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Abstract. This paper shows that it is NP-hard to generate a minimum complete test set for
stuck-at faults on the wires of a reversible circuit. We also show non-trivial lower bounds

for the size of a minimum complete test set.
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1 Introduction

Reversible circuits, which permute the set of input
vectors, have potential applications in nanocomput-
ing [3], low power design [1], digital signal pro-
cessing [6], and quantum computing [4]. This paper
shows that given a reversible circuit C, it is NP-hard
to generate a minimum complete test set for stuck-at
faults on the wires of C'. This is the first result on
the complexity of fault testing for reversible circuits,
as far as the authors know. We also show non-trivial
lower bounds for the size of a minimum complete test
set.

A gate is reversible if the Boolean function it com-
putes is bijective. If a reversible gate has & input and
output wires, it is called a k X k gate. A circuit is
reversible if all gates are reversible and are intercon-
nected without funout or feedback. If a reversible
circuit has n input and output wires, it is called an
n X n circuit.

We shall focus our attention to detecting faults in
a reversible circuit C' which cause wires to be stuck-
at-0 or stuck-at-1. Let W{C') be the set of all wires
of C. W(C) consists of all output wires of C' and
input wires to the gates in C. W(C) is the set of all

possible fault locations in C. For an n x n reversible’

circuit C, a test is an input vector in {0,1}". A test
set is said to be complete for C if it can detect all
possible single and multiple stuck-at faults on W (C).
Patel, Hayes, and Markov [5] showed that for any
reversible circuit C, there exists a complete test set
for C. Let 7(C) be the minimum cardinality of a
complete test set for C.

We first show that it is NP-hard to compute 7(C)
for a given reversible circuit C. Let MTS (Minimum
Test Size} be a problem of deciding if 7(C) < B for

a given reversible circuit C' and integer B. We show
in Section 2 that MTS is NP-complete.
Patel, Heyes, and Markov [5] show a surprising
upper bound for 7(C'). They showed that
7(C) = Ollog|W(C)]) M
for any reversible circuit C. We show the first non-
trivial existential lower bound for 7(C). We show in
Section 4 that there exists a reversible circuit C such
that
7(C)y = Qloglog|W(C))). v
A k-CNOT gate is a (k + 1) x (k + 1) reversible
gate. It passes some k inputs, referred to as control
bits, to the outputs unchanged, and inverts the re-
maining input, referred to as target bit, if the control
bits are all 1. The 0-CNOT gate is just an ordinary
NOT gate. A CNOT gate is a k-CNOT gate for some
k. Some CNOT gates are shown in Fig. 1, where a
control bit and target bit are denoted by a black dot
and ring-sum, respectively. A CNOT circuit is a re-
versible circuit consisting of only CNOT gates. A
k-CNOT circuit is a CNOT circuit consisting of only
k-CNOT gates. Any Boolean function can be imple-
mented by a CNOT circuit since the 2-CNOT gate
can implement the NAND function.
Chakraborty [2] showed that

(C) < n 3)

if C is an n x n CNOT circuit with no 0-CNOT or
1-CNOT gate. We show in Section 5 that there exists
ann x n 2-CNOT circuit C' such that

7(C) = Qlogn). @

@
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Figure 1: CNOT gates.

It is an interesting open problem to close the ex-
ponential gaps between the upper bounds (1) and (3),
and our lower bounds (2) and (4), respectively.

2 Complete Test Sets

A wire w of a reversible circuit C' is said to be con-
trollable by a test set T if the value of w can be set
to both 0 and 1 by T'. A set of wires S C W(C) is
said to be controllable by T if each wire of S is con-
trollable by T". The following characterization for a
complete test set is shown in [5].

Theorem I 4 test set T for a reversible circuit C is
complete if and only if W (C') is controllable by T. B

3 NP-Completeness of MTS

The purpose of this section is to prove the following:
Theorem 1 MTS is NP-complete.

Proof. A minimum complete test set 7" for a re-
versible circuit C' can be verified in polynomial time,
since |T'| = O(log |W{(C)|) by (3). Thus MTS is in
NP.

We show a polynomial time reduction from 3SAT,
a well-known NP-complete problem, to MTS. Let
x = (z1,Z2,...,Z,) and

P(x) = /\ pj
j=1

be a Boolean function in conjunctive normal form in
which each clause p; has 3 literals for j € [m] =
{1,2,...,m}. For a Boolean variable x, literals T
and z are denoted by z° and z?, respectively.

We use generalized CNOT gates for simplic-
ity. A generalized k-CNOT gate has k control bits
Z1,..., % and a target bit . The output of the target
bit is defined as

(P AT A Az Bt

A control bit x; is said to be positive if a; = 1, and
negative if ;; = 0. Notice that a CNOT gate is a gen-
eralized CNOT gate with no negative control bit. No-
tice also that a negative control bit is equivalent to a
positive control bit with a 0-CNOT gate on the input
and output wires. A generalized CNOT [k-CNOT)
circuit is a reversible circuit consisting of only gen-
eralized CNOT [k-CNOT] gates.

We first construct a generalized CNOT gate G for
each clause p;. Let

T53

e il o52
pj = xj \/avj2 ij3 s

where o5 € {0,1} and z;; € {z;|i € [n]} forl € [3].
We construct a generalized 3-CNOT gate G for p; as
follows. The gate GG; has 3 control bits Zj1, Tj2, T3,
and a target bit ¢. A control bit z;; is defined to be
positive if o;; = 0, and negative if 6;; = 1. For an
n x n circuit C and an input vector v € {0,1}", we
denote by C'(v) the output vector of C for v. If I C
{0,1}", we define that C(I) = {C(v)|v € I}. The
following lemma is immediate from the definition of
Gj.

Lemma 1
Gj(z51, 252, Tj3, 1) = (251, %52, 53,77 D t). ]

Lemma 1 means that G; changes the target bit
t for input vector (x;1,x;2,;3,¢) if and only if
pj(zj1, %52, x53) = 0. As an example, for a Boolean
function:

Y(xy,x2,23) = p1Apa,
P = *1VZzVzxs and (5)
p2 = T1VIzVazg,

generalized 3-CNOT gates (37 and (G5 are shown in
Fig. 2, where a negative control bit is denoted by an
empty circle.

We next construct a (2n+1)x (2n+1) generalized
6-CNOT circuit C(¢) for ¢. For z = (z1,za,...,
wn) € {01 1}77., Yy = (y17y2, s 7yn) € {07 l}n,
and t € {0,1}, let (w,y,t) = (x1,22,...,%n,y1,
Y2,---,Yn,t). Let G be a copy of G; with con-
trol bits x’;;, x5, @3, and a target bit ¢ for any j €
{1,2,...,m}. Forany j,h € {1,2,...,m}, G,
is a generalized 6-CNOT gate with control bits z 1,
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Figure 2: Generalized 3-CNOT gates G'; and G».
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Figure 3: 6-CNOT circuit C'(¢)).

Tj2,T;3, Tpy, Tho, L)y, and a target bit £. A control
bit zj,[z},1 is positive in G}, if and only if z;[z},] is
positive in G;[G},]. We constructa (2n+1)x (2n+1)
generalized 6-CNOT circuit C(¢) which is a cascade
consisting of m? gates Gjp, (j,h € [m]). As an ex-
ample, C(v) for the Boolean function 1) defined in
(5) is shown in Fig. 3. We have the following by
Lemma 1.

Lemma 2
Cinl(@, 2/, 1) = (2.2, (@) A on(@)) @¢). m

Lemma 2 implies that G;;, changes the target bit if
and only if p;(x) = 0 and pp(x’) = 0.

We now show that ¢ is satisfiable if and only if
7(C(¢)) < 2. For a gate G of C, G(v) is the out-
put vector of G generated by an input vector v of C.
Also, w(v) is the value of a wire w generated by v.

Lemma 3 4 test set T = {v1,v3} of a generalized
k-CNOT circuit C with k > 2 is complete if and only
if T satsifies the following conditions:

(i) vo = vy, and

(i) G(v;) = v; (v € [2)) for every gate G.

Proof. Itis easy to see that if T satisfies (i) and (ii),
then W (C) is controllable by T'. Thus T is complete
for C by Theorem I.

Suppose T is complete for C. Then W(C) is
cotrollable by T" by Theorem I. Since the input wires

of C are controllable by T', we have vy = T7. Thus,
T satisfies (i). Suppose T does not satisfy (ii), that is
G(v;) # v; for some generalized CNOT gate G and
some %, say ¢ = 1. Since G(v;1) # vy and vy = D7,
we have G(v3) = vy. If wy, and wey, are the input
and output wires of the target bit of G, we have

win(vl) = wout('vl)~

Since v, = U7 and G(vy) = v3, we have

win(v2) = win(v1),
and so
Wout (V2) = Wout (1),
which means that w,y; is not controllable by T, a
contradiction. Thus 7" satisfies (i). [ |

Now, we are ready to prove the following.
Lemma 4 ¢ is satisfiable if and only if 7(C($)) < 2.

Proof. It is easy to see from Lemmas 2 and 3 that
if (x) = 1 for some x € {0,1}", then a test set
{(z,%,0),(%,2,1),} is complete for C(¢). Thus,
(C(¢)) < 2.

Notice that 7(C') > 2 for any reversible circuit
C' by Theorem 1. Suppose 7(C(¢)) = 2, and let T
be a complete test set of size two. By Lemma 3,
T = {(x,y,0), (%,7,1),} for some =,y € {0,1}".
Also by Lemma 3, G;n((x,y,0)) = (x,y,0) and
Gin((®,9,1)) = (%,7,1) for any j, k € [m]. Thus
by Lemma 2,

pi(@) A pr(y) = 0and p;(F) A pu(g) = 0
for any j, h € [m], that is,

pi (@) V pr(y) = Land p;(F) V pu(F) = 1

for any j,h € [m]. If pj(x) = 1 for any j € [m],
then ¢(x) = 1, and ¢ is satisfiable. If p;(x) = 0 for
some j € [m], then py(y) = 1forany h € [m]. Thus
é(y) =1, and ¢ is satisfiable. n

Since C(¢) can be constructed in polynomial time,
we complete the proof of the theorem. ]

4 Lower Bounds for 1-CNOT Cir-
cuits

The purpose of this section is to prove the following:
Theorem 2 There exists a 1-CNOT circuit C such
that 7(C) = Q(log log |W (C)}). |

Before proving the theorem, we need some prelim-
inaries.



4.1 Preliminaries

The level of a wire of a reversible circuit is defined
as follows. The input wires of the circuit are at level
0, and the output wires of a gate are at one plus the
highest level of any of input wires of the gate. In
cases where an input wire of a gate is at level 7 and the
output wires are at level j > ¢ + 1, we say the input
wire is at all levels between ¢ and j — 1 inclusively.
It is easy to see the following lemmas.

Lemma 5 If C3 is a reversible 2 X 2 circuit consist-
ing of just one 1-CNOT gate, then 7(C3) = 3. |

Lemma 6 If B is a 2 x 2 1-CNOT circuit shown in
Fig. 4, then B(v) = v forany v € {0,1}2. [ |

DO

Figure 4: 2 x 2 1-CNOT circuit B.

Lemma 7 If C is an n x n 1-CNOT circuit with g
gates, then |W(C)| = n + 2g. [ ]

4.2 Proof of Theorem 2

We prove the theorem by constructing such cir-
cuit. Let C, (b > 3) be a 1-CNOT circuit
defined as follows. Let C3 be a 1-CNOT cir-
cuit consisting of just one 1-CNOT gate. For
h > 4, Cy, is recursively defined as follows. Let
C,(Ll_)l,C,(lljl,...,C,(lﬁ’{'l) be wp_1 + 1 copies of
Ch_1, where w1 = |W(Ch_1)|]. Construct an
np—1 X np—1 1-CNOT circuit Dj,_; by concatenating
C}(LleC}(lz_)17 .. .,C;f’{‘l), where nj,_1 is the num-
ber of input wires of Cj_1. Let W(C,(l]i)l) = {wgk),
,wgﬂ{d} for 0 < k < w1 such that if the

Ek) is not greater than the level of wj(.k)

i < j. C}, is constructed from Dj_; and C,(lo_)1 by

(2)
Chly

t € [wp_1], such that the wire of C’}(lill is the con-

trol bit and wgo)is the target bit of the both 1-CNOT
gates. As an example, D4 and Cjy are shown in Fig. 5
and Fig. 6, respectively.

From the definition of C}, we have

h—3
2 7

o
level of w , then

inserting two 1-CNOT gates for each wire of

©)
gn = (IW(Cho1)| + 1)gh1 + 2IW(Cr_1)|?
= 10g5_ 1+ gp(np_y + 1)+ 200y, (D)

ny =

where gy, is the number of gates in C},.

DOSSE

Figure 5: 1-CNOT circuit Dy.

Lemma 8 h = Q(loglog |W(Cy|)).

Proof. From (6) and (7), g5, > nyp. Thus from (7),
gn < dgg_1 for some constant d, i.e.,

loggrn < 2(log gh—1 +logd) —logd

< 2P 3(log g5 + log d). ®)

Since |W(Ch)| = np, + 2g;, < 3gp by Lemma 7,

loglog [W(Ch)|
< loglog gy, + log 3
< h—3+log(loggs +logd) +log3

by (8), and so h = Q(log log |W (Cp))). u

Lemma 9 7(Ch) > h.

Proof.  The proof is by induction on h. 7(C3) = 3
by Lemma 5. Suppose 7(Cj_;) > h — 1. We
will show that 7(C}) > h. Suppose contrary that
T(Cr) =h -1 andlet T = {vq,vq,...,v54_1} be
a complete test set for C. Since 7(Cj_1) > h ~ 1,
W(Cp-1) is not controllable by T = {v;,v,...,
vp_2}. Thus there exist 4 and j such that neither
wl(o) (i)

nor w; " are controllable by T". It follows that

if G is a 1-CNOT gate with the control bit on w§i)

of C’,(:zl and the target bit on wgo)’ then W(G) is not
controllable by 7', a contradiction. Thus, we have
7(Ch) > h. n

From Lemmas 8 and 9, we obtain the theorem.

5 Lower Bounds for 2-CNOT Cir-
cuits

In this section, we prove the following.

Theorem 3 There exists an n x n 2-CNOT circuit C
such that 7(C) = Q(log n). ]



Figure 6: 4 x 4 1-CNOT circuit Cy.

Figure 7: 3 x 3 2-CNOT circuit Ej.

5.1 Preliminaries
It is easy to see the following lemmas.

Lemma 10 If E5 is a 3 x 3 2-CNOT circuit shown in
Fig. 7, then 7(E3) = 3. n

Lemma 11 If Fis a 3 X 3 2-CNOT circuit shown in
Fig. 8, then F(v) = v forany v € {0,1}3. |

P
&
vy

Figure 8: 3 x 3 2-CNOT circuit F.

5.2 Proof of Theorem 3

We prove the theorem by constructing such circuit.
Let Ej (b > 3) be a 2-CNOT circuit defined as
follows. Let E3 be a 2-CNOT circuit shown in Fig. 7.
For h > 4, E}, is recursively defined as follows. Let
EY for0 < i < wy_q and ESN for j k € [wp_y)
be a copy of Ej_;, where wy_1 = |W(Ej_1)l.
Construct np_1 X np_; 2-CNOT circuits Hp_;

by concatenating E,(Il_)l, l*?,(f_)17 e ,E}(z’{'l) and
: (1L,1) p(1,2) (1,@h-1)

Jn-1 by concatenating E, ), E, 7 ..., B ,

E}(f—’ll) E;fﬁ) o 22;11?).,—1)’ o 7E}(:f)i—1swh—1)’

where ny,_1 is the number of input wires of E}_;.

Let W(E}(Lll) = {wY‘),wgi)"..,wg)h‘l and

W(E;(l{kl)) = {ng’k),wéj’k), S ,wgf}l} such that
s

if the level of w

e

is not greater than the level of
, then ¢ < j. Ej is constructed from J,_1,

H; 4, and E'}(LO‘)1 by inserting a copy of F for each

wire w,(j’j) with %, j,k € [tj,—1] such that u}](j’j) of
E}(:jl) in Jp_1 is the top bit of the copy of F, w](_z)

of E}(le in Hp_1 is the middle bit of the copy of F,

and w” of E{”)| is the bottom bit of the copy of F.
From the definition of E},, we have

n, = 33 9)
Thus we obtain the following.
Lemma 12 4 = Q(log ny). |

Lemma 13 7(E}) > h.

Proof.  The proof is by induction on h. 7(E3) = 3
by Lemma 10. Suppose 7(Ep_1) > h — 1. We
will show that 7(Ey) > h. Suppose contrary that
7(Ep) =h—1,andlet T = {vy,vy,...,v4_1} be
a complete test set for Ep,. Since 7(Ep_1) > h — 1,
W (En_1) is not controllable by T = {v1,ve,...,
vh-2}. Thus there exist i,7,k € [wy_1] such that
none of w'”, wj(-’), and w{" is controllable by T". It
follows that if G is a copy of F' with the top bit on
w,(:’J ), then W (G) is not controllable by T', a contra-
diction. Thus, we have 7(E}p,) > h. ]

From Lemmas 12 and 13, we obtain the theorem.



6 Concluding Remarks

It should be noted that (3) is merely an existential
upper bound. It is an interesting open problem to find
a polynomial time algorithm to construct a complete
test of such size.
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