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Procedures for floating point arithmetic operations with DNA molecules
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Abstract: In this paper, we consider procedures for floating point arithmetic operations with DNA molecules.
We first propose data structure for representing floating point numbers with DNA molecules. The floating
point number consists of a sign bit, an exponent and a mantissa. We assume that the exponent and the
mantissa are binary numbers of ¢ and m bits, respectively. We next propose two procedures for an addition
of floating point numbers. The first procedure executes an addition in O(logm) steps using O(m?) DNA
strands, and the second procedure executes an addition in O(1) steps using O(m?2™) DNA strands. We also
propose a procedure for additions of O(n) pairs of two floating point numbers. The procedure executes O(n)
additions simultaneously in O(1) steps using O(nm?2™) DNA strands. We finally propose a procedure for a
multiplication of a pair of two floating point numbers. The procedure executes a multiplication in O(log m)

steps using O(m?) DNA strands.

1 Introduction

In recent works for high performance comput-
ing, computation with DNA molecules, that is, DNA
computing, has had considerable attention as one of
non-silicon based computing. DNA molecules have
two important features, which are Watson-Crick
complementarity and massive parallelism. Using
the features, we can solve NP optimization prob-
lems, which usually need exponential time on a sil-
icon based computer, in a polynomial number of
steps with DNA molecules. As the first work for
DNA computing, Adleman [1] presented an idea of
solving the Hamiltonian path problem of size n in
O(n) steps using DNA molecules. His idea was
successfully tested in a lab experiment for a small
graph. There are a number of other works with DNA
molecules for combinatorial N P optimization prob-
lems [2, 3, 12, 13, 20].

However, procedures for primitive operations,
such as logic or arithmetic operations, are needed
to apply DNA computing on a wide range of prob-
lems. A number of procedures have been proposed
for the primitive operations with DNA molecules
[4, 5,9, 10, 11, 15, 18]. Recently, Santis et. al.
[18] have proposed procedures for executing primi-
tive operations for floating point numbers. They as-
sume that each floating point number consists of a
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sign bit, an exponent, and a mantissa, and that the
exponent and the mantissa are binary numbers of
q and m bits, respectively. Using the DNA encod-
ing, they proposed two procedures for an addition
and a multiplication of two floating point numbers.
The procedure for an addition runs in O(q + log m)
steps, and the procedure for a multiplication runs in
O((log m)?) steps.

In this paper, we consider procedures for floating
point arithmetic operations with DNA molecules.
‘We first propose data structure for representing float-
ing point numbers with DNA molecules. We also as-
sume that the exponent and the mantissa are binary
numbers of ¢ and m bits, respectively.

We next propose two procedures for an addi-
tion of two floating point numbers using the above
data structure. In the first procedure for addition, we
equalize the exponents of two floating point num-
bers, and normalize the result of the addition. Then,
we shift the mantissa so as to obtain the appro-
priate value. To realize the procedure with DNA
molecules, we first create all candidates for the ap-
propriately shifted value, and then, extract the ap-
propriate value from the candidates. The first pro-
cedure runs in O(logm) steps using O(m?) DNA
strands.

In the second procedure for addition, we first
create the candidates for all possible input values.
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The creation enables us to execute additions of any
pair of floating point numbers with the candidates
repeatedly. The second procedure runs in O(1) steps
using O(m?2™) DNA strands. Both of the proce-
dures work faster than the previous procedure [18].

We also propose a procedure for additions of
O(n) pairs of two floating point numbers. The pro-
cedure is an expansion of the second procedure, that
is, the procedure consists of parallel executions of
the second procedure for O(n) pairs. The procedure
runs in O(1) steps using O(nm?2™) DNA strands.

We finally propose a procedure for a multiplica-
tion of two floating point numbers. The procedure
runs in O(log m) steps using O(m?) DNA strands.
The procedure also works faster than the previous
procedure [18].

2 Preliminaries

2.1 Computational model for DNA com-
puting

A number of theoretical or practical computational
models have been proposed for DNA computing
[2,5,10,11,12,15, 16, 17]. A computational model
used in this paper is the same model as [5]. We
briefly introduce the model in this section.

A single strand of DNA is de-
fined as a string of symbols over a fi-
nite alphabet X. We define the alphabet
Y = {00,01,---,0m-1,00,01,---10m-1}.
In this alphabet the symbols 04,07 (0<14 <m— 1)
are complements. Two single strands can form a
double strand if and only if the single strands are
complements of each other. A double strand with

0y, 0; is denoted by >
7
The single or double strands are stored in
test tubes. For example , T1 = {og01,0001} de-
notes a test tube that includes two kinds of single
strands, oo and 607
Using the DNA strands, the nine manipulations,
which are Merge, Copy, Detect, Separation,
Selection, Cleavage, Annealing, Denaturaton
and Empty, are allowed on the computational
model. Since these nine manipulations are imple-
mented with a constant number of biological steps
for DNA strands [14], we assume that the complex-
ity of each manipulation is O(1) steps. (See [5] for
more details.)

2.2 Representation of binary numbers with
DNA molecules

In this section, we describe a representation of n bi-
nary numbers of m bits. In the representation, one
single strand corresponds to one bit of a binary num-
ber. Therefore, we use O(mn) single strands to de-
note n binary numbers.

We first define the alphabet 3 used in the repre-
sentation as follows.

¥ = {A07A17"'7An—1vBO,Bly~'~aB’m—-1y

as,ag, bSa bEa CO: Clv DOv D17 0,1, ﬂy
%7 A_13 . An—la—-B—O-> ~B_la 7B'm—17

In the above alphabet, Ay, 41, ..., A,—1 denote ad-
dresses of binary numbers, and By, By, ..., Bm_1
denote bit positions, in which each binary number
is stored. More precisely, A; and B; are defined as
follows using ag, ag, bs, bE, , 1

.a1000E
.bibobg

A = a3 (1ogn)-1%(logn)—2 * *
Bj = bSb(logm)—lb(logm)—2'~

In the above description, a(ogn)—1. (logn) 2>
..., a1, ap are binary numbers such that i =
1 1
Eéf—%n) ag X2k and b(log m)—1s b(log m)—2y+ -, b1,
bo are binary numbers such that j = 2(1°g m) ! by, X

2k where each ay, and by, is O or 1. In addition, ag,
ag and bg, by are start and terminal symbols, re-
spectively. We also assume that Cy, C7 and Dy, D,
are the specified symbols cut by Cleavage. { is a
special symbol for Separation.

Using the above alphabet, a value of a bit, whose
address and bit position are 7 and j, is represented by
a single strand S; ; such that

S’i,j = DlaSa(logn)—l ...a1000F
bsb(iogm)—1 - - - b1bobECoC1V;,; Do
= D1A;B;CoC1Vi,;Do

, where V; ; = 0 if a value of the bit is 0, otherwise
5 = 1.
We call each S; ; a memory strand, and use a
set of O(mn) different memory strands to denote n
binary numbers of m bits.
We also assume that S; (V') denote a memory
strand whose value is V' as follows

8;j(0) = D1A;B;CoC10Dg
Sij(1) = D1A;B;CyCi1D,

2.3 Primitive operations

In this paper, we use five operations as primitive op-
erations. The input and output of the primitive oper-
ations are defined in the following.

1. Logic operations : This operation executes
logic operations defined by a truth table L for
the memory strands in the test tube Tippys.
The output is stored in the test tube Toytpu-

Notation: Logic(Tinput; L, Toutput)

2. Additions and subtractions : This operation
executes additions or subtractions for pairs of
the memory strands in the test tube Tippyt.
The pairs of additions or subtractions are de-
fined by a test tube R. The output is stored in
the test tube Toutpus-

Notation: Addition(Tinput, R, Toutput)»
Subtraction(Tinput, R, Toutput)



3. Multiplication : This operation executes a mul-
tiplication of a pair of memory strands, which
denote two binary numbers. Two sets of in-
put memory strands are stored in Tiy,pyt_, and
Tmput_},, and the output of a multiplication is
stored 1n the test tube Tousput-

Notation:
Multiplication (Tz'nput_z ’ Tinput_y7 Toutput)

4. Address extraction : This operation creates spe-
cial single strands that correspond to memory
strands in the input test tube. Tinpys is a test
tube that contains memory strands, and Tspyins
is another set of special single strands. Toutput
is an output test tube that contains special sin-
gle strands corresponding to memory strands
in Tippys. Test tubes Typiing and Toyipyt are

defiled below.

Typiint = {AFDoD1A; | 0<i<n—1}
Toutput = {D1AEDq | Sij € Tinput}
Notation:

Extract Address(Tinput, Tsplint, Toutput)

5. Memory strand extraction This opera-
tion extracts memory strands that correspond
to the special single strands obtained by
ExtractAddress. Tinput is a test tube that
contains special single strands obtained by
ExtractAddress, and Typins is a test tube
that contains another set of special single
strands. Tiyipyt is a test tube that initially con-
tains memory strands. At the end of the opera-
tion, Tyytpyt contains the memory strands cor-
responding to special single strands in Tippy;.
Test tubes Tsppins and Toyipye at the end of the
operation are defined below.

Toptint = {AFDoD14; | 0<i<n-—1}
Toutput = {Si,j | A,RDODlAi S Tinput}
Notation:

ExtractMemory(Tinput, Tsplint, Toutput)

The followings are lemmas obtained for the
primitive operations.

Lemma 1 [5] Logic operations for O(n) pairs of
m-bit binary numbers can be executed in O(1) steps
using O(mn) DNA strands. O

Lemma 2 [5] Additions and subtractions for O(n)
pairs of m-bit binary numbers can be executed in
O(1) steps using O(mn) DNA strands.O

Lemma 3 [6] A multiplication of a pair of m-bit bi-
nary numbers can be executed in O(log m) steps us-
ing O(m?) DNA strands. O

Lemma 4 [7] Address extraction can be executed in
O(1) steps using O(1) DNA strands. O

Lemma 5 [7] Memory strand extraction can be ex-
ecuted in O(1) steps using O(1) DNA strands. O

3 Representation of floating point
numbers

The floating point is the most common representa-
tion for real numbers on conventional computers.
The most common formula for the floating point is
IEEE Standard 754 [8]. In the standard, each float-
ing point number consists of three components: the
sign bit s, the exponent e, and the mantissa f. Us-
ing these components, a real number is written as
follows.
(-1)* x f x 2¢

In the above expression, s is the binary bit such that
s = 0 in case that the floating point number is posi-
tive, otherwise, s = 1.

The exponent e is a binary number of g + 1 bits,
and represents both positive and negative numbers.
In the IEEE standard, a bias is added to the actual
exponent and stored in e because e is kept to be
positive. In other words, the value stored in e is
a + 2971 — 1 if the actual exponent is a. For ex-
ample, in case that ¢ = 8, 127 is stored in e if the
actual exponent is 0. In addition to the above, we as-
sume that the left most bit of the exponent is a sign
bit of the exponent because we execute subtraction
between exponents in our procedures.

The mantissa f is a binary number of 2m + 1
bits, and represents precision bits of a real number.
We also assume that the leftmost bit of the mantissa
is a sign bit of the mantissa because we execute sub-
traction between mantissas in our procedures. The
next m bits represent the integer part, and the final
m bits represent the decimal part. We assume that
the mantissa is normalized so that 1 < f < 2.

We show an example of the floating point num-
ber in case that ¢ = 8, m = 4, and the real number
is —4.

s =1, e=010000001, f = 00001.0000

In this paper, we assume that the following three
kinds of memory strands, which are S; ,, E; ; and
F; i, represent the sign bit, the exponent, and the
mantissa of a floating point number. In the follow-
ing description, the valuable ¢ denotes an address,
and the variable m denotes the number of bits of the
decimal or integer part of the mantissa.

Sim = D14;BnCoC1V;mDo
Ei; = D1AB;CoC1Vi;Do (0<j<q)
Fir = D1AiByCoC1VigDo (—m < k <m)

We also assume that s;, e; and f; are binary num-
bers that denote the sign bit, the exponent and the
mantissa, which are stored in address 3.

Input and output of the procedures for addition
or multiplication are the following test tubes. In the
description, x and y are addresses in which the float-
ing point numbers X and Y are stored, respectively.
A result of the procedure is stored in the address z.
(Input)

Ts = {Siml|ie{z,y}}
Te = {Ez,] |Z€{$>y}, OSJSQ}
Tf = {E,k |i€{x7y}a —mSkSm}



(Output)

Tans_s = {S:c,m}
Tans_e = {E:c,j | 0< .7 < q}
Tans-f = {Fz,k | -m<k< m}

4 Procedures for addition of float-
ing point numbers

In this section, we first propose two procedures for
an addition of floating point numbers. The first
procedure executes an addition of a pair of float-
ing point numbers in O(logm) steps using O(m?)
DNA strands, and the second procedure executes the
same addition in O(1) steps using O(m?2™) DNA
strands. We also proposed a procedure for additions
of O(n) pairs of floating point numbers. The pro-
cedure runs in O(1) steps using O(nm?22™) DNA
strands. Due to space limitation, we describe out-
line of the procedures only. (See [19] for details of
the procedure.)

4.1 The first procedure for addition

We first describe an overview of the procedure,
which is called FloatAddl. The basic steps of the
procedure FloatAdd]l are as follows.

Step 1 : Exchange the values between X and Y if
ey > €.

Step 2 : Compare the exponents, and exit the pro-
cedure if the difference is larger than m.

Step 3 : Shift the mantissa of Y right by an amount
equal to the difference between the exponents.

Step 4 : Compute 2’s complements of two mantis-
sas of X and Y. Then, add two computed
complements, and compute 2’s complement
of the result.

Step 5 : Normalize the mantissa, and adjust the ex-
ponent.

In Step 1, we compute e; — e, and exchange
the values between X and Y if the result of the sub-
traction is negative. In Step 2, we subtract m + 1
from the difference between the exponents, which is
computed in Step 1. Then, we output X and exit the
procedure if the result of the subtraction is positive.

In Step 3, we first create the candidates, which
are all possible right-shifted values of the mantissa
fy- If fy = 00001.0000, the candidates R,, (0 <
w < m) are shown in Table 1. We next select actual
shift amount, which is equal to the difference be-
tween the exponents, from all possible shift amounts
Zy (0 < w < m). The selection is executed by sub-
tracting the difference between the exponents from
all possible shift amounts. The operation is shown
in Table 2 in case that the difference is 2. In the ta-
ble, D denotes the difference. In this case, Rs is the

Table 1: An example of candidates

w Ry

01(00001.0000
1100000.1000
2100000.0100
3100000.0010
4100000.0001

Table 2: Result of Step 3

(Zw D[ Zyw—D Ry,
0 2] -2 00001.0000
1 [2] -1 00000.1000
2 |2 [0] [[00000.0100]
3 ]2 1 00000.0010
4|2 2 00000.0001

value shifted right by an amount equal to the differ-
ence.

In Step 4, we compute 2’s complements of two
mantissas of X and Y because input floating point
numbers may be negative numbers. Then, we add
two computed complements, and compute 2’s com-
plement of the result since the mantissa must be kept
positive.

In Step 5, we normalize the result of the addition
according to the following three cases.

Casel : 2 < f, < 4,thatis, f = 0001k, * * * *
Case?2 : 1< f, <2, thatis, f; = 00001. * % * *
Case3 : 0 < f, < 1,thatis, f; = 00000. * * * x*

In Case 1, we shift the mantissa right by 1 bit, and
add 1 to the exponent. In Case 2, the result of an
addition is the normalized number , and we leave
the result as it is. In Case 3, we create the candi-
dates L,, (0 < w < m) , which are all possible
left-shifted values of the results. Then, we select the
normalized value from the candidates, and subtract
the shift amount from the exponent.

We next list test tubes used in the procedure in
the following. In the following description, we as-
sume that « is an arbitrary constant.

Tshift_r1: The test tube Typ;ps 1 contains the
memory strands R} +uw,x(0) that store the can-
didates, which are all possible right-shifted
values of the mantissa f,. We also assume
that L 1 are binary numbers denoted by the
above memory strands.

Tsnife1n - The test tube Tpips g1 contains the mem-
ory strands Ll +w,k(0) that store the candi-
dates, which are all possible left-shifted val-
ues of the result of an addition. We also as-
sume that I, +w are binary numbers denoted
by the above memory strands.



Tipige gy - The test tube Tspife 11 is copied to the test
7
tube Tp; ps 41

Tvai_r1 - The test tube Tyq;_»1 contains the memory
strands Zg}kw,j that denote all possible shift
amounts for the exponent alignment. We also
assume that z(§1+w are binary numbers denoted

by the above memory strands.

Tvai_11 - The test tube T,y ;1 contains the memory
strands Zf}_kw’j that denote all possible shift

amounts for the normalization. We also as-
sume that 2.} - are binary numbers denoted

by the above memory strands.

Te sup: The test tube T, g, stores the difference
between the exponents.

Tpiint1 : The test tube Tpping contains the single
strands that are used for ExtractAddres and
EzxtractMemory.

To : The test tube T stores the memory strands
whose values are 0.

Ti : The test tube 77 stores the memory strands
whose values are 1.

Tiemp - The test tube Ty, is temporarily used for
P N P porarily
various operations.

Tirash - The test tube T},.q4p is used to discard need-
less DNA strands.

In addition, we define the memory strands Ng ;,
which denote a value m + 1, for the procedure. Ng ;
is given as follows. (We assume that (3 is an arbitrary
constant, and that ng is a binary number denoted by
Ngj.)

Ngj = D1AgB;CoC1Vp ;Do (0<j<q)

We also define the memory strands Os; and
Os ., which both denote the value 1, for the proce-
dure. Os; and Og . are given as follows. ((We as-

sume that ¢ is an arbitrary constant, and that og and
olg are binary numbers denoted by O, ; and O x. )

Os5; = D1As;B;CoC1Vs;Dg (0<5<q)
Osr = D1AsBrCoC1VsiDy (—m < k < m)

We now describe the basic steps of the proce-
dure FloatAddl. In the following description, we
assume that 0 < j < ¢, -m < k < m, and
0<w<m.

Procedure FloatAddl

Step 1 Exchange the values between X and Y if
ey > €.

(1-1) Execute the subtraction e; = e; — ey in the
test tube T, and store the result in the test tube
Te_sub-

(1-2) Extract the sign bit of the result of (1-1) from
Te_sup if the value of the bit is 1, and store the
extracted memory strands in the test tube 77
by Separation. Then, if any memory strand
is detected in T7 by Detect, e, is larger than
e;. Therefore, exchange the sign bits, the ex-
ponents, and the mantissas between X and Y’
by Logic in the test tubes T, Te, and T}, re-
spectively.

(1-3) Execute the subtraction e; = e; — ey in T
again, and store the result in T _gyp.

Step 2 Compare the exponents, and exit the proce-
dure if the difference is larger than m.

(2-1) Copy Te_sup to the test tube Tiernyp, and merge
the memory strands Ng ; that denote a value
m + 1 t0 Tiemp. Then, subtract m + 1 from
the difference between the exponents.

(2-2) Extract the sign bit of the result of (2-1) from
Tiemp if the value of the bit is 0, and store the
extracted memory strands in the test tube Tp
by Separation. Then, if any memory strand
is detected in Tj by Detect, the difference be-
tween the exponents is larger than m. There-
fore, output the memory strands Sz 1, Ez j,
and F i, to the test tubes Tons_s, Tans_e, and
Tons_f» respectively. If no memory strand is
detected in Tp, continue the procedure.

Step 3 Shift the mantissa of Y right by e; — e, bits.

(3-1) Extract F ; from the test tube 7Y, and store
the extracted memory strands in the test tube
Tshift_r1 by Separation. Then, copy fy
to 7l by Logic, and return Fyj to Ty by
Separation.

(3-2) Shift L right by 1,2,...,m bits in paral-
lel, and store each of the shifted values in
R}x+1,k: R¢11+2,k’ ce Ré_’_m’k by the follow-
ing operations using Logic.
for (9 =0;9 < [logm]|;9 ++)

Va+w+29,k—2g = Va+w,k 3

(3-3) Merge the test tube T4 1 that contains

1
Zgtw,j 0 Te_sub, and execute the subtrac-
tions 25Y,, = 20L,, — (€z — ey) in Tp_gyp in

parallel. Then, if the result whose address is
a+t (t € w) denotes the value 0, the candi-

date R}l +; denotes the value shifted right by
ez — ey bits.

(3-4) Extract the memory strands whose values are
1 from T¢_gyp, and store the extracted memory
strands in T3 by Separation. Then, all bits of
the result of (3-3) that denote the value O are
stored in T,_g,p. In other words, the other re-
sults of the subtractions in (3-3) have at least
one bit whose value is 1. Therefore, extract
the result of (3-3) that denotes the value O
from T,_syp, and store the extracted memory
strands in Temp. Then, eliminate the memory



strands except Ré +t that denotes the value
shifted right by e, — e, bits from Tp; 7 1 by
ExtractAddress and ExtractMemory.

(3-5) Extract F} ; from T, and store the extracted
memory strands in Typip: 1 by Separation.
Then, copy the right-shifted value to f, by
Logic, and return Fy, ;. to Ty by Separation.

Step 4 Compute 2’s complements of two mantissas
of X and Y. Then, add two computed com-
plements, and compute 2’s complement of the
result.

(4-1) Extract the memory strands whose values are
1 from T, and store the extracted mem-
ory strands in 77 by Separation. Then, ex-
tract the mantissas that do not correspond
to the memory strands in 77 from Ty, and
store the extracted mantissas in Tiemp by
Extract Address and ExtractMemory.

(4-2) Compute NOT for each bit of the mantissas
in Ty by Logic. Then, merge the memory
strands Os , that denote the value 1 to T, and
add the results of the NOT and the value 1 in
parallel.

fz:frt

(4-4) Extract the sign bit of the result of (4-3) from
Ty, and store the extracted memory strands in
T’tfemp by Separation. Then, copy Tiemp to
Tans_s, and compute 2’s complement of the
result of (4-3).

(4-3) Merge Ttemf, to T, and execute the addition
"

Step 5 Normalize the mantissa, and adjust the ex-
ponent.

We normalize the result of the addition ac-
cording to the following three cases.

Casel : 2< fp <4,thatis,
Sz = 0001x. * % * %
Case?2 : 1< fp < 2,thatis,
fz = 00001. * * * x
Case3 : 0< f; <1,thatis,
fz = 00000. * * * *

(5-1) Extract F;; from T, and store the extracted
memory strands in 5"1 by Separation if the
value of the bit is 1. Then, if any mem-
ory strand is detected in 77, proceed to (5-2)
since the result of an addition corresponds to
Case 1, otherwise, proceed to (5-3).

(5-2) First, merge T3 to Ty, and shift the mantissa
right by 1 bit by Logic. Then, output the
shifted mantissa to 7T,,s_s. Next, merge the
memory strands Oj ; that denote the value 1 to

T.,, and execute the addition e, = e, + o’. Fi-

nally, output the exponent to Tgps_, and exit
the procedure.

(5-3) Extract F; o from T}, and store the extracted
memory strands in 5‘1 by Separation if the
value of the bit is 1. Then, if any mem-
ory strand is detected in 77, proceed to (5-4)
since the result of an addition corresponds to
Case 2, otherwise, proceed to (5-5) since the
result corresponds to Case 3.

(5-4) In Case 2, since the result of (4-3) is the nor-
malized value, output E; ; and F ;. t0 Tyns e
and T;,,_s, respectively, and exit the proce-
dure.

(5-5) In Case 3, since the process of normalization
is similar to Step 3, we explain it briefly.
First, merge T to the test tube Tip;5¢ 31, and

copy fz to IL by Logic. Then, return Fypto
Ty by Separation.

(5-6) Shift 1L left by 1,2,...,m bits in par-
allel, and store the shifted values in
Liyijo Lo+ s Liymp  respectively.
These operations are almost the same as
(3-2). Then, L., denote the candidates
for the normalized value.

(5-7) Copy Tspift_n to the test tube T%,; 111 tO pre-
serve the values of the candidates for the nor-
malized value.

(5-8) Merge O;) that denote the value 1 to
T!pi 411> and execute the subtractions I, ,,
lo+w — Of in parallel in T7,; ;. Then,
eliminate the results that denote negative val-
ues from Ts’hift 1 by ExtractAddress and

Extract Memory.

(5-9) Merge Og k. to Typ;f, 41 again, and subtract 1
from the results of (5-8) in parallel. Then, if
(1L — of) — of (t € w) is negative, 1 <
11,4 < 2, thatis, I}, is the normalized value.

(5-10) Eliminate the memory strands except
L} .r (t € w) that denote the normalized

value from Tspf¢ 11 by Extract Address and
ExtractMemory.

(5-11) Eliminate the memory strands except Z%},, ;

whose address corresponds to the result
of (5-10) from the test tube Tyq 1 by
ExtractAddress and ExtractMemory.

(5-12) Merge Tyq 11 to T, and execute the subtrac-
tion e; = e; — 2!, ,,. Then, output the result
t0 Tans_e-

(5-13) Merge T} to Tspifs 1, and copy the normal-
ized value to f, by Logic. Finally, output F j,
to Tons_f by Separation.

(End of the procedure)



Although we omit details of the procedure due
to space limitation, we obtain the following theorem
for the above procedure FloatAddl. (See [19] for
details of the procedure. )

Theorem 1 The procedure FloatAddl, which
computes an addition of a pair of floating point
numbers whose exponents and mantissas are bi-
nary numbers of q and m bits respectively, runs
in O(logm) steps using O(m?) different additional
DNA strands. O

4.2 Other procedures for addition

We obtain two more theorems for addition with
DNA molecules. We also omit details of the pro-
cedures due to space limitation (See [19] for details
of the procedure. )

Theorem 2 An addition of a pair of floating point
numbers, whose exponents and mantissas are binary
numbers of q¢ and m bits respectively, can be com-
puted in O(1) steps using O(m?2™) different addi-
tional DNA strands. O

Theorem 3 Additions of O(n) pairs of floating
point numbers, whose exponents and mantissas are
binary numbers of q and m bits respectively, can be
computed in O(1) steps using O(nm?2™) different
additional DNA strands. O

5 Procedure for multiplication

In this section, we propose a procedure for multi-
plication of floating point numbers. The procedure,
which is called FloatMultiplication, executes a
multiplication of a pair of floating point numbers in
O(log m) steps using O(m?) DNA strands.

The procedure for multiplication is simple in
comparison with the procedures for addition be-
cause we use known algorithms for multiplication
[61.

We first show test tubes that are not empty at the
beginning of the procedure.

T3, : The following test tube T3 contains the memory
strands By ; that denote a bias value 2¢-1_1,
( We assume that b is an arbitrary constant. )

Ty={Bp; | 0<j<gq}

We now show an overview of the procedure
FloatMultiplication. In the following descrip-
tion, we assume that 0 < j < ¢q,—m < k < m.

Procedure FloatMultiplication

Step 1 Subtract a bias value 27~ — 1 from e,, and
add the result to e, that is, execute e, = e; +

(ey - bb).

Step 2 Execute the multiplication f; = f; x fy by
Multiplication.

Step 3 Normalize the result of a multiplication.

(3-1) Extract Fy 1 for T} if the value of the bit is 1,
and store the extracted memory strand in T}
by Separation. Then, if any memory strand
is detected in 77 by Detect, proceed to (3-2),
otherwise, output the sign bit and the mantissa
t0 Tyns_e and Tgys_f, Tespectively, and then,
proceed to Step 4.

(3-2) Merge T1 to Ty, and shift the mantissa right
by 1 bit by Logic. Then, output the mantissa
t0 Tons_ f

(3-3) Merge the memory strands Oj ; that denote
the value 1 to T, and add 1 to the exponent.
Then, output the exponent to Tps_e.

Step 4 Compute s; = s; @ s, in T, by Logic, and
output the result to Tgps_s.

(End of the procedure)

5.1 Details of the procedure

In this subsection, we describe details of the pro-
cedure. We first show the address pairs for addi-
tions and a subtraction, the single strands that are
necessary for logic operations that we execute in
Float Multiplication in the following.

R: The set of address pairs R = {(z,9)]t) €
{v, 61}

Ry : The address pair R, = {(y,b)}

Ly : The set of single strands L. is used to com-
pute sz @ sy.

L1 : The set of single strands L, is used to shift
fz right by 1 bit.

We summarize details of the procedure
Float Multiplication in Figure 1.

We finally consider the complexity of the above
procedure. Step 1, Step 3, and Step 4 consist
of a constant number of DNA manipulations, re-
spectively. In Step 3, we execute Multiplication
that runs in O(log m) steps using O(m?) additional
DNA strands. Therefore, we obtain the following
theorem for the above procedure.

Theorem 4 The procedure FloatMultiplication,
which executes a multiplication of a pair of floating
point numbers whose exponents and mantissas are
binary numbers of g and m bits respectively, runs
in O(log m) steps using O(m?) different additional
DNA strands. a

6 Conclusions

In this paper, we proposed procedures for floating
point arithmetic operations with DNA molecules.
We first proposed data structure for representing
floating point numbers with DNA molecules. We
next proposed two procedures for an addition of



Procedure F'loatMultiplication(Ts, Te, T, Tans_s
) Tans_e7 Tans_f)

/* Step 1: ez + (ey — bp) */
Separation(Te., {Ay}, Tp);
Subtraction(Ty, Ry, Tt);
Merge(Te, Tp);
Addition(Te, R, T.);

/* Step 2: Multiplication of the mantissas */
Separation(Ty, {Ay}, Ty);
Multiplication(Ty, Try, Tf);

/* Step 3: Normalization */
/% (3-1) */
Separation(Ty, {B1CoC11}, Th);
if (Detect(T1) == "yes”){
/% (3-2) */
Merge(Ty,T1); Logic(Ty, Lr1, T¥);
Merge(Tans_g,Ty);
/% (3-3) */
Merge(Te, {Os,;}); Addition(Te, R, Tans_e);

else { Merge(Tuns_e, Te); Merge(Tans_f,T¥); }

/* Step 4: Determination of the sign bit */
Logic(Ts, Leg, Ts);
Separation(Ts,{ Az}, Tans_s);

Figure 1: A procedure for multiplication.

two floating point numbers. The first procedure
runs in O(log m) steps using O(m?) DNA strands,
and the second procedure runs in O(1) steps using
O(m?2™) DNA strands. We also proposed a pro-
cedure, which runs in O(1) steps using O(nm?2™)
DNA strands, for additions of O(n) pairs of two
floating point numbers. We finally proposed a proce-
dure for a multiplication of two floating point num-
bers. The procedure runs in O(logm) steps using
O(m?) DNA strands.

Since our results are based on a theoretical
model, some defects are involved in the procedures
for practical use. However, every DNA manipula-
tion used in the model has been already realized in
lab level, and some procedures can be implemented
practically. Therefore, we believe that our results
play important role in the future DNA computing.
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