On the Fault Testing for Reversible Circuits

Satoshi Tayu, Shigeru Ito, and Shuichi Ueno

Department of Communications and Integrated Systems Tokyo Institute of Technology, Tokyo 152-8550-S3-57, Japan

Abstract. This paper shows that it is NP-hard to generate a minimum complete test set for stuck-at faults on the wires of a reversible circuit. We also show non-trivial lower bounds for the size of a minimum complete test set.

Keywords: 3SAT, CNOT gate, complete test set, NP-complete, stuck-at-fault.

1 Introduction

Reversible circuits, which permute the set of input vectors, have potential applications in nanocomputing [3], low power design [1], digital signal processing [6], and quantum computing [4]. This paper shows that given a reversible circuit C, it is NP-hard to generate a minimum complete test set for stuck-at faults on the wires of C. This is the first result on the complexity of fault testing for reversible circuits, as far as the authors know. We also show non-trivial lower bounds for the size of a minimum complete test set.

A gate is *reversible* if the Boolean function it computes is bijective. If a reversible gate has k input and output wires, it is called a $k \times k$ gate. A circuit is *reversible* if all gates are reversible and are interconnected without funout or feedback. If a reversible circuit has n input and output wires, it is called an $n \times n$ circuit.

We shall focus our attention to detecting faults in a reversible circuit C which cause wires to be stuckat-0 or stuck-at-1. Let W(C) be the set of all wires of C. W(C) consists of all output wires of C and input wires to the gates in C. W(C) is the set of all possible fault locations in C. For an $n \times n$ reversible circuit C, a test is an input vector in $\{0,1\}^n$. A test set is said to be *complete* for C if it can detect all possible single and multiple stuck-at faults on W(C). Patel, Hayes, and Markov [5] showed that for any reversible circuit C, there exists a complete test set for C. Let $\tau(C)$ be the minimum cardinality of a complete test set for C.

We first show that it is NP-hard to compute $\tau(C)$ for a given reversible circuit C. Let MTS (Minimum Test Size) be a problem of deciding if $\tau(C) \leq B$ for

a given reversible circuit ${\cal C}$ and integer ${\cal B}$. We show in Section 2 that MTS is NP-complete.

Patel, Heyes, and Markov [5] show a surprising upper bound for $\tau(C)$. They showed that

$$\tau(C) = O(\log|W(C)|) \tag{1}$$

for any reversible circuit C. We show the first non-trivial existential lower bound for $\tau(C)$. We show in Section 4 that there exists a reversible circuit C such that

$$\tau(C) = \Omega(\log \log |W(C)|).$$
(2)

A k-CNOT gate is a $(k+1) \times (k+1)$ reversible gate. It passes some k inputs, referred to as control bits, to the outputs unchanged, and inverts the remaining input, referred to as target bit, if the control bits are all 1. The 0-CNOT gate is just an ordinary NOT gate. A CNOT gate is a k-CNOT gate for some k. Some CNOT gates are shown in Fig. 1, where a control bit and target bit are denoted by a black dot and ring-sum, respectively. A *CNOT circuit* is a reversible circuit consisting of only CNOT gates. A k-CNOT circuit is a CNOT circuit consisting of only k-CNOT gates. Any Boolean function can be implemented by a CNOT circuit since the 2-CNOT gate can implement the NAND function.

Chakraborty [2] showed that

$$\tau(C) \leq n \tag{3}$$

if C is an $n\times n$ CNOT circuit with no 0-CNOT or 1-CNOT gate. We show in Section 5 that there exists an $n\times n$ 2-CNOT circuit C such that

$$\tau(C) = \Omega(\log n). \tag{4}$$

$$t$$
 \longrightarrow \overline{t}

(a) 0-CNOT gate.

 c \longrightarrow c t \longrightarrow $c \oplus t$

(b) 1-CNOT gate.

 c_2 \longrightarrow c_1 c_1 c_2 c_1 t \bigcirc $(c_1 \land c_2) \oplus t$

(c) 2-CNOT gate.

Figure 1: CNOT gates.

It is an interesting open problem to close the exponential gaps between the upper bounds (1) and (3), and our lower bounds (2) and (4), respectively.

2 Complete Test Sets

A wire w of a reversible circuit C is said to be *controllable* by a test set T if the value of w can be set to both 0 and 1 by T. A set of wires $S \subseteq W(C)$ is said to be *controllable* by T if each wire of S is controllable by T. The following characterization for a complete test set is shown in [5].

Theorem I A test set T for a reversible circuit C is complete if and only if W(C) is controllable by T.

3 NP-Completeness of MTS

The purpose of this section is to prove the following:

Theorem 1 MTS is NP-complete.

Proof. A minimum complete test set T for a reversible circuit C can be verified in polynomial time, since $|T| = O(\log |W(C)|)$ by (3). Thus MTS is in NP.

We show a polynomial time reduction from 3SAT, a well-known NP-complete problem, to MTS. Let $x = (x_1, x_2, \dots, x_n)$ and

$$\phi(\boldsymbol{x}) = \bigwedge_{j=1}^{m} \rho_j$$

be a Boolean function in conjunctive normal form in which each clause ρ_j has 3 literals for $j \in [m] = \{1, 2, \ldots, m\}$. For a Boolean variable x, literals \overline{x} and x are denoted by x^0 and x^1 , respectively.

We use generalized CNOT gates for simplicity. A generalized k-CNOT gate has k control bits x_1, \ldots, x_k and a target bit t. The output of the target bit is defined as

$$(x_1^{\alpha_1} \wedge x_2^{\alpha_2} \wedge \cdots \wedge x_k^{\alpha_k}) \oplus t.$$

A control bit x_i is said to be positive if $\alpha_i = 1$, and negative if $\alpha_i = 0$. Notice that a CNOT gate is a generalized CNOT gate with no negative control bit. Notice also that a negative control bit is equivalent to a positive control bit with a 0-CNOT gate on the input and output wires. A generalized CNOT [k-CNOT] circuit is a reversible circuit consisting of only generalized CNOT [k-CNOT] gates.

We first construct a generalized CNOT gate G_j for each clause ρ_j . Let

$$\rho_j = x_{j1}^{\sigma_{j1}} \vee x_{j2}^{\sigma_{j2}} \vee x_{j3}^{\sigma_{j3}},$$

where $\sigma_{jl} \in \{0,1\}$ and $x_{jl} \in \{x_i | i \in [n]\}$ for $l \in [3]$. We construct a generalized 3-CNOT gate G_j for ρ_j as follows. The gate G_j has 3 control bits x_{j1} , x_{j2} , x_{j3} , and a target bit t. A control bit x_{jl} is defined to be positive if $\sigma_{jl} = 0$, and negative if $\sigma_{jl} = 1$. For an $n \times n$ circuit C and an input vector $v \in \{0,1\}^n$, we denote by C(v) the output vector of C for v. If $I \subseteq \{0,1\}^n$, we define that $C(I) = \{C(v) | v \in I\}$. The following lemma is immediate from the definition of G_j .

Lemma 1

$$G_j(x_{j1}, x_{j2}, x_{j3}, t) = (x_{j1}, x_{j2}, x_{j3}, \overline{\rho_j} \oplus t).$$

Lemma 1 means that G_j changes the target bit t for input vector $(x_{j1}, x_{j2}, x_{j3}, t)$ if and only if $\rho_j(x_{j1}, x_{j2}, x_{j3}) = 0$. As an example, for a Boolean function:

$$\psi(x_{1}, x_{2}, x_{3}) = \rho_{1} \wedge \rho_{2},
\rho_{1} = x_{1} \vee \overline{x_{2}} \vee x_{3}, \text{ and }
\rho_{2} = \overline{x_{1}} \vee \overline{x_{2}} \vee x_{3},$$
(5)

generalized 3-CNOT gates G_1 and G_2 are shown in Fig. 2, where a negative control bit is denoted by an empty circle.

We next construct a $(2n+1) \times (2n+1)$ generalized 6-CNOT circuit $C(\phi)$ for ϕ . For $\boldsymbol{x}=(x_1,x_2,\ldots,x_n) \in \{0,1\}^n$, $\boldsymbol{y}=(y_1,y_2,\ldots,y_n) \in \{0,1\}^n$, and $t \in \{0,1\}$, let $(\boldsymbol{x},\boldsymbol{y},t)=(x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n,t)$. Let G_j' be a copy of G_j with control bits $x_{j1}',x_{j2}',x_{j3}',$ and a target bit t for any $j \in \{1,2,\ldots,m\}$. For any $j,h \in \{1,2,\ldots,m\}$, G_{jh} is a generalized 6-CNOT gate with control bits x_{j1}' ,

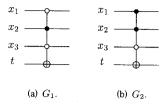


Figure 2: Generalized 3-CNOT gates G_1 and G_2 .

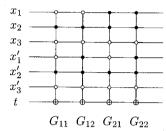


Figure 3: 6-CNOT circuit $C(\psi)$.

 $x_{j2}, x_{j3}, x'_{h1}, x'_{h2}, x'_{h3}$, and a target bit t. A control bit $x_{jl}[x'_{hl}]$ is positive in G_{jh} if and only if $x_{jl}[x'_{hl}]$ is positive in $G_j[G'_h]$. We construct a $(2n+1)\times(2n+1)$ generalized 6-CNOT circuit $C(\phi)$ which is a cascade consisting of m^2 gates G_{jh} $(j,h\in[m])$. As an example, $C(\psi)$ for the Boolean function ψ defined in (5) is shown in Fig. 3. We have the following by Lemma 1.

Lemma 2

$$G_{jh}((oldsymbol{x},oldsymbol{x}',t)) = \left(oldsymbol{x},oldsymbol{x}',\left(\overline{
ho_j(oldsymbol{x})}\wedge\overline{
ho_h(oldsymbol{x}')}
ight)\oplus t
ight)$$
.

Lemma 2 implies that G_{jh} changes the target bit if and only if $\rho_j(x) = 0$ and $\rho_h(x') = 0$.

We now show that ϕ is satisfiable if and only if $\tau(C(\phi)) \leq 2$. For a gate G of C, G(v) is the output vector of G generated by an input vector v of C. Also, w(v) is the value of a wire w generated by v.

Lemma 3 A test set $T = \{v_1, v_2\}$ of a generalized k-CNOT circuit C with $k \ge 2$ is complete if and only if T satsifies the following conditions:

- (i) $v_2 = \overline{v_1}$, and
- (ii) $G(v_i) = v_i$ ($i \in [2]$) for every gate G.

Proof. It is easy to see that if T satisfies (i) and (ii), then W(C) is controllable by T. Thus T is complete for C by Theorem I.

Suppose T is complete for C. Then W(C) is cotrollable by T by Theorem I. Since the input wires

of C are controllable by T, we have $v_2=\overline{v_1}$. Thus, T satisfies (i). Suppose T does not satisfy (ii), that is $G(v_i)\neq v_i$ for some generalized CNOT gate G and some i, say i=1. Since $G(v_1)\neq v_1$ and $v_2=\overline{v_1}$, we have $G(v_2)=v_2$. If $w_{\rm in}$ and $w_{\rm out}$ are the input and output wires of the target bit of G, we have

$$w_{\rm in}(\boldsymbol{v}_1) = \overline{w_{\rm out}(\boldsymbol{v}_1)}.$$

Since $v_2 = \overline{v_1}$ and $G(v_2) = v_2$, we have

$$w_{\mathrm{in}}(\boldsymbol{v}_2) = \overline{w_{\mathrm{in}}(\boldsymbol{v}_1)},$$

and so

$$w_{\text{out}}(\boldsymbol{v}_2) = w_{\text{out}}(\boldsymbol{v}_1),$$

which means that w_{out} is not controllable by T, a contradiction. Thus T satisfies (ii).

Now, we are ready to prove the following.

Lemma 4 ϕ is satisfiable if and only if $\tau(C(\phi)) \leq 2$.

Proof. It is easy to see from Lemmas 2 and 3 that if $\phi(x) = 1$ for some $x \in \{0,1\}^n$, then a test set $\{(x,\overline{x},0),(\overline{x},x,1),\}$ is complete for $C(\phi)$. Thus, $\tau(C(\phi)) \leq 2$.

Notice that $\tau(C) \geq 2$ for any reversible circuit C by Theorem I. Suppose $\tau(C(\phi)) = 2$, and let T be a complete test set of size two. By Lemma 3, $T = \{(\boldsymbol{x}, \boldsymbol{y}, 0), (\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, 1), \}$ for some $\boldsymbol{x}, \boldsymbol{y} \in \{0, 1\}^n$. Also by Lemma 3, $G_{jh}((\boldsymbol{x}, \boldsymbol{y}, 0)) = (\boldsymbol{x}, \boldsymbol{y}, 0)$ and $G_{jh}((\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, 1)) = (\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, 1)$ for any $j, k \in [m]$. Thus by Lemma 2,

$$\overline{
ho_j(m{x})}\wedge\overline{
ho_h(m{y})}=0$$
 and $\overline{
ho_j(\overline{m{x}})}\wedge\overline{
ho_h(\overline{m{y}})}=0$

for any $j, h \in [m]$, that is,

$$\rho_j(\boldsymbol{x}) \vee \rho_h(\boldsymbol{y}) = 1$$
 and $\rho_j(\overline{\boldsymbol{x}}) \vee \rho_h(\overline{\boldsymbol{y}}) = 1$

for any $j,h\in[m]$. If $\rho_j(\boldsymbol{x})=1$ for any $j\in[m]$, then $\phi(\boldsymbol{x})=1$, and ϕ is satisfiable. If $\rho_j(\boldsymbol{x})=0$ for some $j\in[m]$, then $\rho_h(\boldsymbol{y})=1$ for any $h\in[m]$. Thus $\phi(\boldsymbol{y})=1$, and ϕ is satisfiable.

Since $C(\phi)$ can be constructed in polynomial time, we complete the proof of the theorem.

4 Lower Bounds for 1-CNOT Circuits

The purpose of this section is to prove the following:

Theorem 2 There exists a 1-CNOT circuit C such that $\tau(C) = \Omega(\log \log |W(C)|)$.

Before proving the theorem, we need some preliminaries.

4.1 Preliminaries

The level of a wire of a reversible circuit is defined as follows. The input wires of the circuit are at level 0, and the output wires of a gate are at one plus the highest level of any of input wires of the gate. In cases where an input wire of a gate is at level i and the output wires are at level j > i+1, we say the input wire is at all levels between i and j-1 inclusively. It is easy to see the following lemmas.

Lemma 5 If C_3 is a reversible 2×2 circuit consisting of just one 1-CNOT gate, then $\tau(C_3) = 3$.

Lemma 6 If B is a 2×2 1-CNOT circuit shown in Fig. 4, then B(v) = v for any $v \in \{0, 1\}^2$.

Figure 4: 2×2 1-CNOT circuit B.

Lemma 7 If C is an $n \times n$ 1-CNOT circuit with g gates, then |W(C)| = n + 2q.

4.2 Proof of Theorem 2

We prove the theorem by constructing such circuit. Let C_h $(h \geq 3)$ be a 1-CNOT circuit defined as follows. Let C_3 be a 1-CNOT circuit consisting of just one 1-CNOT gate. For $h \geq 4$, C_h is recursively defined as follows. Let $C_{h-1}^{(1)}, C_{h-1}^{(1)}, \ldots, C_{h-1}^{(\varpi_{h-1})}$ be $\varpi_{h-1}+1$ copies of C_{h-1} , where $\varpi_{h-1}=|W(C_{h-1})|$. Construct an $n_{h-1}\times n_{h-1}$ 1-CNOT circuit D_{h-1} by concatenating $C_{h-1}^{(1)}, C_{h-1}^{(2)}, \ldots, C_{h-1}^{(\varpi_{h-1})}$, where n_{h-1} is the number of input wires of C_{h-1} . Let $W(C_{h-1}^{(k)})=\{w_1^{(k)}, w_2^{(k)}, \ldots, w_{\varpi_{h-1}}^{(k)}\}$ for $0 \leq k \leq \varpi_{h-1}$ such that if the level of $w_i^{(k)}$ is not greater than the level of $w_j^{(k)}$, then $i \leq j$. C_h is constructed from D_{h-1} and $C_{h-1}^{(0)}$ by inserting two 1-CNOT gates for each wire of $C_{h-1}^{(i)}$, $i \in [\varpi_{h-1}]$, such that the wire of $C_{h-1}^{(i)}$ is the control bit and $w_i^{(0)}$ is the target bit of the both 1-CNOT gates. As an example, D_4 and C_4 are shown in Fig. 5 and Fig. 6, respectively.

From the definition of C_h , we have

$$\begin{array}{rcl} n_h & = & 2^{h-3}, & (6) \\ g_h & = & (|W(C_{h-1})| + 1)g_{h-1} + 2|W(C_{h-1})|^2 \\ & = & 10g_{h-1}^2 + g_{h-1}(n_{h-1} + 1) + 2n_{h-1}^2, & (7) \end{array}$$

where g_h is the number of gates in C_h .

Figure 5: 1-CNOT circuit D_4 .

Lemma 8 $h = \Omega(\log \log |W(C_b|))$.

Proof. From (6) and (7), $g_h > n_h$. Thus from (7), $g_h \le dg_{h-1}^2$ for some constant d, i.e.,

$$\log g_h \le 2(\log g_{h-1} + \log d) - \log d < 2^{h-3}(\log g_3 + \log d).$$
 (8)

Since $|W(C_h)| = n_h + 2g_h \le 3g_h$ by Lemma 7,

$$\begin{aligned} \log \log |W(C_h)| \\ &\leq \log \log g_h + \log 3 \\ &\leq h - 3 + \log(\log g_3 + \log d) + \log 3 \end{aligned}$$

by (8), and so
$$h = \Omega(\log \log |W(C_h)|)$$
.

Lemma 9 $\tau(C_h) > h$.

Proof. The proof is by induction on h. $\tau(C_3)=3$ by Lemma 5. Suppose $\tau(C_{h-1})\geq h-1$. We will show that $\tau(C_h)\geq h$. Suppose contrary that $\tau(C_h)=h-1$, and let $T=\{v_1,v_2,\ldots,v_{h-1}\}$ be a complete test set for C_h . Since $\tau(C_{h-1})\geq h-1$, $W(C_{h-1})$ is not controllable by $T'=\{v_1,v_2,\ldots,v_{h-2}\}$. Thus there exist i and j such that neither $w_i^{(0)}$ nor $w_j^{(i)}$ are controllable by T'. It follows that if G is a 1-CNOT gate with the control bit on $w_j^{(i)}$ of $C_{h-1}^{(i)}$ and the target bit on $w_i^{(0)}$, then W(G) is not controllable by T, a contradiction. Thus, we have $\tau(C_h)\geq h$.

From Lemmas 8 and 9, we obtain the theorem.

5 Lower Bounds for 2-CNOT Circuits

In this section, we prove the following.

Theorem 3 There exists an $n \times n$ 2-CNOT circuit C such that $\tau(C) = \Omega(\log n)$.

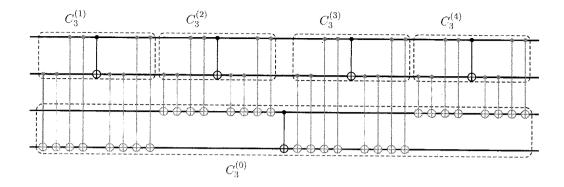


Figure 6: 4×4 1-CNOT circuit C_4 .

Figure 7: 3×3 2-CNOT circuit E_3 .

5.1 Preliminaries

It is easy to see the following lemmas.

Lemma 10 If E_3 is a 3×3 2-CNOT circuit shown in Fig. 7, then $\tau(E_3) = 3$.

Lemma 11 If F is a 3×3 2-CNOT circuit shown in Fig. 8, then F(v) = v for any $v \in \{0, 1\}^3$.

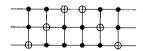


Figure 8: 3×3 2-CNOT circuit F.

5.2 Proof of Theorem 3

We prove the theorem by constructing such circuit. Let E_h ($h \ge 3$) be a 2-CNOT circuit defined as follows. Let E_3 be a 2-CNOT circuit shown in Fig. 7. For $h \ge 4$, E_h is recursively defined as follows. Let $E_{h-1}^{(i)}$ for $0 \leq i \leq \varpi_{h-1}$ and $E_{h-1}^{(j,k)}$ for $j,k \in [\varpi_{h-1}]$ be a copy of E_{h-1} , where $\varpi_{h-1} = |W(E_{h-1})|$. Construct $n_{h-1} \times n_{h-1} = 2$ -CNOT circuits H_{h-1} by concatenating $E_{h-1}^{(1)}, E_{h-1}^{(2)}, \dots, E_{h-1}^{(\varpi_{h-1})}$ and J_{h-1} by concatenating $E_{h-1}^{(1)}, E_{h-1}^{(1)}, \dots, E_{h-1}^{(1,\varpi_{h-1})}, \dots, E_{h-1}^{(1,\varpi_{h-1})}, \dots, E_{h-1}^{(2,1)}, \dots, E_{h-1}^{(2,1)}, \dots, E_{h-1}^{(\varpi_{h-1},\varpi_{h-1})}, \dots, \dots, E_{h-1}^{(\varpi_{h-1},\varpi_{h-1})}, \dots$ where n_{h-1} is the number of input wires of E_{h-1} .

Let $W(E_{h-1}^{(i)})=\{w_1^{(i)},w_2^{(i)},\dots,w_{\varpi_{h-1}}^{(i)}\}$ and $W(E_{h-1}^{(j,k)})=\{w_1^{(j,k)},w_2^{(j,k)},\dots,w_{\varpi_{h-1}}^{(j,k)}\}$ such that if the level of $w_i^{(*)}$ is not greater than the level of $w_j^{(*)}$, then $i \leq j$. E_h is constructed from J_{h-1} , H_{h-1} , and $E_{h-1}^{(0)}$ by inserting a copy of F for each wire $w_k^{(i,j)}$ with $i,j,k \in [\varpi_{h-1}]$ such that $w_k^{(i,j)}$ of $E_{h-1}^{(i,j)}$ in J_{h-1} is the top bit of the copy of $F,\ w_{j}^{(i)}$ of $E_{h-1}^{(i)}$ in H_{h-1} is the middle bit of the copy of F, and $w_i^{(0)}$ of $E_{h-1}^{(0)}$ is the bottom bit of the copy of F.

From the definition of E_h , we have

$$n_h = 3^{h-3} (9)$$

Thus we obtain the following.

Lemma 12
$$h = \Omega(\log n_h)$$
.

Lemma 13 $\tau(E_h) \geq h$.

Proof. The proof is by induction on h. $\tau(E_3) = 3$ by Lemma 10. Suppose $\tau(E_{h-1}) \geq h-1$. We will show that $\tau(E_h) \geq h$. Suppose contrary that $au(E_h)=h-1$, and let $T=\{oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_{h-1}\}$ be a complete test set for E_h . Since $\tau(E_{h-1}) \geq h-1$, $W(E_{h-1})$ is not controllable by $T' = \{v_1, v_2, \ldots, v_m\}$ $oldsymbol{v}_{h-2}\}.$ Thus there exist $i,j,k\in[arpi_{h-1}]$ such that none of $w_i^{(0)}$, $w_j^{(i)}$, and $w_k^{(i,j)}$ is controllable by T'. It follows that if G is a copy of F with the top bit on $w_k^{(i,j)}$, then W(G) is not controllable by T, a contradiction. Thus, we have $\tau(E_h) \geq h$.

From Lemmas 12 and 13, we obtain the theorem.

6 Concluding Remarks

It should be noted that (3) is merely an existential upper bound. It is an interesting open problem to find a polynomial time algorithm to construct a complete test of such size.

References

- [1] C. Bennett, "Logical reversibility fo computation," IBM J. Res. Dev., pp.525–532, 1973.
- [2] A. Chakraborty, "Synthesis of reversible circuits for testing with universal test set and c-testability of reversible iterative logic array," Proc. of the 18h International Conference on VLSI Design, 2005.
- [3] R. Merkle, "Two types of mechanical reversible logic," Nanotechnology, pp.114–131, 1993.
- [4] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.
- [5] K. Patel, J. Hayes, and I. Markov, "Fault testing for reversible circuits," IEEE Trans. Computer-Aided Design, pp.1220–1230, Aug. 2004.
- [6] V. Shende, A. Prasad, I. Markov, and J. Hayes, "Synthesis of reversible logic circuits," IEEE Trans. Computer-Aided Design, pp.710–722, june 2003.