian;

: new call Y-status for CNety with rootID r;

: for each rootID i of new’s neighbors do

if there are heads with rootID i in neighbors of new

then

7 new sends DoJoin message to a neighboring head u

with rootID ¢ and minimum ID;
8: else if there are memberls with rootID i in neighbors
of new then

oG e W

9: new sends DoJoin message to a neighboring mem-
berl u with rootID i and minimum ID;

10:  else

11: new sends DoJoin message to a neighboring mem-
ber2 u with rootID ¢ and minimum ID;

12:  end if

13:  u call U-status for R;
14:  u calls Fulerian on the backbone with rootID i which
works as follows in each round:

15: t joins into R by U-status;

16: if ¢ becomes member then

17: t send message to its children, and they set their
status into member2;

18: deliver-member(t);

19: end if

20: Nodes in t.chd set their parent into ¢;

21: end for

rounds with no merge or in O(q+ max{|BT(G)| for each
CNet}) expected rounds with merge, and G’ is organized
with total 1-hop data; where q is the number of neighbors
of new in G'.

In the execution of U-join only the neighbors of new,
and neighbors of the neighbors of new in CNety(G) re-
ceive a message caused by join. Hence, join can be per-
formed locally in only 2-hop neighbors of new without
changing status of other nodes.

About our leave algorithm to maintain ¥, it is basi-
cally the same as Z-leave, where we consider memberl
and member2 as member and Z-join as U-join in Z-leave



algorithm. Only in the case that the leaving node lev is
a root or memberl, the algorithm differs slightly.

If lev is memberl, lev changes its status into head, and
performs Z-leave. Else if lev is a root, it searches a head
2-hop away. If such a head does not exist, it searches a
memberl 2-hop away, changes its status into head, and
performs Z-leave. Else it simply performs Z-leave.

Theorem 5. Let CNetu(G) be a cluster-based network
of G and T be the subtree of CNety(G) with the leaving
node lev as root. When G is organized with total 1-hop
data, U-leave can be done in O(|T|) rounds, and G’ is
organized with total 1-hop data.

3.6.3 Properties
U which is constructed above two operations has the
following property.

Lemma 12. The number of clusters is egual to
|BTu(G)|.

Lemma 13. Let G be a connected bidirectional graph
and pc be the cardinality of minimum clique partition of
G. |BTu(G)| is at most 2pc on U which is constructed
by U-join/leave.

Lemma 14. Let G = (V,E) be o unit disk graph,
and MDS(G) be the minimum dominating set of G.
|BTu(G)| is not larger than 10 x |MDS(G)|.

As well as Z, the properties shown in Lemmas 13, 14
are not derived from the definition of structure of U, but
derived from the maintenance algorithm.

T satisfy the same properties of M and Z about the
capability of merge / the completion time of broadcast /
the size of back bone tree. We more show the advantage
of the size of backbone tree on U by a simulation in the
next section.

4. Simulation

We compare the sizes of backbones for the four archi-
tectures and its maintenance algorithms by simulation.
The setting of the simulation is as follows: Each node
is treated as a point without volume; The field where
nodes are deployed is infinite plane; Nodes are added to
the field from initial state with one node until the number
of nodes reach n; Each node is setted randomly within a
range where existing nodes can tranmit.

Under above setting, we measure the size of backbone
within the limit of n = 1000,...,8000 by 1000 nodes
(Fig. 3). Each plot point represent a average value for
100 trials.

The size of backbone tree of U is less than that
of the other architectures within the limit of n =
1000, ...,8000, and it is expected that U is also supe-
rior to the others for n >> 8000 from Fig. 3.

We can consider that the size of backbone tree of Z is
slightly less than that of C and M for the reason that
the number of nodes which can exist as member increase
by constructing backbone tree with only heads, i.e. the
nodes that are able to have children. It is also considered
that U can greatly decrease the number of heads which
exist in a part of the outer of the region where nodes are
deployed actually owing to m;.

Comparison with the size of backbone(n=1000~ 8000)
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Fig. 3 Comparison with the size of backbone tree

5. Conclusions

In this paper we improve the architecture [2], and pro-
pose the architectures and the maintenance algorithms
which have better properties about the size of a back-
bone, expansions of tasks, and so on. Also we enable the
merge/separation operation which is taken no account of
in [2].
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