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abstract

For a graph G, a detachment operation at a vertex transforms the graph into a
new graph by splitting the vertex into several vertices in such a way that the original
graph can be obtained by contracting all the split vertices into a single vertex.
A graph obtained from a given graph G by applying detachment operations at
several vertices is called a detachment of graph G. We consider a detachment which
preserves the local-edge-connectivity of the given graph G. In this report, we present
necessary and sufficient conditions for a given graph/digraph to have an r-edge-
connected Eulerian detachment. We also discuss conditions for a graph/digraph to
admit a loopless r-edge-connected Eulerian detachment.

1 Introduction tices in V, changing end vertices of each edge

uv € E from u to some x € V,, (resp., from v
For an undirected graph G, a degree specifi- 1 some y € V,) so that d(z; G*) = p(z) holds
cation g = (V,p) consists of a family V = for each z € V*. This is a reverse operation
{Vo [ v € V} of disjoint new vertex sets each of contraction; G is obtained from G* by con-
of which corresponds to a vertex v € V and tracting each V, into a single vertex v. Degree
a function p : V* = UyevVy — N such that gpecification g is called even if p: V* — Neyen.
2 zev, P(%) = d(v;G) for each v € V, where Moreover if [Vo| =1 for v € V — s (ie, only
d(v; G) denotes the degree of a vertex vin G. ;¢ v g split into several vertices), g may be
A g-detachment G* of G is a graph obtained genoted by g(s).

from G by replacing each v € V with ver- Historically detachments are introduced by
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Nash-Williams [10]. He showed a necessary
and sufficient condition for the existence of
k-edge-connected g-detachments. This result
can be regarded as a generalization of the fa-
mous Euler's theorem, which shows the exis-
tence of Euler tours in Eulerian graphs; Eu-
ler’s theorem tells the existence of 2-edge-
connected g-detachments for Eulerian graphs,
where p(z) = 2 for all z € V*. A counterpart
of his result for digraphs was afterwards given
by Berg, Jackson and Jordén [1]. Fleiner [2]
showed a necessary and sufficient condition for
the existence of a g(s)-detachment that is k-
edge-connected in V—s. His result was general-
ized by Jorddn and Szigeti (7] for the existence
of g(s)-detachments that are r-edge-connected
in V —s, which is formally stated as follows.

Theorem 1 ([7]) Let G = (V, E) be an undi-
rected graph, s € V be a specified verter
to which no cut-edges are incident, and g(s)
be a degree specification consisting of V; and
p: Vo — N. There exists a g(s)-detachment
G* = (V*, E*) of G which is r-edge-connected
in V* =V, if and only if G is r-edge-connected
in V—s and Mu,v;G — s) > r(u,v) —
Yozev, Lo(®)/2] holds for every puir u,v €
V-—s. (B

Recently Nagamochi [9] considered the ex-
istence of loopless connected g-detachments
and applied it to the graph inference problem.

In spite of the above efforts, character-
izing conditions for the existence of r-edge-
connected g-detachments remains open. Our
main contribution is to present a necessary and
sufficient condition for the existence of r-edge-
connected g-detachments of undirected graphs
G and digraphs D with even degree specifica-
tions g. Trivially G and D must be Eulerian to
have such g-detachments. We also discuss con-
ditions for such detachments to have no loops.

This report is organized as follows. Sec-
tion 2 introduces notations. Sections 3 shows
new results on edge-splittings in Eulerian di-
graphs and undirected graphs. Section 4
considers conditions for the existence of g-
detachments for Eulerian digraphs and undi-

rected graphs with even degree specifications
g. Section 5 makes some concluding remarks.

2 Preliminaries

Let N (resp., Neven) denote the set of positive

integers, (resp., positive even integers). We
may represent a set {x} of a single element by
z.

We denote by G = (V,E) an undirected
graph with a vertex set V and an undirected
edge set E, where E may contain parallel edges
and loops. For a vertex v € V, we let N(v)
denote the set of neighbors of v. For nonempty
sets X, Y C V, ¢(X,Y;G) denotes the number
of edges in G such that one end vertex is in X
and the other is in Y. We may denote ¢(X,V—
X;G) by ¢(X;G). Note that ¢(v,v; G) means
the number of loops incident to v. The degree
d(v;G) of a vertex v is defined by d(v;G) =
2¢(v,v;G) + (v, V—v;G).

Analogously to undirected graphs, we de-
note by D = (V, A) a digraph of a vertex set
V and an arc set A, where A also may contain
paralle! arcs and loops. For a vertex v € V, let
N1 (v) (resp., N~(v)) denote the set of heads
(resp., tails) of arcs leaving (resp., entering) v.
Let ¢(X,Y'; D) denote the number of arcs in D
whose tail is in X and head is in Y. In addi-
tion, we let ¢t (X; D) = (X, V —-X; D) (ie.,
the number of arcs leaving X) and ¢~ (X; D) =
¢(V-X, X; D) (i-e., the number of arcs enter-
ing X) for each nonempty subset X C V. Note
that ¢(v, v; D) means the number of loops inci-
dent to v. We define the in- and out-degree of a
vertex v by dt(v; D) = ¢(v, V-v; D)+c(v,v; D)
and d~(v; D) = ¢(V —v,v; D) + c(v,v; D), re-
spectively. In this report, we mainly deal with
Eulerian digraphs D, i.e., d*(v; D) = d~(v; D)
for all v € V, where ¢t (X;D) = ¢ (X;D)
holds for all nonempty subsets X C V, and we
may denote c*(X; D) by ¢(X; D) for short.

Let G — v (resp., D — v) denote the graph
(resp., digraph) obtained from G (resp., D) by
removing a vertex v and all edges (resp., arcs)
incident to v.

The local-edge-connectivity A(u,v; G) be-



tween vertices u and v in G is defined to be the
maximum number of edge-disjoint paths be-
tween u and v, which is equal to min{¢(X; G) |
X c Viu € X,v € V~X} by Menger's
theorem. In a digraph D, the local-edge-
connectivity A(y, v; D) from u to v is defined as
the maximum number of arc-disjoint di-paths
from u to v, which equals to min{c*(X;G) |
X c Vu € X,v € V-X}. Note that
Mu,v; D) = Aw,u; D) holds if D is Eulerian.
For a function r : (%) — N (resp., VxV — N),
we similarly say that G (resp., D) is r-edge-
connected in X C V if Mu,v;G) > r(u,v)
(resp., A(u,v; D) 2 r(u,v)) for all u,v € X.
If X =V, G (or D) is simply called r-edge-
connected. Moreover, for an integer k € N,
k-edge-connectivity means r-edge-connectivity
with r: (§) — {k}.

For a digraph D, a degree specification
g= (V,pt,p7) consists of V = {V, | v € V}
and p*,p” : V* = UpevVy — N such that
Yrev, pT(x) = dt(v; D) and ¥y, p(2) =
d~(v; D). A g-detachment D* of D is a di-
graph obtained from D by replacing each v €
V with vertices in V,, changing end vertices of
each arc uv € A from u to some z € V,, (resp.,
from v to some y € V,) so that d*(2;G*) =
pt(2) and d~(2;G*) = p~(z) hold for each
z € V*. Degree specification g is called even if
p¥(x) = p~(2) for all 2 € V*, and we may de-
note p* and p~ by p in this case. Analogously
to undirected graphs, we represent g by g(s) if
Vol =1forveV —s.

Our main tool is edge-splitting. For an
undirected graph G = (V, E) and a vertex s €
V, splitting a pair {e = us, f = sv} of edges
incident to s is an operation that replaces e
and f by a new edge uv. We note that e and
f are possibly self-loops incident to s. Let G&f
denote the graph after splitting {e, f}. The
edge-connectivity in G¢/ is equal to or smaller
than that in G. Pair {e = us, f = sv} is called
splittable if A(u,v;G¢f) > A(u,v;G) for any
u,v € V—s. In digraphs, the splittability of a
pair of two arcs, one leaving s and the other
entering s is defined analogously to undirected
graphs. Edge-splitting is closely related to de-

tachments since splitting {us, sv} is equivalent
to a g(s)-detachment with g(s) = {{s, s'}, o},
p(s) = d(s;G)—2 and p(s’) = 2 if we subdivide
the split edge uv into us’ and s'v.

The following condition for graphs to have
splittable pairs is characterized by Mader (8]
to answer an earlier conjecture by Lovdsz.

Theorem 2 ([8]) Let G = (V, E) be an undi-
rected connected graph and s € V be a vertez
with d(s) # 3. If no cut-edge is incident to
s, then there is at least one splittable pair of
edges incident to s. O

A simple proof of this theorem by Frank
can be found in [4]. Frank [3] and Jackson (6]
obtained a counterpart of this theorem in Eu-
lerian digraphs. .

In the following sections, we use a slightly
stronger result, which we call strong splitta-
bility, in order to derive a characterization
for graphs/digraphs to admit Eulerian r-edge-
connected g-detachments. Let us first consider
an undirected graph G = (V, E) and a vertex
seV. Let rg(z,y) = Mz, y;G) ifz,ye V—s
and rg(z,y) = min{d(s;G) — 2, M(z,y;G)} if
s € {z,y}. Obviously G is rg-edge-connected.
We call a pair {e, f} of edges incident to s
strongly splittable at s if G¢f is also rg-edge-
connected, i.e., splitting such a pair preserves
the local-edge-connectivity between every two
x,y € V—s and that between s and the others
up to d(s; G) — 2. Obviously a strongly split-
table pair is also splittable.

The condition for a graph to have s
strongly splittable pair was presented by Fuku-
naga and Nagamochi [5] as follows.

Theorem 3 ([5]) Let G = (V, E) be an undi-
rected graph and s be a vertexr in V. If no
cut-edge is incident to s and d(s;G) # 3, then
there is a strongly splittable pair at s. O

We here review the following result on
splittable pairs due to Frank [4].

Theorem 4 ([4]) Let G = (V, E) be an undi-
rected graph and s be a vertezx in V. If no



cut-edge is incident to s and d(s;G) is even,
then edges incident to s can be partitioned into
d(s; G)/2 disjoint splittable pairs. |

Figure 1: A graph that has no strongly split-
table pair at s containing edge st

This implies that there is a splittable pair
containing an arbitrary edge incident to s. It
is a natural question to ask whether there is
a strongly splittable pair containing a speci-
fied edge if no cut-edge is incident to s and
d(s;G) is even. Unfortunately there exists a
counterexample to this, as shown in Figure 1.
However, in Lhis report, we prove that the an-
swer to the question is affirmative for Eulerian
undirected graphs and digraphs in Section 3.

3 Strongly Splittable Pair

We now consider edge-splitting in digraphs.
Let D = (V,A) be a digraph and s € V be
a specified vertex. Strong splittability for di-
graph D is defined in the same way with undi-
rected graphs except for that rg is replaced
by function rp, where rp(z,y) = Az,y; D)
if 2,y € V—s, rp(z,y) = min{d*(s; D) —
1, /\(93,1/; D)} if = s and TD(.’E,’y) =
min{d~(s; D) — 1, A(z,y; D)} if y = s. That
is to say, splitting a strongly splittable pair
preserves the local-edge-connectivity from ¢ to
the other vertices up to d*(s; D) —1, and from
the other vertices to s up to d=(s; D) — 1, in
addition to that between every two vertices in
V —s. Note that D is rp-edge-connected.

In the rest of this report, we assume that
D is Eulerian. In this section, we also assume
that D has no loop incident to a designated

vertex s as we easily see that any pair contain-
ing a loop is strongly splittable.

Hence rp(z,y) = rp(y,z) holds for every
z,y € V. It was proven by Frank (3] and Jack-
son [6] that there exists a splittable pair for
Eulerian digraphs, although there are no re-
sults for any other classes of digraphs.

For a nonempty set X C V—s, let R(X) =
maxzex,yev-x rp(2,y) and h(X) = ¢(X; D) -
R(X). Since D is rp-edge-connected, it holds
¢(X; D) > R(X) for all nonempty and proper
subsets X of V, and hence A(X) > 0, § #
X C V. A subset X of vertices is called
tight if A(X) = 0and @ # X C V—s (note
that no tight subset X contains s). Tight
sets play an important role for the existence
of strongly splittable pairs (We leave the proof
to the reader).

Lemma 1 A pair {us,sv} of arcs in an Eule-
rian digraph D is strongly splittable if and only
if no tight set contains both of u and v. O

Lemma 1 deals with Eulerian digraphs
because we consider only those in this re-
port. However, we remark that the state-
ment remains valid for any digraphs if a tight
set is redefined as a vertex set X C V —s
with AH(X) = 0 or A~ (X) = 0, where
h*(X) = maxzexyev—x rp(a,y) — ¢t (X; D)
and h~(X) = maxevxyexrp(z,y) —
c (X; D).

We observe the following property of i (the
proof appears in [4] although the definition of
R is slightly different).

Proposition 1 For any X,Y C V—s, it holds
either

2h(X) +2h(Y) > 2(X NY) +2R(X UY)
+e(X-Y,Y—X; D)+c(Y - X, X—-Y; D)
(1)

or
2h(X) + 2h(Y) > 2h(X - ¥) + 2h(Y — X)
+e(XNY, V—XUY; D)+c(V-XUY, X(Y; D).
(2)
a



From the above facts, we have the next re-
sult on the existence of strongly splittable pairs
in Eulerian digraphs, corresponding to Theo-
rem 4.

Theorem 5 For an Eulerian digraph D =
(V,A), a vertez s € V and an arc e enter-
ing (resp., leaving) s, there is another arc f
leaving s (resp., entering s) such that {e, f} is
a strongly splittable pair at s.

Proof: Let e = us (i.e,, an arc from u to s)
without loss of generality. Suppose that there
is no strongly splittable pair at s containing e.
By Lemma 1, there is a tight set X, for each
v € N1t(s) which contains both u and v,

Let v,w € N*(s). Then it holds ¢(X, N
X,V = (Xy UXy); D) > d(u,s;D) > 1. We
see that (2) does not hold for X, and X,,, since
otherwise we would have

0+0

h(Xo) + h(Xy)

B(Xy — Xu) + B(Xw — Xo)
+e(Xy N X, V — (Xo U Xy); D)
+e(V —(Xy U Xu), Xo N Xo; D)

> 04+0+1+0,

v

a contradiction. Therefore by Proposition 1,
(1) holds as follows;

040 > A(Xy)+ h(Xu)
> h(XyUXy) +h(Xy N X)
+e(Xy — Xuy Xu — Xo)

(X — Xy, Xo — Xu),

which implies that X, U X, is a tight set in
D. From this, we can see that a maximal
tight set X contains N*(s) U {u} and satis-
fies ¢(X; D) 2 ¢(s; D).

‘Let R(X) = rp(z,y), where z € X and
yeV-X. If y=s, it holds

c(X; D) > c(s; D) = d(s; D) > rp(z,s) +1
=rp(z,¥) +1=R(X) + 1.

This implies h(X) > 1, contradicting tight-
ness of X. Otherwise (i.e.,, ¥ # s), it holds

Mz, y; D) = Mz,y; D—s) by Nt(s) C X. We
also have A(z,y; D — s} < ¢(X; D) — ¢(s; D).
Hence,

R(X) = rp(z,y) = Mz, y; D)
< e(X;D) —c(s; D) L e(X; D) -1,

which implies that h(X) > 1, a contradiction
again. 0

We use the following property in Section 4.

Theorem 6 For an Eulerian digraph D, a
strongly splittable pair {e = us, f = sv} can be
chosen so that u # v unless I[Nt (s)UN—(s)| =
1.

Proof: By Theorem 5, D has a strongly split-
table pair. If such a pair consists of arcs us
and su, then there is no tight set containing u
by Lemma 1. Since |[NT(s)UN—(s)| # 1, there
is a vertex v # u such that v € Nt (s)UN~(s).
Assume v € N*(s) without loss of generality.
Then {us, sv} is strongly splittable in D. 0O

From Theorems 5 and 6, we can easily ob-
tain a counterpart for undirected graphs as fol-
lows (We leave the proof to the reader).

Theorem 7 Let G = (V,E) be an Eulerian
undirected graph and s be a specified vertez in
V. For each edge ¢ = us € F, there is an
edge f = vs incident to s such that {e, f} is a
strongly splittable pair. a

Theorem 8 For an Eulerian undirected graph
G, a strongly splittable pair {e = us, f = sv}
can be chosen so that u # v unless [N(s)] = 1.
[

4 Eulerian Detachments

In this section, we consider Eulerian digraphs
D which may have loops, and show that there
exists a g-detachment of D for any even degree
specification g.

For a digraph D = (V, A) and a degree
specification g (possibly not even), let

rg(z,y) = min{p* (x), o~ (¥), M, v; D)}



ifz € V, and y € V, for some u,v € V,
where we define A(u,v; D) = o0 if u = v.
Note that it holds A(z,y; D*) < rg(z,y) for
any g-detachments D* and z,y € V*. We call
a g-detachment D* of D admissible if D~ is
ro-edge-connected, ie., A(z,y; D*) > ro(2,y)
for all z,y € V*. This means that admis-
sible g-detachments preserve the local-edge-
connectivity as much as possible. The ad-
missibility is defined also for g(s)-detachments
since g(s)-detachments form a subclass of g-
detachments. By proving the existence of ad-
missible g-detachments for even degree speci-
fication g, we show a necessary and sufficient
condition for a digraph to have an r-edge-
connected g-detachment.

Lemma 2 Let D = (V, A) be an Eulerian di-
graph_and g be an even degree specification
consisting of {Vo | v € V} and p : V* =
Upev Vo — N. Then there ezxists an admissi-
ble g-detachment of D.

Proof: In the following, we show how to con-
struct an admissible g-detachment for an arbi-
trary g. For this, it suffices to consider con-
structing an admissible g{s)-detachment for
s € V since splitting all vertices v € V into
Ve preserving admissibility finally gives an ad-
missible g-detachment of G.

Suppose that Vi = {s1,...,8,} and that
we have already obtained an admissible de-
tachment D; = {VU{s1,...,8:}, A;} of D such
that

d(z; D)
p(s5)
Yiei1 P(s) ifz=s.

ifreV—s,

Note that it holds A(z,y; D;) = re(z,y) if
{x,y} cVvu {51,-'-,31‘.} -8 )‘(may;Di) =
min{d(s; Di), \(z,3; D)} if s € {z,y} C
V, and Xz,y; D:) = min{d(s; D:), p(s;)} if
{z,y} = {s;s5}h, 1 < <4, by admis-
sibility. In the below, we show how to
construct an admissible detachment D;y; =
{VuU{sy,...,Si41},Ait1} from D; such that
d(sj; Diy1) = p(s;) for j = 1,...,i+ 1 and

d(s; Div1) = 3 j-it2p(sj). This inductively
proves the lemma since Dy, — s is an admissible
g(s)-detachment of D (notice that d(s; Dp) =
0).

First, prepare D = (VU{s1,..., 81}, AU
A from D; by adding a new vertex 8iy1
and an arc set A’ consisting of p(si+1) arcs
s8i41 and p(si41) arcs siy1S. Then it holds
diz;D') = d(z; D) = d(z,D) ifz € V —
s, dlz; D) = d(s;; D) = p(s;) if 2 = s
with 1 < § < 4, dlz;D) = p(sip1) if
z = Sip1, dlx; D) = d(s; D;) + p(sit1) =
20(si41) + iy p(s;) if £ = s, More-
over, AMz,y; D) = Ma,y;D;) is obvious if
siv1 € {z,y}. If sip1 € {z,y}, it holds
/\(.’L‘,y;D') = min{p(s;“),/\(s,z;D,-)}, where
z = {z,y} — siy1 and A(s,s;D;)) = Hoo.
Hence for such {z,y} (ie., siy1 € {z,¥}), it
holds Mz,y; DY) = min{p(si41), A(s,2; D)} =
ro(siv1,2) If {9} —sip1 = z € V -
8, Mz, y;:D') = min{p(sit1),p(s5)} =
79(85, i+1) if {2y} = {85,801} with 1 <j <
i, Mz, ;D) = min{p(si+1), +oo} = p(si41)
if {z,y} = {s, 8i+1}, where we used p(siy1) <
d(s; D;) here. For each new arc ss;;1, there
is an arc zs such that {ss;41,2s} is strongly
splittable and z # si41 by Theorems 5 and 6,
while z is possibly s if exists. Splitting such
a pair decreases the in- and out-degree of s
by 1 respectively while preserving the local-
edge-connectivity between any pair of vertices
in VU{s1,..., 8i+1}—s, and between s and the
other vertices up to degree of s after splitting.
Analogously for each new arc s; 115, there is an
arc sz such that {s;+s,sz} is strongly split-
table and z # s;31. Let D;;y be the graph
obtained by splitting such pairs successively.
Then D;y; is a detachment of D. Moreover
it holds d(z; D;y1) = d(z;D') = d(z,D) if
x €V —s, d@; D) = d(sj; D) = p(s;)
ifz=s; withl <j<i+1,d®Diyy) =
d(s;D') — 2p(siy1) = Yiiipep(s;) if
z = S Furthermore, it also hold
@95 Dig1) = Az, y; D) if s & {w,y}, and
Mz, y; Di1) = min{d(s; Dit1), Mz, 5 D)}
otherwise.  This means A(z,y;Diy1) =
re(z,y) if {z,y} C VU {s1,...,811} — &,



A®@,¥; Dit1) = min{d(s; Diy1), Az, y; D)} if
s € {z,y} and {z,y} SV, A=,y Dit1) =
min{d(s; Di+1), p(s5)} if {2,9} = {s, '9.1'} with
1<j<i+1 Hence D;y; is admissible, as
required. 0O

If an original digraph has some loops, its
detachments may have loops as well. As men-
tioned in Section 1, Nagamochi [9] showed a
sufficient condition for an undirected graph
to have a loopless connected g-detachment.
Moreover we can see that there exists loopless
k-edge-connected g-detachments if k is even
and g satisfies a simple necessary condition
by considering the proof of the theorem by
Nash-Williams [10] (although we will not state
the detail here). In the following, we extend
our result in the above to loopless Eulerian g-
detachments.

Lemma 3 Let D = (V, A) be an Eulerian di-
graph and g be an even degree specification
consisting of {V, | v € V} and p : V* =
UyevVe — N. Then D has a loopless ad-
missible g-detachment if and only if 2p(x) <
e(v,v; D) + 2¢(v,V —v; D) for allv € V and
z e V.

Proof: First, we show necessity. Let us sup-
pose that there exists a loopless admissible g-
detachment D* of D. Consider a new ver-
tex ¢ € V, for a vertex v € V. Trivially it
hold ¢z, V* — V,; D*) < e(v,V — v; D) and
(V* =V, z; D*) < ¢(V —v,v; D). Since every
arc between x and V,, — z in D* is originally a
loop in D incident to v, it holds ¢(z, V,; D*) +
e(Vo,2;D%) < c(v,v; D). By ct(z;D*) =
c(z, Vo; D*)+e(x, V*—V,; D*) and ¢~ (z; D*) =
Vo, z; D*) + (V* — V,, z; D*), it holds

2p(z) = ct(z;D*) +c (z;D%)

c(z, Vo; D*) + c(z, V* — Vy; DY)
+e(Vy, 23 D*) + c(V* =V, 2; D*)
< e(v,v; D) + 2¢(v,V — v; D),

implying the necessity.

In the next, we show sufficiency. We
consider constructing an admissible g(s)-
detachment of D. We have already shown that

this can be done by an operation described in
the proof of Lemma 2. Let us consider this
again. If some loops are incident to s in D' =
(VU{s1,...,si, Sit1}, AiUA'), pairs {ss, $8i41}
and {ss, s;+18} are strongly splittable because
splitting such a pair is equivalent to deleting
one loop incident to s. At splitting on s in
order to obtain D;4;, we first continue choos-
ing one of such pairs as long as some loops are
incident to s. Then, no loops incident to s
remain in D,_; (and hence in D,,) by the fol-
lowing reason; It holds 37, p(s:) = d(s; D) =
¢(s,8; D) + ¢(s,V — s; D) by the hypothesis.
Since 2p(sp) < c(s,8;D) + 2¢(s,V — s;D),
it holds 377 2p(s;) > c(s,s; D), which im-
plies the above claim. If no loops are in-
cident to s, we choose other strongly split-
table pairs {zs, ssi11} or {sz, si+15} such that
2 # 8;41. This operation generates no loop ob-
viously. Hence we can construct an admissible
g(s)-detachment such that no loop is incident
to a vertex in V;, and therefore a loopless g-
detachment. d

Theorem 9 Let D = (V, A) be an Fulerian
digraph and g be an even degree specification
consisting of {V, | v € V} and p : V* =
UvevVe — N. Then there exists an r-edge-
connected g-detachment of D if and only if
Au,v; D) 2 r(z,y) forallz € V,, and y € V,
with v # v and p(z) 2 r(z,y) for all x € V*
and y € V* — . Such a g-detachment can be
constructed without generating any loop if and
only if 2p(z) < c(v,v; D) + 2¢(v,V —v; D) for
alveV andz e€V,.

Proof: First, let us consider the former part.
Necessity is obvious. We can also derive
the sufficiency from Lemma 2 since admis-
sible detachments are r-edge-connected, i.e.,
ro(2,y) = 7(z,y) for all 7,y € V* = Upev V4,
if A(y,v;D) > r(z,y) forz € V, and y € V,
with u # v and p(z) > r(z,y) for 2 € V* and
yev*—z

Next, we consider the latter part. Ne-
cessity is proven as in the same way with



Lemma 3. Sufficiency is derived from the
existence of loopless admissible detachments,
proven in Lemma 3. O

For an undirected graph G = (V, E), we
can derive a counterpart from Theorem 9 al-
though we leave the proof to the readers.

Theorem 10 Let G = (V,E) be an Eule-
rian undirected graph and g be an even degree
specification consisting of {V, | v € V} and
p:V* =UyevVy = Neven. Then there exists
an r-edge-connected g-detachment of G if and
only if Mu,v;G) = r(z,y) for all z € V,, and
y € V, with u # v and p(x) = r(z,y) for all
z€V* andy € V* —x. Such a g-detachment
can be constructed without generating any loop
if and only if p(z) < c(v,v;G) + c(v,V —v; G)
foradlveV and x € V.

5 Concluding remarks

We have proved the existence of strongly split-
table pairs in Eulerian digraphs and undi-
rected graphs. Based on this result, we have
derived necessary and sufficient conditions for
Eulerian digraphs and undirected graphs to
admit r-edge-connected g-detachments. We
have also presented necessary and sufficient
conditions for such g-detachments to be loop-
less. Nevertheless, it remains open to char-
acterize conditions for general graphs to have
r-edge-connected g-detachments.
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