FEEEA WL B 2007—AL—111 (6)
IPSJ SIG Technical Report 2007,73,/9

AR EE D W 3 SRR DT — & N DHLIR

F O fnth KEFF 1=

SRR R 2R EHREFFER BB T#HIR T 606-8501 HUER AT 25X i H AT
E-mail: {kazuyah,nag}@amp.i.kyoto-u.ac.jp

fi-E=3

SEEE LR, BASNET—F (AT 7 IVBEEICI > TINURHINEFHOESR) 2T,
F 7 7)VEEEIT GEMIMIC) FMR A HEEMRTO2METHS. KR TIE, EHESMEELE
{0,1,«}-EFT—% (x [3RIEME) ITHTDREREMRT VTV XL ALG-ICF* 2, BIEPELST
RRENZLD—ROT—F IR T S. ALG-ICF* L L2 —ROT—F DMPNEAIREICT S
78, —RDT—F % {0,1, x}-HET — Y TEWT DEBULAF — L EEZ D, TEROBBULAF—
LTS 2E5 %8 U THEBE A F — A IC (integrated construction) #2559 5. AALEZE &L
T IC 2R AR ERR 7))V Y X ALG-ICFj¢ &, REAKRKR 7 IV T XL C4.5 LD #E
NZLEEN 2RO Z L B2 ERICK > TRLE.

F—0—R: SHME, 75 OEEEIL, KERMRR, By

Extension of ICF Classifiers to Real World Data Sets

Kazuya Haraguchi Hiroshi Nagamochi

Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University, Japan
E-mail: {kazuyah,nag}@amp.i.kyoto-u.ac.jp

Abstract

Classification problem asks to construct a classifier with good generalization from a given
data set. Recently, we proposed an algorithm ALG-ICF* to construct a high performance
classifier, which is based on iteratively composed features on {0, 1, *}-valued data sets. In
this paper, we extend ALG-ICF” so that it can also process real world data sets consisting of
numerical and/or categorical attributes. We propose a new discretization scheme, integrated
construction (IC), which transforms a real world data set into a {0, 1, x}-valued one. The
experiments reveal that ALG-ICF* with IC outperforms a decision tree constructor C4.5 in
many cases.

Keywords: classification, discretization, iteratively composed features, machine learning

1 Introduction

Classification problem is one of the most significant issues in such fields as machine learning,
artificial intelligence, logical analysis of data (LAD) [1], and so on, and is described as follows: We
write the data space by S. Let us denote the oracle by y : S — B, where B = {0,1}. (Thus there
are two classes, 0 or 1.) The exact form of the oracle is not presented to us, but for some elements
in S, their classes are available. An ezample w is an element of S whose class y(w) € B is available.
We call the set of examples the data set, denoted by €. Then classification problem asks us to find
a function ¢ : S — B that is an (approximately) equivalent function to y by utilizing the data set.

A typical approach to classification problem requires such a representation model that provides
us with a framework of embodying a function by representing (or implementing) it as a structured
object, called a classifier. There have been developed various kinds of representation models so far;
e.g., linear discriminant functions, nearest neighbor classifiers, neural nets, decision trees, support
vector machines [2].

fl
f? f?

a1 az as Qa4 as

Figure 1: The structure of an ICF classifier

Recently, we proposed a new representation model ICF based on iteratively composed features
[3]. ICF is established on an M-valued data set (i.e., S = M"™), where M = B U {x}, * denotes a
missing bit, and n denotes the dimensionality. An ICF classifier f : M™ — B is based on functions
called features: As a special case of feature, we introduce an initial feature a; : M™ — M for
each attribute j = 1,2,...,n, which is defined as aj(z) = z; for Vo € M™. Then a feature fg
in general is a function fs : M® — M of the set S of other features. By transforming the range
M into B, a feature can be used as an ICF classifier. Figurel illustrates such an ICF classifier
fl= fi52,53,a5) With f? = f{a1,a2) and fé = f{as,as,a2}- An ICF classifier has a hierarchical
structure of compositions from other features, and hence ICF is regarded as a generalization of
concept hierarchy [4] or decomposable Boolean functions [5].

In our previous work [3], we proposed an algorithm ALG-ICF* for constructing an ICF classifier
and observed from computational experiments that it can construct a better classifier (in the sense
of generalization) than a decision tree constructor C4.5 [6] or support vector machines when its
parameter values are finely tuned up. Hence not only is ICF an efficient representation model but
also does it display interesting knowledge representation.

However, ICF works only on an M-valued data set. In this paper, we extend ICF so that it can
also handle real world data sets consisting of numerical and/or categorical attributes. We consider
a date set Q over an N-dimensional data space S =D; x Dy X - -+ x Dy, where the domain D, of
each attribute ¢ = 1,2,..., N is either numerical or categorical.

In order to process Q2 by ALG-ICF*, we equip ALG-ICF* with a discretization scheme as its
processor, which maps Q over S to X over M" (where the dimensionality n is suitably determined
by the discretization scheme): In the resulting algorithm, we first transform into a data set
X and then apply ALG-ICF* to X in order to construct an ICF classifier. Thus our purpose in
this paper is to establish such a discretization scheme. Our discretization scheme constructs a set
D = {x1,X2,---,Xn} of discretizers, where each discretizer x; € D (j = 1,2,...,n) is a mapping
from S to M, and will be used as attribute j in the transformed M-valued data set X.

It is desirable for a discretization scheme to select discretizers so that we can construct a
good ICF classifier by ALG-ICF* from the resulting X. We first introduce two schemes arising
from previous studies, called domain based construction (DC) and space based construction (SC):
In DC, we regard a discretizer, a mapping from S to M, as a classifier with reject option (i.e.,
classifier which may output * to indicate “we don’t know the class” rather than 0 or 1). For each
numerical or categorical attribute ¢ = 1,2,..., N, we select such a discretizer that minimizes the
misclassification cost among all candidates. We can find such an optimum discretizer by solving
dynamic programming for a numerical attribute [7], and by the Naive-Bayesian approach for a
categorical attribute [8]. On the other hand, the SC searches a set of discretizers that partitions
the data space S into “well-separated” subspaces by a greedy algorithm.

The paper is organized as follows. In Sect.2, we first review the algorithm ALG-ICF*. In
Sect. 3, with detailed description on a discretizer, we introduce discretization schemes DC and
SC. Then in Sect.4, we carry out experimental studies on ALG-ICF}; and ALG-ICF§.. After
studying the advantages and defects of both algorithms, we propose a new discretization scheme
called integrated construction (IC), which is obtained by integrating DC and SC in an attempt to
enhance the performance. Our experimental results show that ALG-ICF{. performs effectively for
real world data sets, and that it outperforms C4.5 in more cases than our previous work [3]. In
Sect. 5, we make concluding remarks.

2 Algorithm ALG-ICF* on M-valued data sets

This section reviews algorithm ALG-ICF* proposed to construct an ICF classifier on an M-valued
data set X [3]. First, let us describe how to determine function fs : M® — M for an M-valued given
set S of features. For a data set X, we call an example z € X labeled as y(z) = 1 (resp., 0) a true
(resp., false) example. Let us denote by X! = {z € X | y(z) = 1} (resp., X° = {z € X | y(z) = 0})
the set of true (resp., false) examples. For a vector s € M, let us denote by X, s,s the set of examples
in X whose projections on S are s. Let Xé‘,s =XIn X5, and Xg,s =Xn Xs,s. We write the
fs(z|s) as fs(x) for convenience.

The output fs(s) is determined based on the following statistical test: The hypothesis is that
true and false examples in Xg are generated with the same probability. If the hypothesis is
accepted, we let fg(s) = (i.e., we cannot see the bias of classes). Otherwise, we let fs(s) =1 or
0 by the major class in Xg ;. We use a parameter @ € [0, 1] to determine the rejection rate of the
statistical test; if « is large (resp., small), then fs(s) is more likely to be 1 or 0 (resp., *).

Now we are ready to describe the algorithm ALG-ICF* as follows.

Algorithm ALG-ICF*

Input: An n-dimensional M-valued data set X with n initial features A = {a1,4a2,...,a,} and
parameters « € [0,1], 8 € [0,1] and p € [0,0.5].

Output: An ICF classifier f: M™ — B.
Step 1: Let Fy:= A and t := 1.
Step 2: h:=2.
Stepb2—1 (Construction) : Let F:= FyUF; U---UF;_;. Construct a set F}p, of features
y:

Fp= {fs|SgF,SﬁFg_17&@,|Sf:h,fg\{g)GFtyh_l for 3g € S} if h> 2,
t:h {fs|SCF,SNF,_1 #0,|S|=h} otherwise.

Step 2-2 (Selection) : Let F’ := (). For each z € X, we select such a feature fs that
achieves fs(z) = y(z) and that attains the smallest function value ¢(fs) of (1) (see
below) among all features in FU Fy o U---U Fyp, and let F' := F' U{fs}. (Hence F'
becomes the set of selected features.) By the obtained feature set F”, update the feature
setsas Fi ==\ NF', ..., F,1:=F_1NF and F;3:=FoNF', ..., Fp:=F,NF'.

Step 2-3: If Fyp, # 0, then let h:= h+ 1 and return to Step 2-1.
Step 3: If h > 2, then let F} := FyoU---UF, p_1,t:=t+ 1, and return to Step 2.
Step 4: Output some fs € Fy UFy U---U F;_; and halt. (The details will be described below.)

In the feature selection process in Step 2-2, a feature fs is evaluated by the following cost
function;

o(fs) = (E(fs, X) + uU(fs,X»(@)ﬂ, (1)

where and p are adjustable parameters, and

(e, x) - [EEX LISV A @ £y) -

s S
atgs) = [EEB 1150 € By

E(fs,X) is the error rate of fg on the data set X (i.e., empirical error rate), U(fs, X) is the rate
of examples on which uncertain decisions are made, and A(fs) is the rate of input vectors in B
(not those in M¥) for which fs makes a decisive classification. By small E,U and large A, fs
should attain a small ¢(fs) and thus be evaluated highly.

In Step 4, we obtain an ICF classifier as follows: We first transform each feature fs € F into
a function fs: M5 — B by setting fs(s) =1 or 0 for each s € M®, based on the major class in
Xs,s, and then choose a feature fs with the smallest empirical error rate E(fs, X).

{z € X | fs(z) = +}|
X ’

3 Discretization Schemes DC and SC

3.1 Discretizers

For a numerical or categorical attribute ¢ € {1,2,..., N}, we define a discretizer by a tuple
X = (¢, P, %), where P denotes a partition of the domain D, and ¢ denotes a label. A partition
P ={P,,Ps,..., P} is a family of disjoint subsets of Dy, i.e.,

U P.=D, P.NPo=0 (1<k<rK <k). (2)
k=1,2,...,k

For a numerical attribute ¢, we assume that D, is a closed interval [minDg, max D], and define a
partition P by k — 1 cutpoints: For wi,ws,...,wx—1 € Dy, we take the k intervals [minDg, wy),
[wi,w2), ..., [Wk—2,wk-1), [wk_1, maxDy] as the elements of P, respectively (where we assume
minDy < w; < wy--- < wi—1 < maxD,). For a categorical attribute, P is determined by a family
of subsets Py, Ps, ..., Py of categories satisfying (2).

A label £ is a mapping from {1,2,...,k} to M, i.e., £ assigns a value in M to each partitioned
subset Py, Ps, ..., P;. Then a discretizer x = (¢, P, ¥¢) discretizes a data element w € S into £(x),
where w, € P, holds (k = 1,2,...,k). For convenience, we write the mapped value by x(w) instead
of (k). For a set D = {x1,X2,---,Xn} of discretizers, we write D(w) = (x1(w), x2(w), .- ., xn(w))
and D(Q) = {D(w) |w € Q}.

In the discretization schemes DC and SC, a discretizer x = (q, P, £) is determined by ¢ and P,
which means that £ is determined uniquely by ¢ and P, but in a different way between the two
schemes. How to determine ¢ based on ¢ and P and how to select ¢ and P in each scheme are
described in the subsequent subsections.

3.2 Discretization Scheme DC

Based on previous discretization schemes [8, 9], this subsection shows the discretization scheme
DC. It constructs a set D = {x1,X2,--.,Xn} of discretizers with n = N, which means that one
discretizer is constructed from one attribute. DC has two parameters, K and u, where K specifies
the maximum cardinality of partitions for numerical attributes, and u € [0,1] denotes the cost
given to an assignment of * of a discretizer.

How to determine a label. Let us take a partition P = {Py, P,, ..., P;} on attribute ¢. By ¢
and P, the data set € is partitioned into k subsets according to the values of attribute g as Qg p . =
{weQ|w, € P}, k=1,2,....,k. Wedenote Q} » . =Q'NQyp,.and Q) p, =02 NQp .
For given g and P, we consider determining a value £(k) € M for k = 1,2,..., & so that the cost
defined in the following is minimized: If we assign £(k) = 1 (resp., 0), then it costs us |ng,,7,€| (resp.,
|24 p .|) since the examples in QS,P,H (resp., |2} p .|) are classified erroneously if we regard £ as a
classifier with reject option. On the other hand, if we assign ¢(k) = *, then it costs us u|Qq p x|,
where the parameter u is used as the relative cost of an uncertain decision to an erroneous one.
Then we define the misclassification cost of a discretizer x = (g, P, £) as the sum of such costs over

the k partitioned subsets Qg p.1,Qq,p.2,..-,,Qq,P k;
Ipe(x) = > min{|Q p |, 199 p |} +u > 12,7kl ®3)
k=1,2,....,k: £(K)#x* r=1,2,....k: &(r)=x

Since the cost to each 4 p . is computed independently, the misclassification cost is minimized by
the following label: For k = 1,2,...,k,

* if u|Qq,p.i| < min{]ﬂlﬂ,,ﬁ|7 |QO,P’N|}7
Z(’{) = 1 if u|QQaP,KI > min{‘ﬂq,"),nL |Qq,'P,n|} and |Q;,P,KI > IQS,P,KL (4)
0 otherwise.

Note that same labels may be assigned to plural x-s. In DC, we determine the label £ by (4) for
given g and P.

How to select a partition for each attribute. For each attribute ¢ =1,2,..., N, we select a
partition P such that x, = (¢, P, ¢) attains the smallest misclassification cost among all candidates,
by which we obtain the set D = {x1,x2,...,x~n} of N discretizers. Note that the search of a
partition is independent between attributes. It is based on the domain of one attribute.

For a numerical attribute ¢, we examine such partitions whose cardinality is not larger than
the parameter K (i.e., |P| < K) in order to save computation time. Then we obtain an optimum
partition P by solving the corresponding dynamic programming [7, 9]. For a categorical attribute,
we obtain an optimum partition as the family where each element is a singleton of a categorical
value. One can easily verify that this is optimum analogously with the correctness of the Naive-
Bayesian approach [8].

3.3 Discretization Scheme SC

This subsection shows the discretization scheme SC. It constructs a set D = {x1,Xx2,---,Xn}
of discretizers, where the dimensionality n is determined by our greedy algorithm. SC has two
parameters, I'sc and V. The parameter I'sc € {T'sc,err, ['sc,pair} specifies the cost function to
evaluate a discretizer set in the greedy algorithm. I'scgrr and I'sc,pair are called data space
error and unseparated pairs, respectively. The algorithm selects discretizers based on the specified
cost function, where the greedy algorithm for I'sc pair was first proposed by Mii [10]. The other
parameter V € {B, M} specifies the cardinality of a considered partition by |V| (i.e., 2 or 3) and
the range of a label by V, i.e., we use such a discretizer x = (g, P, ¢) that satisfies |P| = |V| and
£:{1,...,]V|} — V hold.

How to determine a label. Let us take a partition P = { P, ..., Py} on attribute ¢. Different
from DC, we assign any value of V to some output value £(k) (k = 1,...,|V|) of a label £ in order
to distinct partitioned subsets Dy = P; U---U Py|. Under this concept, we determine the label
¢ :{1,...,]V|} — V so that the number of examples which are classified correctly by ¢ (as a
classifier with reject option) is maximized. If V = B, then ¢ is determined as follows;

_ [(00 S 190+ 199 5] > 195 5 1] + 120 5],
(f(l),f(Q))—{ (0,1) otherwise. ! ’

Note that * is not used for an output.

If V = M, then we determine ¢ as follows: We set (¢(x), 4(k’)) = (1,0) for such a pair (k, k') that
maximizes the sum [Q} 5 [+ |Q0 5 .| among all k, k" € {1,2,3},k # «'. We then set £(k") = x to
the remaining £” = {1, 2,3} \ {k,&'}.

How to select an attribute and a partition. Let us denote by D = {x1,x2,---,Xn} a set of
n discretizers (n > 1). For a vector s € V*, we define a subset Qp s C Q to be Qp, = {w e Q|
D(w) = s}. We write O, , = Q'NQp ; and QF ; = Q°NQp ;. (Then the data set Q is partitioned
by D as @ = J,cyn 2p,s.) We then define data space error I'sc grr(D) and unseparated pairs
Isc,par(D) to be;

Tsoerr(D) = Y min{[Q} [, 103 [}, Tsopar(D) = D Qb] - 2 -
sEV™ SEV™

We define I'sc grr(9) = min{|Q!], |Q°|} and [sc pair(?) = || - |Q°| for convenience. With func-
tions I'sc,err and I'sc,pair, we evaluate how D partitions the data space S into “well-separated”
subspaces.

Let I'sc represent the cost function of either I'sc grr or I'sc,pair. Starting with the empty
set D = 0, our greedy algorithm iterates selecting such x that minimizes I'sc(D U {x}) among N
candidates from the N attributes and updating D := DU{x}; if there is no x that attains I'sc(DU
{x}) < Tsc(D), then the greedy algorithm halts and outputs the final D = {x1, X2, -, Xn}-

One can see that I'sc grr(D’) is monotone non-increasing, while I'sc par(D’) is monotone
decreasing with respect to the set inclusion over all subsets D’ C D. Hence, with I'sc = I'sc ERR,
the greedy algorithm may halt although I'sc grr(D) = 0 is not attained. On the other hand,
with I'sc = I'sc,paIr, the algorithm always attains I'sc pair(D) = 0 upon its completion. For a
discretizer set D, we note that I'sc,pair(D) = 0 holds if and only if I'sc,grr (D) = 0 holds. Thus

the usage of I'sc = I'sc,pair may construct a discretizer set having more detailed information on
Q2 since I'sc = I'sc,err may output such a discretizer set D” with I'sc grr(D”) > 0 (and thus
Lsc,par(D”) > 0).

From a numerical attribute, we investigate all possible partitions of cardinality of most |V|, and
select the best one as the candidate (note that there are O(|Q|V!) distinct partitions where |V] = 2
or 3). On the other hand, there are |V|™ possible partitions for a categorical attribute ¢, where m
denotes the number of categories for attribute ¢ and m = O(|€|). Since the size of |V|™ can be
extremely large, we search the partition by a heuristic method based on local search (whose details
are omitted), and use it as the candidate from attribute q.

4 Experimental Studies

Preparation for experiments. For the experiments, we use data sets from UCI Repository of
Machine Learning [11] as real world data sets. The summary is shown in the leftmost column of
Table 1, where Nyym (resp., Neat) denotes the number of numerical (resp., categorical) attributes.

Let C represent a discretization scheme among DC, SC and IC. For a real world data set €,
we evaluate the performance of the algorithm ALG-ICF{ as follows:

(1) We divide Q into halves at random, one for the training set Qirain and the other for the test
set Qtest'

(2) We construct a discretizer set D by applying C to the training set Qrain, by which we obtain
the M-valued training set Xirain = D(Qtrain)-

(3) We construct an ICF classifier f by applying the original ALG-ICF* to Xirain, and measure
its error rate E(f, Xtest) on the M-valued test set Xiest = D(Qtest)-

We repeat the process of (1) to (3) 10 times for a set of given parameter values (i.e., a, 3, u for
ALG-ICF* and ones for discretization scheme C), and we use the average of error rates on test
sets as the performance evaluator.

Results on ALG-ICF} and ALG-ICFg.. Now we show the experimental results in Table1,
where each row and column corresponds to a data set and a construction algorithm, respectively.
The parameters used for discretization schemes are written at the top of the table; e.g., as to
ALG-ICF}, we show only the result of K = 3 and u = 0.3 in the table, which is fairly better
than all tested values of K = 2,3,...,6 and v = 0.1,0.2,...,0.5.

The indicated value in an upper (resp., a lower) entry denotes the best (resp., average) error
rate in all combinations of algorithm parameter values: For ALG-ICF}, and ALG-ICFg., we take
a € {0.01,0.05,0.1,0.25,0.5}, 8 = 0.3, and p € {0.1,...,0.5}. For C4.5 [6], we use 1%, 5%, 10%,
25%, 50%, 75%, 100% as its confidence level, which is the parameter to adjust the size of a final
decision tree and is considered as the most influential parameter. Note that we exploit an algorithm
that constructs C4.5 decision trees directly from Qrain (not from Xirain) since this paper discusses
construction algorithms on real world data sets. A bold face indicates the error rate smaller than
C4.5. A sign “x” indicates that the smallest value in each row.

At the bottom of the Table1, we show the average of presented error rates for all data sets.
The row BEST represents the average of the best error rate for each data set, among those realized
by adjusting parameters as above. On the other hand, the row AvG represents the average of error
rates observed in all data sets and in all tested parameter values. If a construction algorithm A
outperforms other A’ in BEST (i.e., A achieves a smaller BEST value than A’), it means that A
can construct a better classifier than A’ by tuning up the parameter values. (Note that, however,
determining appropriate parameter values is usually difficult.) On the other hand, if A outperforms
A’ in Ava, A should construct a better classifier by arbitrary parameter values. We observe that
ALG-ICFp and ALG-ICF§. outperforms C4.5 in BEST but does not in AvG. In our previous
work [3], we considered classification problem on a B-valued data set and showed that ALG-ICF*
outperforms C4.5 in BEST. Thus we see that, with the discretization schemes DC or SC, ALG-
ICF™ still performs well on real world data sets. In the following, we consider how to improve the
discretization schemes so that ICF algorithms have a better performance in AVG.

Table 1: Best (upper) and average (lower) error rates (x102) of classifiers.

Data ALG-ICF},g ALG-ICF%, ALG- | C45
(192, Nnum, Neat) K=3 I'sc =Tscierr I'sc =Tscpamr | ICFj¢
u=0.3 V=B V=M V=B V=M
BCW *x3.71 4.18 4.26 4.73 4.18 4.12 5.00
(683,9,0) 4.78 4.85 4.98 5.2 *x4.62 4.63 5.21
BUPA 36.82 34.10 36.35 36.12 35.66 | x33.81 | 37.12
(345,6,0) 39.90 36.42 37.48 37.81 38.24 | x36.27 | 38.18
HABER 27.21 27.14 27.61 %25.91 26.66 27.34 | 26.27
(294,3,0) *x27.64 28.26 29.31 29.10 29.27 28.17 | 28.40
IONO 11.59 11.42 12.44 13.86 13.63 | x10.85 | 12.32
(351,34,0) 12.50 12.32 13.53 15.89 16.13 | x12.27 | 12.64
PIMA *24.60 26.17 27.42 26.64 26.45 26.04 | 25.52
(768,8,0) *x25.75 28.41 29.43 29.22 29.81 28.04 | 27.90
AUS 15.42 15.21 15.68 15.42 x15.13 | x15.13 | 15.95
(690,6,8) *x16.61 17.70 18.72 18.45 18.15 17.35 | 17.48
CRX 13.45 13.11 13.79 13.45 13.66 | x12.87 | 14.33
(666,6,9) *x14.76 16.65 17.32 17.15 17.13 16.46 | 16.74
FLAG 10.92 *x9.69 12.47 10.51 12.88 10.00 | 10.51
(194,10,18) 12.61 | x11.01 14.93 14.75 15.10 12.30 | 12.77
HEART *~18.88 22.29 25.77 19.99 25.55 20.66 | 24.45
(435,0,16) *x20.42 25.27 28.37 23.06 29.44 22.89 | 25.50
CAR 7.02 6.94 6.55 *x1.12 1.38 *x1.12 2.36
(1728,0,6) 7.28 8.17 7.76 2.87 %x2.68 2.88 2.73
MUSH x0.00 0.23 0.23 0.01 *0.00 x0.00 0.01
(8124,0,22) 0.02 0.23 0.23 0.01 0.01 *0.00 0.01
TTT 24.80 8.18 13.84 5.26 13.96 *x5.11 8.08
(958,0,9) 26.58 12.11 17.51 9.01 17.34 9.17 | x8.54
VOTES 4.35 4.49 4.49 4.77 4.26 4.40 | «3.98
(435,0,16) 5.04 5.42 5.42 5.73 5.72 5.86 | x4.66
BEST 15.29 14.08 15.45 13.67 14.87 | x13.18 | 14.30
Avc 16.45 15.90 17.30 16.01 17.20 | ¥15.09 | 15.44

We consider that ALG-ICF}) has a good performance in data sets with numerical attributes
partly because an effective discretizer for a numerical attribute can be constructed by dynamic
programming.

For ALG-ICFgc, the usage of V = B outperforms V = M regardless of I'sc, as is observed
from almost all data sets. We consider that this is because the discretization process with V=M
partitions the data space into too small subspaces and the resulting data set X may include
misleading information for classifier construction. Then a classifier constructed from such X may
overfit to Q.

As to evaluation function, the usage of I'sc = I'sc, pair is effective particularly for the data sets
consisting only of categorical attributes (i.e., CAR, MUSH, TTT and VOTES). It is empirically
known that these data sets contain enough information to produce good classifiers. As mentioned
in Sect. 3.3, the usage of I'sc = I'sc,pair may construct a discretizer set containing more detailed
information on €2 than I'sc grr, Which may explain the above phenomena.

Algorithm ALG-ICFj-. From the above observation, we introduce a new discretization scheme,
integrated construction (IC). Let us denote by D¢ a discretizer set constructed by discretization
scheme C. Then we integrate DC and SC as follows:

If Noum > 0, then we use Dic = Dpc(3,0.3) U Dsc(rsc srr,B) @8 the discretizer set.
Otherwise, we use Dic = Dpc(3,0.3) U Dsc(Isc pam,B) -

As seen from the result in Table1, ALG-ICF}; outperforms C4.5 not only in BEST but also in
AVG. It indicates that ALG-ICFj; is better than C4.5 in a stronger sense than ALG-ICF},¢ and

ALG-ICF¢ are.

It is interesting to see that the performance is enhanced by integrating two discretization
schemes of different concepts; in other words, either of DC and SC may not provide enough in-
formation with ICF learning by itself. We do not observe that, however, integration of more
discretization schemes always enhances ICF classifiers. For example, let us introduce another dis-
cretization scheme IC’, where we construct a discretizer set by Dic: = Dpc(3,0.3) U Dsc(rse sre,B) Y
Dsc(rsc,pam,p)- ALG-ICF]g, achieves 13.19 in BEST and 15.35 in AVG, which is slightly worse than
ALG-ICFj¢. Also, an integration method of this type increases the size of a constructed discretizer
set. It can increase the computation time of ALG-ICF*. Hence an arbitrary integration does not
necessarily attain a good result.

5 Conclusion

In this paper, we considered how to extend ICF classifiers, originally proposed on M-valued data
sets, so as to handle real world data sets. In order to handle such data sets by ICF, we apply a
discretization scheme to the given data set, and construct a classifier from the discretized data set.
We first introduced two discretization schemes DC and SC, and proposed a new one IC, based on
the experimental results on the formers. We observed that ALG-ICFj. outperforms C4.5 in many
cases.

References

[1] Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., Mayoraz, E. and Muchnik, I.: An Implemen-
tation of Logical Analysis of Data, IEEE Trans. Knowledge and Data Engineering, Vol. 12,
No. 2, pp. 292-306 (2000).

[2] Weiss, S. M. and Kulikowski, C. A.: Computer Systems that Learn: Classification and Predic-
tion Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems, Morgan
Kaufmann (1991).

[3] Haraguchi, K. and Ibaraki, T.: Construction of classifiers by iterative compositions of features
with partial knowledge, IEICE Trans. Fundamentals of Electronics, Communications and
Computer Sciences, Vol. E89-A, No. 5, pp. 1284-1291 (2006).

[4] Bohanec, M. and Zupan, B.: A function-decomposition method for development of hierarchical
multi-attribute decision models., Decision Support Systems, Vol. 36, No. 3, pp. 215-233 (2004).

[5] Boros, E., Gurvich, V., Hammer, P. L., Ibaraki, T. and Kogan, A.: Decomposability of par-
tially defined Boolean function, Discrete Applied Mathematics, Vol. 62, pp. 51-75 (1995).

(6] Quinlan, J. R.: C4.5: Programs for Machine Learning, Morgan Kaufmann (1993).

[7] Fulton, T., Kasif, S. and Salzberg, S.: Efficient Algorithms for Finding Multi-way Splits for
Decision Trees, in Prieditis, A. and Russell, S. J. eds., Machine Learning, Proc. 12th Int’l
Conf. Machine Learning, pp. 244-251 (1995).

[8] Domingos, P. and Pazzani, M. J.: Beyond Independence: Conditions for the Optimality of the
Simple Bayesian Classifier, in Saitta, L. ed., Machine Learning, Proc. 13th Int’l Conf. (ICML
’96), pp. 105-112 (1996).

Elomaa, T. and Rousu, J.: Fast Minimum Training Error Discretization, in Sammut, C.
and Hoffmann, A. eds., Machine Learning, Proc. 19th Int’l Conf. (ICML 2002), pp. 131-138
(2002).

[10] Mii, S.: Feature Determination Algorithms in the Analysis of Data, Master’s thesis, Depart-
ment of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University
(2001).

[11] Hettich, S., Blake, C. L. and Merz, C. J.: UCI Repository of Machine Learning Databases,
Irvine, CA: University of California, Department of Information and Computer Science,
http://www.ics.uci.edu/~mlearn/MLRepository.html (1998).

[0

