FEFEN SR
IPSJ SIG Technical Report

W

2007—AL—110
200771723

HEY 2 THREECHESEBLRIEOEMREIC T S
Lovész k3R & / ¥ A Lv— Aigid b F1 7% O - 3h R 0 i

Fabian A. Chudak
ETH Zurich
chudak@ifor.math.ethz.ch

KEF HC
sy e

kiychito nagano@mist.i.u-tokyo.ac.jp

Bz
ARRTREEV 2 TR/ O LT 4+ ZECHAERBCBEERS. $EYV 28RO Lovasz HE5EE H
WA T & THFICHREBRMMEME S NS, BLRENSEIELIMICH DIC, Nesterov L& DESZ bh
ey NI v AL— AL FEE O FEERRT 5.

Efficient solutions to relaxations of combinatorial problems with submodular
penalties via the Lovéasz extension and non-smooth convex optimization

Fabian A. Chudak
ETH Zurich

Kiyohito Nagano
University of Tokyo

Abstract

We consider convex relaxations for combinatorial optimization problems with submodular penalties.

The

relaxations are obtained very naturally through a novel use of the Lovész extension of a submodular function.
We also propose the use of simple and recent algorithms for non-smooth convex optimization due to Nesterov

to approximately solve them.

1 Introduction

The purpose of this paper is twofold. On one hand,
we introduce the use of the Lovész extension [14] to re-
lax submodularity constraints. On the other hand, we
show how the recent nonlinear programming results of
Nesterov [15, 16, 18, 19] on minimization of non-smooth
convex functions can be used to design fast approxima-
tion schemes for complex convex relaxations of combi-
natorial optimization problems.

In [14] Lovész made a simple and clever connection
between convex optimization and submodular function
minimization. More precisely, he showed how to extend
a submodular set function defined on the subsets of a
ground set V, |V| n, to a convex function defined
on R™. This convex function is the maximum of linear
functions defined over the quite non-trivial base poly-
tope of the submodular function; nevertheless, its eval-
uation at any z € R™ can be computed very efficiently
using what is called the greedy algorithm. Because of
its simple structure, this same procedure provides a sub-
gradient and, hence, it can be used for minimizing the
extended function using the ellipsoid algorithm. These
observations were at the core of the first polynomial
(and strongly polynomial) time algorithms for submod-
ular function minimization (see {8]). Combinatorial al-
gorithms (which in particular do not use the ellipsoid
algorithm) for submodular function minimization were
discovered later [12, 21].

Motivated by the stark contrast between the algorith-
mic solutions to single-commodity and multicommodity
flow problems, a great deal of research has been devoted
to finding approximation schemes for specially struc-
tured linear programs (see [1]). On the one hand, these
algorithms are inspired by and possess a combinatorial
structure. On the other hand, these algorithms usually
can also be interpreted as subgradient algorithms for
certain nonlinear non-smooth Lagrangian relaxation. In
fact, it seems that this latter way of thinking provides a
greater variety of applications and allows also the treat-
ment of more general convex problems. We adopt this
approach in this paper.

Subgradient algorithms run in ©(%) iterations (see,
e.g., [20]) where € > 0 is the desired absolute accu-
racy, though it must be stressed that they are not nec-
essarily polynomial on other parameters of the problem.
These algorithms compute projections only on the pri-
mal space. In standard form (e.g., [20]) the run time
depends on the size of the subgradients. However, it
was shown in [19, 17} that this quantity can be replaced
by a bound on the variation of the subgradients, which,
in particular, allows one to ignore linear terms. If, in ad-
dition to primal projections, dual projections can also
be computed efficiently, the substantially stronger de-
pendence on ¢ of O(1) iterations can be achieved (see
[15, 16]). This is accomplished by making the objective
function differentiable and applying very fast methods
for smooth convex optimization (thus we refer to it as in

(10)

[15] as smooth minimization of non-smooth functions).
As remarked before, in this case also the dependence on
other parameters of the problem is typically not poly-
nomial.

In this paper we consider a generalization of the unca-
pacitated facility location problem (UFL). In the stan-
dard variant of UFL, we have a set of clients and a set of
sites in which we may open facilities and the goal is to
minimize the facility opening costs plus the assignment
costs of all the clients to the open facilities (see [24] for
a survey). Here we study the variant of UFL that has
submodular penalties (FLwP). In this problem not all
clients need to necessarily be serviced, instead there is
a monotone submodular function that penalizes the set
of unserviced clients. This problem was introduced by
Hayrapetyan, Swamy and Tardos [9] which, in turn, gen-
eralized the work of Charikar et al [4] who considered a
linear penalty function. They proposed a 1+ a approx-
imation algorithm for the case on which the assignment
costs are a metric, where « is the approximation factor
of an LP-based approximation algorithm for the corre-
sponding metric case of UFL. Their algorithm uses the
ellipsoid algorithm to solve a linear programming relax-
ation of FLwP. In this paper, we consider an equivalent
relaxation for the problem. In contrast with [9] we ar-
rive to a compact convex formulation of the relaxation
fairly naturally using the Lovdsz extension. Further-
more we propose more efficient algorithms to solve it
using the algorithms for non-smooth convex optimiza-
tion mentioned above. Using the rounding algorithm
of [9], we obtain efficient (1 + €)(1 + «) approximation
algorithms for FLwP.

We point out that our reformulation of FLwP is non-
trivial and that, even though we are using convex op-
timization algorithms and some of its terminology, the
algorithms themselves are very simple (and even have
a somewhat combinatorial flavor, see [3]). To trans-
form these non-polynomial algorithms into a FPTAS
we prove a characterization of optimal solutions to the
relaxation using elementary properties of submodular
functions and the Lovédsz extension. We then combine
this characterization with binary search as in [3] (see
also [1, 2, 25]). Thus we obtain O(%) and O(%) FP-
TAS for the problem. The O(%) algorithms are very
simple and can be applied to any submodular function
h. The O(%) algorithms could also be applied to any
h, though the dual projections need a number of calls
to a generic submodular function minimization routine,
hence affecting the practicality of such algorithms. How-
ever, for important special cases, these dual projections
can be computed efficiently, thus providing very fast and
practical algorithms. The use of smooth minimization of
non-smooth functions to design FPTAS was introduced
by Bienstock & Iyengar (2} and later more in the flavor of
this paper by Chudak & Eleuterio [3]. To the best of our
knowledge the use of subgradient optimization results of
the type [19, 20] seems to be new. As a by-product of
our methods we obtain a very simple pseudo-polynomial
time algorithm for integer-valued submodular function
minimization, which, in contrast with the algorithms of

[5, 12, 21], does not need to keep track of extreme bases.

We also consider a set covering problem with submod-
ular costs, also introduced in [9] which is a quite general
problem. It generalizes the set covering problem, FLwP
and facility location problems involving set-based facil-
ity costs [22, 23]. For the relaxation of this problem
using the Lovasz extension, we show that the integral-
ity gap is best possible and design efficient FPTAS by
extending the subgradient and the smooth minimization
methods.

2 Preliminaries

2.1 The Lovész extension of a submod-
ular function.

We briefly review known facts about submodular func-
tions (see, e.g., [7]) that we will need later. Let V be a
finite set with |V} = n. A set function p : 2V — R is
submodular if p(X U {v}) — p(X) > p(Y U {v}) — p(Y)
for each X CY C V and v € V\ Y. The interpretation
of this definition is that submodular functions naturally
model economies of scale. Furthermore p is monotone if
p(X) < p(Y) for each X CY C V. In the following, we
assume that p is a submodular function with p(@) = 0.
The base polytope of p, B{p), is defined by B(p) = {z €
R | Syex @ < p(X) (VX C V), Doey 20 = o(V)}.
The set B(p) is nonempty and bounded. Furthermore,
p is monotone if and only if B(p) C R%}. All the ver-
tices of the base polytope, the extreme bases, can be
obtained as follows. Let L = (vi, ..., v,) be a linear
ordering of V. Define L(vg) = {v1,v2,... , vx} for each
k=1,...,n. Then, the vector b = (by)yerv € R™ de-
fined by b, = p(L(v)) — p(L(v) \ {v}) (for each v € V)
is an extreme base of B(p). In this case we will say that
b is the extreme base generated by L.

The the Lovész extension [14] of a submodular set
function p with p(@) = 0 is a function p: R? — R with
the property that for each subset X C V, p(Ix) = p(X),
where Ix € R is the indicator function of set X (i.e.,
2y = 1if v € X and 0 otherwise). For z = (2y)yev €
R?%, p(z) is given by the value of the following LP

(1) p(z) = max . z,b, s.t. be B(p).

veV

Note that the number of constraints of this LP is expo-
nential. Nevertheless, its value can be easily computed.
If L = (v1,...,vs) is a linear ordering compatible with
z, that is, 2y, > -+ > 2,,, then the extreme base gener-
ated by L is an optimal solution of (1). This procedure is
known as the greedy algorithm and takes O(nlogn+ny)
time where <y denotes the time of one function evalua-
tion. For b € B(p) and X C V, X is b-tight with respect
to p if 3 ,cx by = p(X). Note that if b is an extreme
base generated by linear ordering L, L(v) C V is b-tight
for each v € V. As we introduced it, clearly the func-
tion p is convex (as the max of linear functions) and
positively homogeneous. In addition, if p is monotone,
p is also monotone in R7.

77‘7

Let z be an arbitrary vector in R%, L = (vy, ..., vn)
a linear ordering of V' compatible with 2z and b € B(p)
be an extreme base generated by L. Then from above,
the value of the Lovész extension p(z) is equal to p(z) =
2un (L)) + S0 2, — 2,)p(L(w3)). In addition,
the following representation will also be useful. Let p; >
-++ > pq be the positive distinct values of z and pg41 =
0. For 1 < a < d, define A, = pg — pay1 and Xo = {v €
V| 2y > pa}. Then, we have that the sets X, are d-tight

and p(z) = Le_; Aa p(Xa).

2.2 Non-smooth convex optimization.

In this section we review basic and simple algorithms
for minimizing a convex function over a convex set. The
exposition covers recent results of Nesterov [15, 16, 18,
19]. Suppose that Q1 C R™, Q2 C R™ are bounded,
closed and convex sets and A € R™*" cc R and a €
R™. Consider the pair of convex and concave functions
respectively (z € R*,u € R™)

f(z) = maxyeq.{c'z + (Az,u) + a’u} and
#(u) = min zeq, {c'z + (Az,u) + alu},

where (A, u) = (Az)'u. Note that f(z) > ¢(u) (weak-
duality) for any € Q1, u € Q2. In fact, it is a simple
exercise of convex analysis to show that mingeq, f(z) =
maxyeq, $(u). Next we review general algorithms from
convex optimization to approximately solve this min-
max problem.

(2)

2.2.1 Subgradient algorithms.

We assume that the primal space R™ is endowed with a
given norm ||.||. The linear-algebra dual norm is given
by [|s||* = max{{s,z) : ||z|]| = 1}, for s € R™ as usu-
ally. Furthermore we have a strongly convex function
d: Q; ~— R* (called prox-function), with strong con-
vexity parameter o. If o, € Q1 is the minimizer of d, we
also assume that d(x,) = 0, so that d(x) > §||z — z.||.
Next, note that in our case, for a given T € @1, a sub-
gradient of f at Z is any vector of the form ¢ + AT,
where T € R™ is an optimal solution of the max prob-
lem defining f(Z). For T € Q; we use f(T) to denote
the set of subgradients of f at Z. Let D = max,¢q, d(z).
Suppose that for M > 0 the variation of subgradients
is bounded by M (ie., ||G(z) — GW)||* < M for all
T,y € @1, G(z) € 0f(z),G(y) € f(y))-

Theorem 2.1 ([18, 19]) There is an algorithm that
after k iterations finds Ty, € Q1 and Uy, € Qo satisfying
f(@) — d(ur) < % 8D At each iteration, we need to
compute a subgradient of f at some x € Q1 and solve

a subproblem of the form min{p "z +d(z) |z € Q; } for
some p € R".

Notice that M and D are not necessarily polynomial
in general. Furthermore to run a subgradient algorithm
we must be able to efficiently. compute subgradients and
solve the projections min{p' z+d(z) |z € Q; }. fe >0
is the desired absolute accuracy, these algorithms run in
O(1/€?) iterations.

2.2.2 Smooth minimization of non-smooth
functions.

Substantially stronger convergence results can be ob-
tained if we also assume that we can compute projec-
tions on the space Q2. First, to ease the notation, we
use subindex 1 for the norm and prox-function in the
z-space, so that ||.|, d, o and D become, respectively,
II.l@, d1, o1 and D;. Similarly as in the z-space, in the
u-space we fix a norm and a strongly convex function,
and define the objects ||.||@, d2, %o, o2 and D, respec-
tively. The norm of A as a bilinear operator is defined
as usual: [[4] = max{(Az, v) | |zl = 1, fule = 1}.

Theorem 2.2 ([15, 16]) There is an algorithm that
after k iterations finds T, € Q1 and U € Q2 satisfying

F(@x)—o(te) < i’cﬂﬁﬂ %%. At each iteration, we have

to find the exact solutions of three problems of the form
min{p'z +di(z) |z € Q1} or min{q u+ dz(u)|u €
Q2} for some p € R™, ¢ € R™ and perform a matriz-
vector multiplication (either Az or Atu).

As remarked for the subgradient algorithm, the algo-
rithm of the theorem is generally not polynomial (all
of ||A}}, D1, D2 need not be polynomial). Now if € > 0
is the desired absolute accuracy, the algorithm of the
theorem runs in O(1/e) iterations.

3 Uncapacitated facility location
with submodular penalties

The uncapacitated facility location problem with sub-
modular penalties (FLwP) can be described as follows.
We are given a set of potential facility sites F with
|F| = m, and a set of clients D with |D| = n. If we open
a facility at site ¢ € F, we incur an opening cost f; > 0,
and it can provide service to any number of clients. Each
client may be serviced by an open facility. If client j € D
is serviced by an open facility at location i € F, the cost
is ¢;;. If X is the set of clients that are not serviced by
any facility, there is a submodular penalty cost of h(X),
where h : 2P — R is a monotone submodular function
with h(@) = 0 and W := h(D) > 0. Let v denote the
time for one evaluation of h. For simplicity, we assume
that v is at least linear in logn. The objective is to
determine which facilities to open and which clients to
service so as to minimize the total cost.

3.1 A convex relaxation.

Hayrapetyan etal. [9] gave a linear programming relax-
ation for FLwP that has exponentially many variables
and argued that it can be solved with the ellipsoid algo-
rithm. In this section, we introduce the same relaxation
somewhat more naturally using the Lovéasz extension of
h. We use variable y; to indicate whether we open a
facility at location i € F; variable z;; indicates whether
client j is assigned to an open facility at location i € F;
and variable z; indicates whether client j is not serviced

by any facility. Next we can write the following convex

relaxation.
min Z Z CijTij + Z fiys +h()

1EF jeD

Z Tij + 25 = 17

1EF

Zij < Yi,

Zij, ¥i, 25 2 0,

s. t. for client j € D,

3
forie F, j €D,
forie F, jeD,

where & is the Lovész extension of h. To see that (3) is
indeed a relaxation of FLwP, suppose that we have an
integer solution (z,y, z). Notice that for client j € D,
the equation guarantees that it is either serviced by some
facility (one z;; is 1) or not serviced (z; is 1). The
following inequalities make sure that a client is assigned
to an open facility. The first two terms in the objective
function take into account service and facility opening
costs. Finally if X is the set of clients not serviced by
any facility, clearly z is the indicator function of X and
h(X) = h(z) follows from Section 2.1. It is not hard to
show using the dual formulation of the LP (1) that (3)
is equivalent to the formulation given in [9].

We will use OPTrx to denote the optimal value of
(3). We introduce the notation A,, for the n-dimensional
simplex, that is, A, = {p e R*: 37 p; = 1,p; > 0}.
Also we will think of z as a matrix in R™*", We will
use z’ to denote the matrix z with the additional row z
at the bottom, so that 2’ € R™+DX%, Now the equality
constraints in (3) can be summarized by saying that each
column of ' is in A, 41; for brevity we will simply write
z' € A}, .;. Next we change the form of (3) to better fit
the algorithms of Section 2.2. As in {3], it is clear that
any feasible solution to (3) has smaller value if we take
¥i = maX;ep Ty for each ¢ € F. Furthermore, if (u;;) €
R™*", and for each i € F we let u; = (u;;); € R",
we can also write y; = maxy,ea,, Z;Ll uijig; similarly
as before, if u € R™*", u; € A, for each i € F, we
simply write u € A", Finally, it will be advantageous
to work with a scaled version of h. To this end, we define
p:2D—>]Rbyp(X)=*h(W)Q (X CD). Asp(D) =1
and B(h) C R, we have B(p) C A,. Combining these
notations and observations together with (1), we have
the following reformulation of (3)

OPTgrx = =, énAm max { Z CijTij+ Z fitijij

+1 u€EAT
(4) beB(p)]ED]E’D
+ Z WZjbj},
JjED

which is exactly of the needed form (2). Define function
f RO, R 5o that f(2') is exactly the max in-
side the min-max formula (4). Thus, if Q := A?,,,, the
relaxation (4) reduces to the non-smooth convex opti-
mization problem OPTgx = Irpeugl2 fzh.

3.2 Solving the relaxation.

We apply the two methods described in Section 2.2 to
find an approximate solution to (4). First we show that
the direct application of these methods leads to pseudo-
polynomial time algorithms. In the next section we show
how to design FPTAS.

3.2.1 Subgradient optmization.

For fixed T/ € Q = A%, let (g, b) be an optimal
solution that defines f(Z'). Then the vector G(Z') €
RO™HDX™ with ¢;; + f;Uy; in the (linear-algebra) dual
coordinate of x;; and Wb; in the (linear-algebra) dual
coordinate of z; is a subgradient of f at T'. Such a
vector can be easily obtained in O(mn + nvy + nlogn)
time using the results of Section 2.1.

For x e Q, we choose the Euclidean norm [|z]|? =

Z, i T3 Thus ||-||* is also the Euclidean norm.
= maxfmax,e; fi, W}. We define the convex
setA n—An = {p—qg € R" : pge Ay}

Clearly A - %(2) = {p €R™| X7, Ipsl® < 2}, the
ball of radius 2 centered at 0. Since B(p) C A,, and 0 €
An, it is straightforward to verify that G(z}) — G(z}) €
FA'"+1 for any 1, z3 € @ and thus the variation of
subgradlents of f is bounded as follows

1G(=1) = G(aR)|l < max,, ¢ pamet [w]]

< Fvm + ITmax,evyg) lull = 2(m + 1)F .
We define d(z') = 1|2’ — z}||* where &/, is chosen so
as to minimize the constant D in Theorem 2.1, thus
(%o)ij = (26); = 747 for each i and j. Then function
d is strongly convex on @ with respect tofl || and o =
1. Let D := maxyeqd(z') = an_H To apply the
algorithm of Theorem 2.1 we have to solve projections
of the form

(5)

for some p € RUPHUX" It is easy to see that these
projections decompose into n problems of the form
MiNyeA,,; ¢'w + 3, w} which, in turn, can be solved
in linear time (see, e.g., [3, §2]). Thus (5) can be solved
in O(mn). Hence, from Theorem 2.1, we obtain the
following.

min p'z' +d(z’) s.t. 2 € Q= AP,

Theorem 3.1 There is an algorithm that after k iter-
ations finds a solution T € Q of relazation (4) with
f(@) — OPTgrx < A%F. Each iteration can be im-
plemented in O(n(m + logn +)) time.

3.2.2 Smooth minimization of non-smooth
functions.

In this section we solve the min-max problem (4) us-
ing the techniques of Section 2.2. Here we have that
Qi=Q=A%,,and Q2:= A" xB(p) C A™*L. Ifu €
AT and b € B(p), we will use v’ := (u,b) € Q2. Note
that (Az’, ') = 35, ; fiwijusj + 3-; Weibs. We choose
the Euchdean norms in each space that is, {la']% =

X a3+ Xz 2 and [|u'|% = uf; +3; b2 to ease
the notation we drop the indices d) and (2. As in the
previous section, we take di(z’') = 1 ||z _ z°||2 and

similarly for space Qs , da(u’) = 1 ||u ul{|2. Clearly
o1 = o3 = 1. Here z, and u/, are chosen so as to mini-
mize Dy and Dj of Theorem 2.2; thus, (o) = (20); =
g and w) = (uo, bo) = argminyeq, ||w/||? where
(¥o)i; = L and the computation of b, € B(p) will be

discussed later. Then D; = maxereq, di(z') = jn-1%
and for Dy = maxyeg, d2(u’) we use the upper bound
1(m + 1). Finally we bound the operator norm ||Al
using the Cauchy-Schwartz inequality as follows

A < L3 Hlogugl+ 2 Wiasbyl}

[l ll= ||u’|| 1 YieFjeD
< max{max f;, W} = F.
1

Next we elaborate on how to solve the subproblems
of Theorem 2.2. These are of the form min{p 'z +
di(z)|z € @1} and min{q u+do(u)|u € Qz}. First
notice that the former are exactly as (5) thus can be
solved in O(mn) time. For the latter, notice that they
decompose into m + 1 subproblems in which the first
m are quadratic projections onto the simplex A, which
exactly as we argued before can be solve in O(nm) and
the last one is of the form

(6) min {,>e:q> (4 + 382) : beB(p)}.

Let QMB denote the time required to solve this
quadratic optimization problem. Then each iteration
of the algorithm of Theorem 2.2 can be implemented
in O(mn + QMB) (notice that A is sparse, so Az’ and
Aty can be computed in O(mn) time). Note that the
computation of b, is a special case of (6) (actually any
bo € B(p) would work). Applying Theorem 2.2, we ob-
tain the following.

Theorem 3.2 There is an iterative algom'thm that after
k iterations finds a feasible solution T’ € Q of (3) such

that f(zZ') — OPTgrx < J,C@F FEach iteration can be

implemented in O(nm + QMB).

In general, problem (6) can be solved by performing
submodular function minimization at most n times (see
[6], [7, §§7-9]). To get the greatest possible speed up
with respect to e of Theorem 2.2 we would need to solve
it in strongly polynomial time. Alternatively, using the
approximate version of the theorem from [3] we could
settle for a weakly polynomial time algorithm at the
expense of an additional O(log(1/e)) factor. Due to the
results of [12, 21, 8], both alternatives are possible (with
the results of [12, 21] we would have an overall “com-
binatorial algorithm”). The running time, though, for
the general case would make the subgradient algorithms
of the previous section more attractive (and much sim-
pler). On the other hand, in many important special
cases problem (6) can be solved efficiently.

Functions arising from concave cardinality func-
tions. Let 8 : {0, 1,...,n} — R be a nondecreasing
concave function with 6(0) = 0. Then, a function pg
defined by pc(X) = 6(|X|) for each X C V is monotone
and submodular. One can show that problem (6) can
be solved in O(nlogn) time using Fujishige’s decompo-
sition algorithm [6].

Hierarchical functions. We are given a rooted undi-
rected tree T = (U, E). The leaves of T correspond to
V. Each vertex v € U has a nonnegative cost a,. For

each subset X C V, let Nx be the set of vertices of
the minimum subtree including the root s and leaves
X. Tt is easy to see that the set function py : 2V — R
with A(@) = 0 defined by pu(X) = 3, {av : v € Nx}
for each subset X C V is monotone and submodular.
This function can model the costs of multiple levels of
service installation. Iwata and Zuiki [13] showed that
(6) can be solved in O(nlogn) time using the algorithm
proposed by Hochbaum and Hong [11]. As pointed out
by an anonymous reviewer, in this special case it is pos-
sible to write down a compact formulation for this case
of FLwP. However, though polynomial, this formulation
may be difficult to solve in practice for large instances
(the simplest case of the LP without penalties is already
difficult, see [3]). In contrast, our algorithms are very
simple to implement and scalable.

3.3 Binary search.

First of all we state a well-known and efficient proce-
dure to transform absolute error algorithms into relative
error algorithms. Let (P) be a minimization problem
with objective function fp with positive optimal value
OPTp. Suppose that given a target value R > 0 and
a relative error 0 < 7 < 1 and that we have an algo-
rithm Feasp (R, 1) which either decides that OPTp > R
or finds a feasible solution = such that fp(z) is less
than or equal to (1 + n)R. We assume further that
the running time of Feasp(R,) does not depend on
R and is bounded by a polynomial on % of the form

T(n) = Ti(n) + T2 = %q(%) + T2 (here T2 does not
depend on 7). The following lemma is from Young [25].

Lemma 3.3 ([25]) Suppose that x is a feasible solution
of (P) and, LB > 0 and t > 0 are such that LB <
OPTp < fp(z) < tLB. Then we can find a feasible
solution T of (P) such that fp(Z) < (1 + €)OPTp in
O(loglogt - T(3) + Ti(e) + log - Ty) time.

We can easily compute a feasible integer solution to
(4), and a lower bound LB with ¢ = n as follows. For
each client j € D, let LB; = min{h({;j}), min;{c;; +
fi}}, and let LB = max; LB;. For each j € D, if LB; =
h({7}), we set z; = 1; otherwise we set Ty; to 1 for a
facility ¢ with LB; = c¢;; + fi. The following lemma is
straightforward.

Lemma 3.4 A feasible solution T’ € Q with LB <
OPTrx < f(Z') < nLB can be computed in O(mn +
ny) time.

The design of the feasibility procedure Feasp(R, 1)
is more delicate and it requires the following structural
lemma about the optimal solutions to problem (3). For
a finite set / and a vector p = {p; € R|i € I'}, we denote
supp(p) = {i € I'|p; # 0} C I.

Lemma 3.5 Given a feasible solutionT = (Z,%2) € Q ,
there is another feasible solution ' = (%, Z) € Q which
satisfies properties: (i) f(&') < f(@'), (it) f: < F(F'), if
%y >0 (€D, ic F), and (i) h(supp(?)) < f(T').

Proof: Define g(z) = > 3 ¢z + Y. fi (maxzij)
iEF jED ieF J€D

(z € R™). For 2’ € Q, we have f(z') = g(x) + h(2).

First we give a vector ¥’ = (%, z) € Q such that f(3’) <

f@) and f; < f(@), if Ty >0 (j € D,i € F). After

that, we give a vector ' € Q satisfying (i), (ii) and (ii).
Let F°={i e F|fi > f(F)}. f F° # &, we set T

and z by eliminating facilities F° as follows

0 B forie F°, jeD
Tig = T:%JT’;, fOI‘lef\Fo,JGD,
(7) ileFo
Z] = T_—é%ﬂ] for j € D.
ifeFo

We can easily see that ' = (Z,2) € Q. Let ypo =
Y icre(maxjep ;) € Ry; by the definition of F°,

> z
yro < 1 and also 2 < Toors

positively homogeneous, we have ;;(2’) < ﬁ(l_ipo) =

. As h is monotone and

ﬁo— -h(2). Furthermore, since g9(@) < 1_;F° (9(z) -
> fir - (maxTig)) < (9() ~ yro f(T)), we ob-

irEFo j€D

tain f() < =4 (0(2) + R(3) - yr (7)) = S(@).

If h{supp(Z)) < f(T'), then set T’ = F'. So we assume
otherwise. Let p; > --- > pg be the distinct values of
Z other than value 0 and py4; = 0. For 1 < a < d,
define A, = p, — Pat1 and Xo = {j € D|zj > pa}.
From Section 2.1, h(Z) = ZZ=1 Ach(X,). Let s be the
minimum index such that h(X;) > f(Z'). We iteratively
generate (), 7)) ¢ Qfor 0 < k < d-—s+ 1. We
maintain f(Z®), 29} < f(Z) and supp(E®) = Xy
for each k. Initially we set 2@ = 7 and 3(® = Z. For
0 <k <d-s, weset 25D and 2(-+1) by reducing
supp(2(®) as follows

1
1—ypo

"))

.’i<k+1) _ rx;\ﬁ fori € F, j€ Xq_k

A
® 2 forieF, jeD\ Xaos,

A(.k)_)\ _ .

S+1) _ ih;fk—k for j € Xq—k

! 0 forjeD\ Xus,
and update Mg = —2— for 1 < a < d—k— 1.

1-Ak—a
By induction, we can see that (Z*), (%)) ¢ @ and
supp(2¥)) = X4, for each k. Observe that g(Z*+1) <
T 9(@®) and that h(Z¢H) = L—(h(zW) -
Ad-£h(X4—1)). So we have

f(f(k_H), E(k-f-l))

(F@®), 20) — Ay xh(Xa_k)) < f(&).

1
pS 1-Xd-k

Finally we set Z = 2(4=5+1) and 7 = 2(é=s+1)_ Clearly
7’ satisfies (i), (ii) and (iii). O 0O

Corollary 3.6 GivenT € Q, we can find ' € Q as in
Lemma 3.5 in O(n(y +m)) time.

Next let R > 0 and 5 € (0, 1]. A simple consequence
of Lemma 3.5 is that if f;, > R we can remove facil-
ity ¢o (and, thus, all the variables z;_ ; disappear from

the formulation). Similarly, using the monotonicity of
h, if h({jo}) > R we can set z;, = 0 (i.e., eliminate
variable z;,). The reason is that if OPTrx < R, the
lemma ensures that the optimum does not change in
either case. These observations already allows us to
design a feasibility procedure for our problems (using
that h(S) < Y ,cgh({s}) and that the subproblems
can only become easier). However, we can obtain better
bounds if we further truncate the submodular function
h. Let R' = (1+n)R, Dr = {j € D|h({5}) < R}, and
Fr = {i € F: fi < R}. We define the truncation of
function k, hg: : 2P - R as hg(X) = min{R’, h(X)}.
The following lemma is easy to prove.

Lemma 3.7 The truncation hgr is submodular and
monotone with hg/ (&) = 0.

Note that the truncation of a submodular function need
not be submodular. Also hg may have a different struc-
ture than that of h; thus, problem (6) may become dif-
ficult for hgs, while it was easy for h. For example,
if h arises from some cardinality concave function, hp
always has the same structure. However, if h is a hier-
archical function, the restriction of h to D’ C D is also
hierarchical but the truncation hgrs need not be. This
makes a difference only for smoothing-type algorithms
(Section 2.2.2.), while subgradient algorithms are always
better off using truncation.

To design the feasibility procedure Feasgx(R, 1), we
apply either Theorem 3.1 or 3.2 to the instance of the
problem in which all facilities with f; > R are removed,
all the variables z; are set to 0 whenever h({j}) > R
and replace h by hr:; let Q] be the feasible region of this
problem, f’ be the objective function value and OPTgx’
be the optimal solution value of this problem instance.
It is easy to see that we can take F' to be R’. We will run
the algorithms so that in the formulas of the theorems
the bound on the optimality gap becomes strictly less
than nR. Hence using either algorithm, we obtain @’ €
Q} such that f'(z') < nR + OPTrx’. Next we apply
Corollary 3.6 to obtain &' € Qf with f'(&') < f(z’) and
satisfying that hr (supp(2)) < f(Z'). Next let ' € Q;
is the lifting of 2’ by adding zeros and check whether
F(@) < (1 +nR). If the inequality holds, we found the
solution needed; if not, we decide that OPTrx > R.

To prove the validity of Feasrx (R, 1) suppose that
OPTrx < R. Then using Theorem 3.5, we know
that eliminating the variables does not change the opti-
mum. Furthermore, using the definition of truncation,
OPTrx’' < OPTgx. Thus, we have that

(@) < @) <nR+OPTrx'
<nR+OPTrx < (1+n)R=R'.

Finally, since hp/(supp(2)) < R, it follows that
hr (supp(2)) = h(supp(%)) which, using that the Lovész
extension can be computed via the greedy algorithm,
implies that f(z') = f'(2').

We fill in the details about the number of iterations
that Feasgx has to run. The subgradient algorithm
needs O(%) iterations; the smoothing algorithm needs

O(@) iterations using truncation and O(@)
eliminating variables only.

Theorem 3.8 Given ¢ > 0, we can find a feasible
solution ' € Q satisfying f(T') < (1 + €)OPTgrx
in O(mn®*(m + logn + 7)(loglogn + %)) time using
as a subroutine the algorithm of Theorem 2.1. Al
ternatively of we use as a subroutine the algorithm
of Theorem 2.2, the running time is O(ymn(mn +
QMB)(+loglogn) + ny(log(1) + loglogn)).

We conclude this section by noting that the algo-
rithms of Theorem 3.8 can be used to design an ap-
proximation algorithm for FLwP when the service costs
are symmetric and satisfy the triangle inequality us-
ing exactly the same algorithm as in [9]. In short, af-
ter approximately solving the relaxation (4), we obtain
Z' = (%,%). Let b € B(h) an extreme base generated
by a linear ordering compatible with Z. Let Ayr. be an
LP-based ayrp-approximation algorithm for the met-
ric uncapacitated facility location problem. Then the
clients that are serviced, N C D, are those for which
z; < FaluT’ and apply AyrL to the resulting instance
of UFL. The only observation needed to complete the
arguments of [9] is that A(D — N} < (1 + aurL)h(Z),
but this follows immediately from the fact that D — N
is b-tight (from Section 2.1). Thus, we can provide a
(14€)(1+aurL)-approximation algorithm as in [9] with-
out invoking the ellipsoid algorithm.

3.4 Submodular function minimzation.

Let V be a finite set with |[V| = n, and r : 2V - R
be a submodular function; wlog 7(&) = 0. In this sec-
tion we consider the submodular function minimization
problem, i.e., minxcv r(X) by reducing it to FLwP as
follows. The set of clients D = V and there is only one
facility (m = 1) with opening cost equal to 0. We define
the service costs as ¢(v) = max{0,r(V \ {v}) — r(V)}
(veV) For X CV, weuse (X) =3, vcy let
C = ¢(V). Define h: 2V — R as h({(X) = r(X) + ¢(X).
Clearly h is submodular, h(@) = 0 and it is not
hard to show that it is also monotone. Furthermore,
c(VANX)+h(X) = r(X)+ C for any X € V and
Yev Gl = 2p) + h(2) = 7(2) + C for any z € R".
From [14] it is known that minxcyr(X) =
min, (g, 1= 7(2) and if z* € [0,1]™ is an optimal frac-
tional solution, one can round it in O(n? + nvy) time.
Thus, from Theorem 3.1 we get a very simple algo-
rithm for submodular minimzation that for € > 0
finds a set X with r(X) within absolute error of ¢ in
O(%(r(D) + C)2n%(y + logn)). In particular, if r is
integer valued, we get a pseudo-polynomial time exact
algorithm for submodular function minimization that,
in contrast with previous algorithms such as [5, 12, 21],
does not need to keep track of extreme bases. We end
this section by pointing out that we can extend Lemma
3.5 so that it can handle negative service costs, provided
that the objective function of the problem is sufficiently
positive: in general, if we assume that r(@) > 0, we

have r(X) = A(X) — ¢(X) + (@), we need the condition
that (@) > C. Thus, we can obtain FPTAS for certain
special cases of submodular function minimization with
running time O(;lynz (v + logn)) which may have prac-
tical advantages compared to current exact algorithms
for submodular minimzation.

4 Set covering with submodular
costs

The set covering problem with submodular costs
(SCwS) [9] is described as follows. We are given a fi-
nite ground set V with |V| = n and a collection of sub-
sets of V, & = {81, ..., Sy} with U2,S; = V and
S 1Sl = K (< mn). We would like to find a par-
tition of V into m sets T; C S;, some of which might
be empty. For each 1 < i < m, the cost of T} is given
by a monotone submodular set function h; : 25 — R
with k(@) = 0 and W; := h(S;) > 0. Let v denote
the upper bound on the time needed to evaluate any
h;. The cost of a partition T1, ..., Ty is 3 vy hi(T5)
and the goal is to find a minimum cost partition. This
problem is a generalization of set covering, FLwP and
other facility location problems involving set-based fa-
cility costs [22, 23] in which costs are given by hierar-
chical functions. If m = 2, this problem can be solved
in polynomial time by performing submodular function
minimization. If m > 3, however, it is NP-hard because
of the hardness of multiway cuts.

As in Section 3, we can obtain a convex relaxation
using the Lovész extension as follows. For v € V, let
A, ={i:ve 8} C{l,...,m}. Let z € R, z =
(ziv)ica,. We use the notation z; = {z,|v € S;} €
RS and 2, = {zi]|i € A,} € R4l | In a binary
solution 2;, indicates whether v € S; and T; = {v :
Ziy = 1}. Thus, the following is a relaxation of SCwS:

min ﬁ,(zz) s.t. Yz =1forveV, z>0.

1 €A,

o

©®)

%

il

We denote by OPTrx the optimal value of (9) and define
f(z) = Zlﬁ,(z,) Foreachi=1,...,m, let p; := —‘%,
which implies B{p;) C Ajs,). Using the scaled base
polytopes, (9) becomes

{f: Z Wizivbiv}v

i=1v€ES;

OPTrx = min max
z€[], Aja, bETT, B(p:)

which is of the form (2). Using the transformation of
SCwS into an exponentially large set covering problem,
we can show that the quality of the relaxation is best
possible, that is, within a factor of H(n) = 37;_; # <
Inn + 1. We can also extend Lemma 3.5 and Theorem
3.8 as follows.

Lemma 4.1 For a solutionz of (9), there exists a solu-
tion Z satisfying (i) f(2) < f(Z) and (i) hi(supp()) <
f(®) for each i =1,...,m. Such a solution Z can be
found in O(K(y + m)) time.

Theorem 4.2 Given ¢ > 0, we can find a feasible so-
lution Z of (9) such that f(Z) < (1 + &)OPTrx in
O(mnK (v + logn) (% + loglogn)) time using the al-
gorithm of Theorem 2.1 as a subroutine. Alternatively
using Theorem 2.2, the running time is O*(L/mn(K +
mQMB) + log(2) Km).

We denote by p the maximum frequency of any ele-
ment, maxyev |Ay|- Let Zbea 1+¢ approxlmatlon solu-
tion of (9). By setting T3 = {v € S;\US LTy : 5 > 1}
for each 1 <4 < m, we can also provide a (1 +€)u ap-
proximation algorithm for SCwC using techniques sim-
ilar to [10].

We conclude this section by pointing out that we can
design algorithms for FLwP when the penalty function
has the more complex form h*(X) = min{}"*, hi(T}) :
(T1, ..., T;n) partition of X, T; C S;}. Note that A* is
not necessanly submodular. This problem can be cast
into a special case of SCwS, but can be solved more effi-
ciently if treated as we did FLwP. For the case in which
the assigment costs form a metric, a similar rounding
procedure as in [9] leads to a (1 +¢)(ayrL + 1) approx-
imation algorithm.

Acknowledgements

We are grateful to Satoru Iwata for several useful dis-
cussions.

References

[1] D. Bienstock. Potential Function Methods for Ap-
proximately Solving Linear Programming Prob-
lems: Theory and Practice. CORE Lecture Series,
U. Catholique de Louvain, Belgium, 2001.

2

D. Bienstock and G. Iyengar Solving fractional
packing problems in O*() iterations. In STOC '04,
pp. 146-155.

[38] F. A. Chudak and V. Eleutério: Improved ap-
proximation schemes for linear programming relax-
ations of combinatorial optimization problems. In
IPCO 05, pp. 81-96.

[4] M. Charikar, S. Khuller, D. Mount and G.
Narasimhan: Algorithms for facility location prob-
lems with outliers. In SODA "01.

[5] W. H. Cunningham: On submodular function min-
imiztion. Combinatorica, 5 (1985), pp. 185-192.

[6] S. Fujishige: Lexicographically optimal base of a

polymatroid with respect to a weight vector. Math-
ematics of Operations Research, 5(1980), pp. 186—
196.

[7

S. Fujishige: Submodular Functions and Optimiza-
tion (Second Edition). Elsevier, Amsterdam, 2005.

M. Groetschel, L. Lovdsz and A. Schrijver: Ge-
ometric Algorithms and Combinatorial Optimiza-
tion, Springer, Berlin, 1988

=

[9] A. Hayrapetyan, C. Swamy and E. Tardos: Net-
work design for information networks. In SODA "05.

[10] D. S. Hochbaum: Approximation algorithms for
the set covering and vertex cover problems, STAM
Journal on Computing, 11 (1982), pp. 555-556.

D. S. Hochbaum and S.-P. Hong: About strongly
polynomial time algorithm for quadratic optimiza-

tion over submodular constraints. Mathematical
Programming, 69 (1995), pp. 269-309.

S. Iwata, L. Fleischer, and S. Fujishige: A com-
binatorial strongly polynomial algorithm for mini-
mizing submodular functions. Journal of the ACM,
48 (2001), pp. 761-777.

S. Iwata and N. Zuiki: A network flow ap-
proach to cost allocation for rooted trees. Networks,
44 (2004), pp. 297-301.

1]

(12]

[13]

[14] L. Lovész: Submodular functions and convexity.
Mathematical Programming — The State of the Art
(A. Bachem, M. Grétschel, and B. Korte, eds.,
Springer-Verlag, 1983), pp. 235-257.

(15] Yu. Nesterov: Smooth minimization of non-smooth
functions. Mathematical Programming, 103 (2005),
pp. 127-152.

[16] Yu. Nesterov: Excessive gap technique in nons-
mooth convex minimization. SIAM Journal on Op-
timization, 16 (2005), pp. 235-249,

[17] Yu. Nesterov: Dual extrapolation and its applica-
tions for solving variational inequalities and related
problems. CORE Discussion Paper #2003/68,
CORE 2003.

Yu. Nesterov: Primal-dual subgradient methods for
convex problems. Technical report, CORE, 2005.

(18]

Yu. Nesterov: Minimizing functions with bounded
variation of subgradients. Technical report, CORE,
2005.

(19]

[20] Yu. Nesterov: Introductory Lectures on Convex

Optimization: A Basic Course. Kluwer Academic
Publishers, 2003.

A. Schrijver: A combinatorial algorithm mini-
mizing submodular functions in strongly polyno-
mial time. Journal of Combinatorial Theory (B),
80 (2000), pp. 346-355.

(21]

[22] D. Shmoys, C. Swamy and R. Levi: Facility loca-

tion with service installation costs. In SODA ’04.

[23] Z. Svitkina and E. Tardos: Facility location with
hierarchical facility costs. In SODA "06.

[24] J. Vygen: Approximation algorithms for facility lo-
cation problems (lecture notes). Report No. 05950-
OR, Research Institute for Discrete Mathematics,
University of Bonn, 2005.

[25] N. Young: Sequential and parallel algorithms for
mixed packing and covering. In FOCS "01.

