BN LS SRS 2007—AL—113 (7)
IPSJ SIG Technical Report 2007,77,/3

2 HIRIRCEETE RIS D EEWE T To—F

AR SR L, TR VE— 2, M RERE S,
B % 8 %H 4, KA #35 5, Arne Lokketangen®
VREKRE, 2 R Y) UV AT LAY Y a—Ya v X 3 EHERE,
4 HBOKE, MTEFEB A, © Molde College

BN — MIRRA BRI ERT I 2 UMK EREE2E X, £OWE 7 /0—F o805 OCRUME %12
£95, JOMEIR TNRNTOBEELEFTTRELLN— MEATHE T WO ESHBERE: LTERLT
5, KFRETI, ETETIARBN-MEAEZERL, TON—MNESZBETS LW EEL2 KEL.,
BRIZ, ROZNV—PEEGIIHIETIESWERELZBET, AMEOME B, LWHEEES 0121,
N—= b EEDOY A APKREBETLONRLEHEMEEZR/R O LM/ ING, KRETIE, V— NEAD
BECS 7S VY aBHOBRAREATS T, TOEREMS, FEERIZLY, HBAREHE2ELE
FIEEMFIIZ T U T, REREOMR 2 RT3,

A set covering approach for a generalization
of the pickup and delivery problem with time windows
by allowing general constraints on each route

Hideki Hashimoto!, Youichi Ezaki?, Mutsunori Yagiura3,
Koji Nonobe*, Toshihide Ibaraki®, and Arne Lgkketangen®

! Kyoto University, 2 Canon System Solutions Inc., 3 Nagoya University
4 Hosei University, ® Kwansei Gakuin University, ® Molde College

We consider a generalization of the pickup and delivery problem with time windows by allowing general
constraints on each route, and propose a heuristic algorithm based on the set covering approach, in which
all requests are required to be covered by a set of feasible routes. Our algorithm first generates a set
of feasible routes, and repeats reconstructing of the set by using information from a Lagrangian relax-
ation of the set covering problem corresponding to the set. The algorithm then solves the resulting set
covering problem instance to find a good feasible solution for the original problem. We conduct compu-
tational experiments for instances with various constraints and confirm the flexibility and robustness of
our algorithm.

1 Introduction

The pickup and delivery problem with time windows (PDPTW) is one of the useful variants of the vehicle
routing problem with time windows (VRPTW) [11, 13]. In this problem, we are given a set of requests,
where each request signifies the delivery of a demand from the origin to the destination. The origin and
destination of each request must be visited by the same vehicle in the order of origin and destination.
Each service (i.e., pickup at an origin or delivery at a destination) must start within a given time window
(time window constraint). Each vehicle has a capacity and the total amount of loads of a vehicle cannot
exceed its capacity (capacity constraint).

This problem has been widely studied recently. Savelsbergh and Sol [12] proposed a branch and price
algorithm based on a set partitioning formulation. Dumas, Desrosiers and Soumis [3] proposed a column
generation scheme using a constrained shortest path as a subproblem. Many heuristic algorithms have also
been proposed. Nanry and Barnes [7] presented a reactive tabu search approach. A variant of the genetic
algorithm called a grouping genetic algorithm was presented by Pankratz [8]. Li and Lim [6] proposed
a tabu-embedded simulated annealing. They also generated new instances, and tested the performance
of their algorithm on them. Bent and Van Hentenryck [2] and Ropke and Pisinger [10] proposed large
neighborhood search based algorithms, and obtained good results on the benchmark instances of Li and
Lim.

In this paper, we consider a generalization of the pickup and delivery problem with time windows by
allowing general constraints on each route (abbreviated as PDP-GCER). We assume that the constraints
on each route satisfy the monotone property:

— 47 —

If aroute consisting of a set of requests satisfies a constraint, then any subroute (i.e., consisting
of a subset of the requests) also satisfies the constraint.

Any monotone constraint is allowed provided that we can determine its feasibility in a reasonable time.
We also assume the traveling times satisfy the triangle inequality, which implies that capacity and time
window constraints satisfy the monotone property. We note that many constraints that appear in practical
situations are often monotone.

In our algorithm, the problem is formulated as the set covering problem (abbreviated as SCP), in
which all requests must be covered by a set of feasible routes. That is, an element and a set of SCP
correspond to a request and a route, respectively. Since enumerating all feasible routes is not realistic
for reasonable problem sizes, we try to construct a set of good routes which is of manageable size but
has sufficient diversity. We construct the initial set of routes by an insertion method, and then repeats
reconstruction procedure. In the reconstruction procedure, we estimate the attractiveness of each route
by the relative cost of the Lagrangian relaxation of the set covering problem with the current set of
routes. We generate new routes from those with small relative costs by applying five types of operations.
The algorithm then solves the resulting set covering problem instance to find a good feasible solution
of PDP-GCER. Although a solution of SCP may cover a request more than once, we can transform it
into a feasible solution of the original problem because of the monotone property of constraints. This
type of approach, called column generation, tends to be efficient for problems with complicated or tight
constraints. Note that our algorithm is a heuristic algorithm though the column generation method is
usually used for exact algorithms. For PDPTW, Savelsbergh and Sol [12] and Dumas, Desrosiers and
Soumis {3} proposed exact algorithms using the column generation approach based on a set partitioning
formulation of the problem.

To confirm the flexibility and efficiency of our algorithm, we conduct computational experiments. We
first confirm the efficiency of using the information from the Lagrangian relaxation, and then compare
our algorithm with a local search type algorithm which we prepared for the purpose of comparison, and
confirm the flexibility of our algorithm.

2 Problem Definition

Let G = (V, E) be a complete directed graph with vertex set V = {0,1,...,2n} and edge set E = {(4, j) |
i,j € V,i # j}. In this graph, vertex 0 is the depot and other vertices are customers where a load is
picked up or delivered. Each edge (4,) € F has a traveling cost ¢;; > 0 and a traveling time t;; > 0. The
traveling costs and times satisfy the triangle inequalities, ¢ + cr; > ci; and ti +tr; > ti; fori,j, ke V.
Let H = {1,2,...,n} be the given set of requests. Each request h € H signifies the delivery from the
origin h € V' to the destination A +n € V' (for convenience, we call a request and its origin by the same
name h). The vertices h and h+n must be visited by the same vehicle (coupling constraint), and % must
be visited before A +n (precedence constraint). We consider the problem of serving all requests by a fleet
of homogeneous vehicles. Each vehicle must start from the depot and return to the depot. Let S, be the
set of requests served in route r, m, = |S,|, and o, be the sequence of customers to be visited, where
ar(k) denotes the kth customer in r. We assume 0,(0) = o,.(2m, + 1) =0,

In this paper, we consider various constraints on each route. Each customer ¢ € V has a handling time
s; for the service and a time window [e;, [;], where e; is the release time to serve ¢ and [; is the deadline of

the service. Each request h consumes g}, units of renewable resources (p = 1,2,..., p) while it is loaded,
and consumes g5o" units of nonrenewable resources (p' = 1,2,...,). Each vehicle has capacities Qy for

renewable resource p and Qp°" for nonrenewable resource p’. The total load of each renewable resource
p at each customer in route r must not exceed the capacity Qy; e,

> g < Qi for any k=0,1,...,2m,.
h€Srort (h)<k<or'(h+n)
The total load of each nonrenewable resource p’ must be within Q2°; i.e.,

p
non non
E th/ < Qp' B

heS,

We further introduce Last-In First-Out (abbreviated as LIFO) constraint. That is, if a request & is
picked up before a request k', either h is delivered before the pickup of h' or after the delivery of #/; i.e.,
if o,1(h) < o7 1(W), either 0,7 (h) < 0,1 (A) < o7 (K +n) < o7 (h4n) or o, (h) < oi (A +n) <
o, (W) < 071 (B’ +n) must hold. Note that LIFO constraint satisfies the monotone property. PDPTW
has the time window constraint and one dimensional renewable resource (i.e., p = 1 and 7 = 0). Hence,
in this paper, we assume that the problem has the time window constraint and and p > 1. As for the
LIFO constraint, we consider both cases where the constraint is imposed and not. In addition to the
above constraints, any monotone constraint can be introduced, assuming that we have an algorithm to
efficiently test its feasibility.

Let v be the number of vehicles used in a solution. A feasible solution is a set {1, 0,...,0,} of
routes such that each o, satisfies all the given constraints and each request is serviced exactly once. In
the literature, it is often considered that the primary objective is to reduce the number of vehicles, and
the secondary objective is to minimize the total traveling cost. However, for convenience, we adopt the
following objective function:

v
Mo,

r=1

where C, = a + Zf;"o' Cop(i)or(i+1) (1€, Cr is the sum of a fixed cost o for using a vehicle and the
traveling cost of 7). If we need to reduce the number of vehicles, we set o to a large value compared with
the traveling cost.

We remark that the following property holds because the traveling cost satisfies the triangle inequality
and constraints on each route satisfy the monotone property:

Property 2.1 Given a feasible route, any request can be deleted from the route without violating the
constraints and without increasing the cost.

3 Set Covering Approach

The PDP-GCER can be formulated as the following set covering problem:

SCP(R*) minimize Z Crz,
reR*
subject to Z anrzr > 1, YheH
reR*
z € {0,1}, Vr € R*

where R* is the set of all feasible routes, and an, = 1 if request A is in route r € R*, otherwise ax, = 0.
Note that in this formulation we can write > reR» OhrZr > 1 instead of > rers GhrZr = 1 by Property 2.1.

However, enumerating all feasible routes is not realistic because the size of R* is exponentially large.
We therefore choose a subset R of manageable size from all feasible routes B* and solve the corresponding
set covering problem SCP(R). In order to solve SCP(R), we use the algorithm proposed by Yagiura et
al. [14]. Finally we obtain a solution of PDP-GCER from the solution of SCP(R). The solution to
SCP(R) may contain more than one route serving the same requests. In this case, based on Property 2.1,
we can remove the over-covered requests one by one in a greedy way until no such request remains.

The following is the outline of our algorithm:

1. Generate a set R of feasible routes.
2. Solve the resulting instance of SCP(R).
3. Construct a feasible solution of PDP-GCER from the solution of SCP(R).

The main part of our algorithm is how to determine the set R. To obtain a good solution, we need to
choose R very carefully. For instance, if we generate a large set R that has only similar routes, the quality
of a solution will be poor. On the other hand, if we can construct a small set R of good routes having

sufficient diversity, then we can expect a good solution. The details of generating routes will be described
in Section 4.

4 Route Generation

The generation of a set of routes consists of two phases. The first phase is the initial construction phase,
which generates a certain number of routes for each request by an insertion method. The second phase is
the reconstruction phase, which chooses good routes from the current set of routes, and generates their
neighbor routes.

In our algorithm, we may possibly generate a route that has the same requests with that of a route
already in R. To avoid such duplication, we use a hash table, and check whether such a route exists in
R or not whenever we add a new route into R. If a route with the same requests exits, we choose the
route having the lower cost. Thus we keep a single route which has the lowest cost among those which
have already been generated and have the same requests.

4.1 Initial Construction Phase

The initial construction phase starts from the empty set R = §), and generates a certain number of routes
for each request by an insertion method. The insertion method first prepares a route that contains a
single request and the depot, and then repeats inserting requests into the route by the criteria described
below. When the route becomes maximal (i.e., no more request can be inserted to it), we add it to R.

The insertion cost of request A into route r when h is inserted between o, (k) and o,.(k+1) and n+h
is inserted between or.(k') and o,.(k' + 1) (k' > k) is defined by

Cor(k)h t Chhtn F Chin,on (k1) — Cop(k)or(k+1)s if k=K
(R, kyk') = Cor(k)h + Chor(k+1) — Cop(R)or(k+1)
FCor(i)htn + Chin,or(k+1) ~ Cop(k)on(k'+1), Otherwise.

Let &7(h) be the minimum insertion cost of request % into r among those k and k’ whose resulting
routes are feasible. If all combinations of k¥ and k' are infeasible, we set §™(h) = oo. However, if
we always insert a request which achieves the minimum insertion cost, the resulting set of routes may
not have sufficient diversity, which is not desirable in order to achieve high performance of PDP-GCER.
We therefore incorporate randomness in the algorithm based on the idea often used in GRASP (greedy
randomized adoptive search procedure) [4]. Let D, be the set of requests h with the x (s is a parameter)
smallest values of 6" (h)(< co) among those in H \ S, (i.e., the requests not in route 7). Then, in each

iteration, we choose a request h randomly from D, and insert it into r at its best position achieving
gmin(p),

4.2 Reconstruction Phase

In the reconstruction phase, we modify the set of routes by using the Lagrangian relaxation of the set
covering problem. We first calculate the Lagrangian multipliers by a subgradient method, and select
routes from the current set R by using the relative cost. Next we generate routes by applying five types
of operations to the selected routes, and update the set R of routes.

4.2.1 Selection of Routes.

From the current set R, we first select some number of routes for use in generating new routes. We estimate
the attractiveness of a route by its relative cost for the Lagrangian relaxation problem of SCP(R).
The Lagrangian relaxation problem of SCP(R) for a given nonnegative n = |H| dimensional La-

grangian multiplier vector u= (u1,uz, ..., u,) is defined as follows:
L('u,) = minme{o’l}|m ZCTJL‘T + Zuh (1 — Zahr:b‘,->
rER heH reR (1)
= Hﬂnme{o,l}lﬂl Zcr(u)wr + Zuhy
rcR heH

where cr(u) = Cp — 3, anrun is the relative cost associated with r. An optimal solution x(u) to
problem (1) is obtained by

1 if ep(u) < 0
zr(u)=<0orl ifc.(u)=0
0 if e, (u) > 0.

It is known that L{u) gives a lower bound on the optimal value of problem SCP(R). If a good Lagrangian
multiplier vector u is obtained, the relative cost c.(u) gives reliable information on the attractiveness of
fixing 2 = 1, because any 7 with &, = 1 in an optimal solution of SCP tends to have a small ¢, (u) value.

We calculate the Lagrangian multiplier » for SCP(R) by a heuristic approach called the subgradient
method [1, 5, 14], because computing an optimal w* that maximizes L(u) directly is usually quite expen-
sive. We evaluate a route r by its relative cost c.(u) of the obtained Lagrangian multiplier u. Let R’
be the set of routes with an (a is a parameter) smallest values of c.(u) among those in R. Furthermore,
for each request h € H, let Rj be the set of routes with the b (b is a parameter) smallest values of ¢, (u)
among those in R that include k, and then let R” = | J, ., R},. We use R’ U R” for two purposes: (1) to
choose the set of routes from which new routes are generated, and (2) to reduce the number of routes to
be kept in R when the size of R becomes too large.

4.2.2 Neighbor Routes of a Route.

We introduce three methods to generate neighbor routes of a route r.

Insertion This operation inserts a request h into r at the best position (i.e., at the pair of positions
that achieves 6(h)). We apply this operation for each request (which is not in), and all feasible
routes obtained by these operations are generated.

Deletion This operation deletes one request from r. We apply this operation for each request in r,
and all routes obtained by these operations are generated. Note that the feasibility of the route is
preserved by Property 2.1.

Swap This operation deletes one request from r and then inserts one request which is not in r at the
best position. We apply this operation for all pairs of a request in 7 and another not in r. All
feasible routes obtained by these operations are generated.

4.2.3 Neighbor Routes of Two Routes.
In addition, we use two operations to generate neighbor routes of two routes r and 7.

2-opt* method This operation is similar to the 2-opt* neighborhood operation proposed in [9]. This
operation is applied to two routes r and r’ that satisfy S, NS = . This operation first constructs
a route by concatenating a former part of r and a latter part of +’ at k and k':

(0r(0),00(1),...,00(k), 00 (K'), o (K +1),...,00(2mpm + 1)).

We choose a random position & of r (i.e., 0.(k)), and then choose the minimum k' such that the
resulting concatenated route is feasible with respect to the time window constraint. However, the
resulting route may not satisfy the coupling or other constraints, and some modification may be
necessary for remedy. To satisfy the coupling constraints, for each violating customer in the route,
it inserts the corresponding customer not in the route at the best position if the feasibilities of other
constraints are preserved; otherwise it deletes the violating customer from the route. Repeat this
process until all requests in the route satisfy the coupling constraint.

Mixing two routes Given two routes r and r/, and a Lagrangian multiplier vector u, this operation
starts from omix = 0, and repeats modifying the current route omiy so that the set of requests in
it becomes closer to that of o, by inserting or deleting different requests between the two routes
Omix and o, Similarly to 6™ (h), we denote by 6™2(h) the minimum increase in the cost when
request h is inserted into opix. In each iteration, the operation chooses the request A that minimizes

5

620 (k) — up (ie., the increase in the relative cost) among those request which are in o+ but not in
the current route omix, and inserts it at the best position of the route provided that the resulting
route is feasible. If there is no such request or all inserting positions make the resulting route
infeasible for all such requests, then it moves to the deletion phase described below. Let

Comix(k—1)omix(k+2) ™ Comix(k—1),h

~Ch,htn = Chin,omu(k+2)s ifk=k+1
r:lix(h’) = Comise(k—1)0mix (k+1) + Comin(k —1)omix(k'+1)
“Comix(k~1),h T Ch,omix(k+1)
= Cormin(k—1),hdn = Chtn,omc(k/ +1)s otherwise.

where omix(k) = h and omix(k’) = h -+ n. In the deletion phase, it chooses the request h with the
minimum &_;, (k) 4+ up (ie., the increase of the relative cost) among those not in o, but in omix,
and removes it from o Letting omix be the new route obtained either by the insertion or the

deletion, we go back to the insertion phase again. All routes obtained during the modifications are
considered as candidates to be added into R.

Computational Experiment

We conducted computational experiments to evaluate the proposed algorithm. The algorithm was coded
in C language and run on a handmade PC (Intel Pentium4, 2.8 GHz, 1 GB memory).

5.1 Efliciency of Using Lagrangian Multiplier

In the reconstruction phase of route generation method, relative cost is used to choose a set of routes to
be used in generating new routes. To confirm the efficiency of this method, we tested two other methods
for selecting a set of routes in the reconstruction phase. For comparison purpose, we solved SCP(R)
with the algorithm by Yagiura et al. [14] (denoted YKI) whenever algorithm Reconstruction outputs R,
and observe the quality of the solution. First method selects the set of routes appearing in the solution

of SCP(R). Second method selects a set of routes randomly from the current R. We conducted the
comparison of these two methods with the method in Section 4.2 that uses the relative cost.

objective value

Figure 1: Three selection methods for type-C

B600(

0 v
—%
s T
| O S . ssonol—_ N B
[4 *— 3 | 94000 \\ \‘l/’ L
~ -
SO \ - e L
82000 ° ° \]
S w00\
\ Random Selaction ¥ g \ Random Selaction W
\ incumbent Solution 3% o \ Incumbent Solution %
80000 \ Retative Cost . % 0000 \ Relative Cost .
i
\ S saoo0 3
78000 \ e
—Y 86000 \.
76000 .
\ 4000 \&*-‘\k‘_ﬁ.\.—
—e
e Y -
74000 82000
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6
number of calls to Reconstruction

7
number of calls to Reconstruction

Figure 2: Three selection methods for type-R

Figures 1 and 2 show the objective values of the solutions of SCP(R) obtained by YKI against the
number of calls to algorithm Reconstruction. Figure 1 shows the result on an instance whose customers
are distributed as clusters (type-C), and Figure 2 shows the result on an instarice whose customers are
distributed randomly (type-R). In both figures, the results of “Relative Cost” are better than the others.
We therefore use the method based on the relative cost in the algorithm Reconstruction.

75‘7

Table 1: Comparison for GC1-GC6

Resource Capacity Ours LS

INST »p T QL Q2 TW LIFO CNV CDIST CNV CDIST

GCl 1 0 200 1000 - 0 208 65624.54 224 72422.65
GC2 3 1 200 1000 - 1 278 95016.41 313 92170.04
GC3 1 0 200 1000 4% 0 142 48421.68 155 56234.36
GC4 1 1 200 1000 [0,00) 0 234 79763.98 212 59545.98
GC5 1 1 200 1000 [0, 00) 1 238 84378.57 212 55065.95
GC6 2 0 200 200 - 0 271 84785.49 276 82716.75

5.2 Comparison of Our Algorithm with LS Type Algorithm

Next, we conducted experiments to confirm the flexibility and performance of our algorithm for PDP-
GCER. We compared our algorithm with a metaheuristic algorithm coded in reference to the algorithm
proposed for PDPTW by Li and Lim [6]. It is based on the simulated annealing and tabu search procedure
based on the same objective function as ours; that is, the primary objective is to reduce the number of
vehicles and the secondary objective is to minimize the total traveling cost. We modify it so that it can
deal with PDP-GCER. The modified algorithm executes the local search in a feasible region under the
constraints of PDP-GCER.

‘We generated the PDP-GCER instances consisting of six groups GC1-GC6 from Li and Lim’s PDPTW
instances [6] by adding various constraints to them. Li and Lim’s instances are categorized into the type-
C1, C2, R1, R2, RC1, RC2. The types C, R and RC represent the distribution of customers. The types
1 and 2 represent the severeness of the time window and the capacity constraints of the instances; the
type 1 instances have severer constraints than the type 2 instances (hence more vehicles are needed). We
chose three instances from those of Li and Lim for each type, and generated new instances from them;
hence each of GC1-GC6 contains 18 instances. In Table 1, columns “p” and “x” represent the number
of renewable and nonrenewable resources. Column “Q1” (resp., “Q2”) represent the vehicle capacities of
type 1 (resp., type 2) instances; that is, we set Qp = Q1 and Q" := Q1 (resp., QF := Q2, Q" = Q2)
for all type 1 (resp., type 2) instances. Column “TW” shows the information about the time window
constraint. In GC4 and GC5, we set the all time windows (i.e., that of all customers and the depot) to
[0,00). That is, the instances are equivalent to those withi no time window. On the other hand, in GC3,
we cut 4% from the original time windows by setting [e;, 1] to [}, 1] such that e} = e; + 0.02(I; — ¢;)
and I = l; — 0.02(I; — e;). For the rest (i.e., GC1, GC2 and GCS6), we adopted the time windows of the
original instances. We imposed the LIFO constraint to GC2 and GC5 as shown in the LIFO column by 1.
The time limit of constructing routes is set to 2400 seconds and the time limit of solving the set covering
problem is set to 1200 seconds. We set the time limit to 3600 seconds for the metaheuristic algorithm.

Table 1 compares the results of our algorithm and those of metaheuristic algorithm. In Table 1, column
“LS” represents the results of metaheuristic algorithm, column “CNV” means the cumulative number
of vehicles and column “CDIST” means the cumulative traveling cost. The results show that for GCl1,
GC2, GC3 and GC6 whose instances have multiple constraints or severe constraints, our algorithm works
efficiently, but for GC4 and GC5 whose instances have weaker constraints, the metaheuristic algorithm
works better than ours. These results confirm our consideration that our algorithm works well on the
instances with tighter constraints, because the number of feasible routes is limited in such cases.

6 Conclusion

We generalized the pickup and delivery problem with time windows by allowing general constraints.
Our generalization can treat any monotone constraints imposed on each route. In our algorithm, we
generate a set of feasible routes and apply the set covering approach. We construct an initial set of
routes by an insertion method and reconstruct the set of routes repeatedly by modifying the routes using
various types of neighborhood operations while reducing the candidate routes by utilizing the Lagrangian
relative costs. The computational results indicated that our algorithm works more efficiently than a

metaheuristic algorithm, if the instances which have tighter constraints. We also confirmed the flexibility
of our algorithm by applying it to instances with various constraints.

References

(1] E. Balas and A. Ho. Set covering algorithms using cutting planes, heuristics, and subgradient
optimization: a computational study. Mathematical Programming Study, 12:37-60, 1980.

(2] R. Bent and P. V. Hentenryck. A two-stage hybrid algorithm for pickup and delivery vehicle routing
problems with time windows. Computers and Operations Research, 33:875-893, 2006.

(3] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time windows.
European Journal of Operational Research, 54:7-22, 1991.

[4] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of Global
Optimization, 6:109-133, 1995.

[5] M. L. Fisher. The lagrangian relaxation method for solving integer programming problems. Man-
agement Science, 27(1):1-18, 1981.

[6] H. Li and A. Lim. A metaheuristic for the pickup and delivery problem with time windows. Inter-
national Journal on Artificial Intelligence Tools, 12(2):173-186, 2003.

(7} W. P. Nanry and J. W. Barnes. Solving the pickup and delivery problem with time windows using
reactive tabu search. Transportation Research Part B, 34:107-121, 2000.

[8] G. Pankratz. A grouping genetic algorithm for the pickup and delivery problem with time windows.
OR Spectrum, 27:21-41, 2005.

(9] J-Y. Potvin, T. Kervahut, B.-L. Garcia, and J.-M. Rousseau. The vehicle routing problem with
time windows part I: tabu search. INFORMS Journal on Computing, 8(2):158-164, 1996.

[10] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Technical report, Department of Computer Science, University
of Copenhagen, 2004.

[11] M. W. P. Savelsbergh and M. Sol. The general pickup and delivery problem. Transportation Science,
29(1):17-29, 1995.

[12] M. Savelsbergh and M. Sol. Drive: Dynamic routing of independent vehicles. Operations Research,
46(4):474-490, 1998.

[13] P. Toth and D. Vigo eds. The Vehicle Routing Problem. Society for Industrial and Applied Mathe-
matics, 2002,

(14] M. Yagiura, M. Kishida, and T. Ibaraki. A 3-flip neighborhood local search for the set covering
problem. Buropean Journal of Operational Research, 172:472-499, 2006,

