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The best-fit heuristic for the rectangular strip packing problem:
an efficient implementation
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Abstract We investigate the best-fit heuristic algorithm by Burke et al. [Operations
Research 52 (2004) 655-671] for the rectangular strip packing problem. For its simplicity
and good performance, the best-fit heuristic has become one of the most significant
algorithms for the rectangular strip packing. In this paper, we propose an efficient
implementation of the best-fit heuristic that requires linear space and O(nlogn) time,
where n is the number of rectangles. We prove that this time complexity is optimal,
and show practical usefulness of our implementation via computational experiments.

1 Introduction

Cutting and packing problems are representative combinatorial optimization problems with many
applications in various areas such as VLSI design and steel garment industry. For several decades,
the field of cutting and packing has attracted the attention of many researchers and practitioners.
Depending on applications, different types of cutting and packing problems need to be solved,
and hence many variants of cutting and packing problems have been studied in the literature.
Dyckhoff (1990) presented a typology of cutting and packing problems and categorized existing
studies in this field. Wischer et al. (2007) recently presented an improved typology of cutting and
packing problems. This paper addresses the problem of placing rectangles in a larger rectangular
object with a fixed width in order to minimise its height. This problem is widely called the
rectangular strip packing problem. According to the improved typology of Wiischer et al. (2007), the
rectangular strip packing problem is categorized into the two-dimensional regular open dimension
problem (2D regular ODP) with a single variable dimension. We allow non-guillotine placements;
Le., we are not restricted to only performing full horizontal or vertical cuts from one sheet edge to
another. As for the rotation of rectangles, we consider the following two cases: (1) Each rectangle
has a fixed orientation, and (2) we allow rotations of 90 degrees. A formal definition of the problem
is as follows: We are given a set of n rectangles I. Each rectangle ¢ € I has its width w; and
height h;, and the size of this rectangle is denoted by (wj, ;). If each rectangle i can be rotated
by 90 degrees, this rectangle can have a size (w;, h;) or (hy,w;). We are also given a rectangular
object (called strip), which has a fixed width W and a variable height H. Our objective is to place
all the rectangles in the strip without overlap in order to minimize the height of the strip.



Almost all cutting and packing problems (including the rectangular strip packing) are known
to be NP-hard, and hence it is impossible to solve them exactly in polynomial time unless P = NP.
Therefore heuristics and metaheuristics are important in designing practical algorithms for cutting
and packing problems. In early stages, Coffman Jr. et al. (1980) presented some level-oriented
algorithms and Baker et al. (1980) proposed the bottom-left-fill algorithm for the rectangular strip
packing problem. Many papers related to these heuristic algorithms have been appeared; e.g.,
Chazelle (1983) gave an efficient implementation of the bottom-left-fill algorithm, Jakobs (1996)
and Liu and Teng (1999) presented variants of the bottom-left-fill algorithm (Jakobs’ algorithm is
called the bottom-left algorithmn), Lodi et al. (1999) proposed new level-oriented heuristics. These
algorithms have a common characteristic: Each algorithm first decides a sequence of rectangles
to place, and then it places rectangles one by one in this order at an appropriate position in the
strip. Some heuristic algorithms have been incorporated in metaheuristics in order to improve
the quality of solutions (Hopper and Turton 2001, Jakobs 1996, Liu and Teng 1999, Lodi et al.
1999). In almost all cases, metaheuristics are utilized to find good sequences (i.e., packing orders)
of rectangles.

Burke et al. (2004) proposed a different type heuristic algorithm (called the best-fit heuristicl)
that does not have a sequence of rectangles to place. Instead of using a sequence of rectangles, the
best-fit heuristic dynamically selects the next rectangle to place during the packing stage. Because
of its simplicity and good performance, the best-fit heuristic has become one of the most significant
algorithms for the rectangular strip packing. In this paper, we propose an efficient implementation
of the best-fit heuristic that requires linear space and O(nlogn) time, where n is the number of
rectangles, and show that this time complexity is optimal. In addition to such theoretical advantage,
our implementation has also practical merits; it is easy to implement and it runs very fast even for
relatively small values of n. We conduct some computational experiments to confirm the efficiency
in practical sense.

The remaining part of this paper is organized as follows: Section 2 describes the best-fit heuristic
proposed by Burke et al. (2004). Section 3 presents an efficient implementation of the best-fit
heuristic and gives a proof for the optimality of our implementation. Section 4 shows computational
results on various instances of the rectangular strip packing problem.

2 Description of the best-fit heuristic

In this section, we describe the best-fit heuristic for the rectangular strip packing problem. This
heuristic algorithm was proposed by Burke et al. (2004), and has been widely known with its
simplicity and good performance. The best-fit heuristic is a greedy algorithm that attempts to
produce good-quality placements by exanining the lowest available space in the strip and then
placing the rectangle that best fits the space. Unlike most heuristic algorithms (e.g., the bottom-
left and bottom-left-fill methods) that have a sequence of rectangles to place, the best-fit, heuristic
dynamically selects the next rectangle to place during the packing stage. This enables the algorithm
to make informed decisions about which rectangle should be placed next.

In order to represent the configuration in the strip, the algorithm stores a skyline of the strip;
it consists of a set of line segments satisfying the following properties: (1) Each segment is parallel
to the x-axis, (2) no line segments are hidden by other line segments or already placed rectangles,
(3) each line segment touches the top edge of an already placed rectangle or the bottom edge of
the strip, and (4) two adjacent line segments have different y-coordinates and have a common
@-coordinate at the end points of their intervals. See Figure 1 as examples of line segments in the

! A level-oriented algorithm based on the best-fit heuristic for the (one-dimensional) bin packing problem is some-
times referred to by the same name. However, in this paper, we use this name to denote the algorithm by Burke et
al. as in their original paper.
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Figure 1: Description of the best-fit heuristic: (a) initial state of the strip, (b) line segments in the
strip, (c) two segments on the lowest level, (d) place a rectangle with the high strategy, (e) place
a rectangle with the low strategy, and (f) regard a segment as wastage.

strip. Among all the line segments in the strip, the lowest available segment is the line segment
that has the smallest y-coordinate.

The best-fit algorithm repeats two operations until all the rectangles are placed: (1) Find the
lowest available space in the strip, and (2) place a rectangle on the bottom of the space. At
the beginning of the packing process no rectangles are placed in the strip, and the skyline of the
strip corresponds to the bottom edge of the strip (see Figure 1(a)). As rectangles are placed, the
skyline moves upward and the lowest available segment is changed with respect to both location
and width (see Figure 1(b)). If there are several segments on the lowest level (i.e., they have
the same y-coordinates), the algorithm selects the leftmost one as the lowest available segment
(see Figure 1(c)). For the lowest available segment, the algorithm selects and places the best fit
rectangle, where the best fit rectangle means the widest rectangle (resolving equal widths by the
largest height) that has not been placed yet and can be placed on the segment without overlap
(i-e., its. width is not larger than that of the segment). If the width of the segment is larger than
that of the best fit rectangle, the algorithm should decide where to place the rectangle among
those positions on the segment. For this purpose the following three strategies have been used:
(1) Place the rectangle at the left-most position on the segment (called the left strategy), (2) place
the rectangle next to the higher segment adjacent to the current segment (called the high strategy)
as shown in Figure 1(d), and (3) place the rectangle next to the lower segment adjacent to the
current segment (called the low strategy) as shown in Figure 1(e). We note that if the lowest
available segment is adjacent to the left (resp., right) edge of the strip, the high strategy places
the rectangle in touch with the left (resp., right) edge of the strip and the low strategy places the
rectangle next to the adjacent line segruent. When the algorithm is executed, it uses one of these
strategies throughout its execution. If there are no rectangles that can be placed on the segment,
the relevant segment is regarded as wastage. In this case, the segment is raised to the level of the
lower segment adjacent to the current segment, and the two segments are merged (see Figure 1(f)).
These are the main part of the best-fit heuristic algorithm.

As mentioned in the original paper by Burke et al. (2004), a drawback of using the above
greedy algorithm is that it may create a poor quality placement due to towers, where towers are
produced when long thin rectangles are placed in portrait orientation near to the top of the strip.
In solving an instance in which each rectangle can be rotated by 90 degrees, the following improving
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Figure 2: An example of the binary search tree to find the best fit rectangle.

operations are applied after all the rectangles have been placed in the strip. The algorithm finds
a rectangle which touches the top edge of the strip (i.e., the y-coordinate of the top edge of the
rectangle is I7). If the rectangle is oriented in such a way that its height is greater than its width,
the algorithm removes it from the strip and updates the information of the line segments related
to this rectangle. The removed rectangle is then rotated by 90 degrees and placed on the lowest
available segment in the strip. If the quality is improved by this operation, the algorithm looks for
the next rectangle that touches the top of the strip and performs the same operation again. This
operation is repeated until there is no improvement in solution quality.

3 Efficient implementation

As described in the previous section, the best-fit heuristic repeatedly searches for the lowest available
space and the best fit rectangle until all the rectangles are placed in the strip. In order to implement
this algorithm, Burke et al. (2004) used an array of size W to store the skyline of the strip and a
sorted list of rectangles by decreasing width to find the best fit rectangle. Their implementation
requires O(n 4+ W) space and O(n? + nW) computation time. In this section, we give an efficient,
implementation of the best-fit heuristic algorithm. Our implementation stores the line segments
(i.e., the skyline) using a heap and a doubly linked list connected by bi-directional pointers, and
uses a binary search tree to find the best fit rectangle. In the preprocessing stage, these data
structures are constructed. The packing stage is the main part of the best-fit heuristic; i.e., all the
rectangles are placed in the strip one by one. The improving operations by removing towers are
conducted in the postprocessing stage.

Preprocessing stage Our implementation constructs a binary search tree that stores the given
rectangles. We first explain the case where each rectangle can be rotated by 90 degrees. For each
rectangle ¢ with its width w; and height h;, our implementation creates two rectangles with its
size (wy, h;) and (hs,w;), respectively. Hence, we have 2n rectangles in total. These rectangles
are sorted by decreasing width (resolving equal widths by decreasing height), and then they are
stored in the leaves of a complete binary search tree with height [log2n] from left to right. Each
internal node of the tree keeps the value of the minimum width among its descendants. If an
internal node has no rectangles as its descendants, this node keeps +co. Let us see an example
with five rectangles {(3,5),(5,2),(1,1),(7,3),(1,2)}. Our implementation creates 10 rectangles
1(3,5),(5,3),(5,2),(2,5),(1,1),(1,1),(7,3),(3,7),(1,2), (2,1)}, and sorts them by decreasing width
as follows: {(7,3),(5,3),(5,2),(3,7),(3,5),(2,5),(2,1),(1,2),(1,1),(1,1)}. The implementation
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Figure 3: A skyline of the strip: (a) a skyline consists of six line segments, (b) a heap stores the
segments using their y-coordinates as keys, and (¢) a doubly linked list stores the segments sorted
by their @-coordinates.

then constructs a binary search tree as in Figure 2. This binary search tree requires linear space and
1ts construction takes O(n logn) time. If each rectangle has its fixed orientation, our implementation
constructs a binary search tree in similar manner just with the given n rectangles.

In order to store line segments, our implementation uses a heap and a doubly linked list con-
nected by bi-directional -pointers. The heap stores the line segment% using their y-coordinates as
keys, where a segment with smaller y-coordinate has more priority (resolving equal y-coordinates
by smaller z-coordinate). As a result, the lowest available segment can be found at the root node
of the heap. The doubly linked list also stores the segments sorted by their z-coordinates. Figure 3
shows examples of the heap and the doubly linked list. Each segment appears in both of the heap
and the linked list; they are connected by a bi-directional pointer. At the beginning of the execu-
tion of the algorithm, no rectangles are placed in the strip and the skyline of the strip consists of
only one line segment. Hence, the heap and the doubly linked list contain only one element in the
preprocessing stage; that is, their construction is done in constant time.

Packing stage The algorithm repeats two operations until all the rectangles are placed: (1) Find
the lowest available segment, and (2} place the best fit rectangle on the segment. The lowest
available segment in the strip can be found in constant time by looking at the root node of the
heap. For this line segment, our implementation tries to find the best fit rectangle with the binary
search tree; this search takes proportional time to the height of the binary search tree; i.e., O(logn)
time. ’

If the best fit rectangle is found, the w-coordinate of this rectangle should be determined. (The
y-coordinate is automatically decided to that of the lowest available segment.) For this purpose,
the segments adjacent to the current segment are checked with the doubly linked list, and the -
coordinate of the best fit rectangle is determined along the chosen placement strategy (i.e., the left,
high or low strategy). This is donc in O(1) time. The placed rectangle is then removed from the
binary search tree. The leaf nodes corresponding to the rectangle (i.e., two leaves for the case with
rotation or one leaf for the case without rotation) are removed and the values stored in internal
nodes which are on the paths from the leaf nodes to the root node are updated; these updating
operations on the binary search trec take O(logn) time. The heap and the doubly linked list should
also be updated: Updating the doubly linked list takes constant time, and updating the heap takes
proportional time to the height of the heap; that is, O(logn) time.

If the best fit rectangle is not found (in other words, the lowest available segment is too narrow
to place a rectangle), the segment is raised to the level of the lower segment adjacent to the current
segment and the two segments are merged. These operations are done in constant time with the



doubly linked list. Updating the data structures for the skyline takes O(logn) time. We note that
a pointer from the linked list to the heap is needed in the case where the adjacent segments have
the same y-coordinates and three segments should be merged. This gap-raising operation is applied
at most n — 1 times throughout an execution of the algorithm by the following reason: There is one
line segment at the beginning of the execution. The number of segments in the strip is increased at
most one when a rectangle is placed in the strip. The number of segments in the strip is decreased
at least one when a gap-raising operation is applied.

Postprocessing stage In solving an instance where each rectangle can be rotated by 90 degrees,
the operations to remove towers from the placement constructed in the packing stage are also
considered. For this purpose, the following operations are repeated until there is no improvement
in solution quality: (1) Find a rectangle that touches the top of the strip and check its orientation,
and (2) rotate it by 90 degrees and place it on the lowest available segment in the strip. At the
beginning of the postprocessing stage, the rectangles are sorted by decreasing order of y-coordinates
of those top edges; this is done in O(nlogn) time. By using this sorted list, a rectangle that touches
the top of the strip can be found in constant time throughout the postprocessing stage. In order
to place a removed rectangle on the lowest available segment, the algorithm check all the segments
in the strip from the bottom to the top of the strip. If a segment is too narrow to place the
rectangle, this segment is raised and merged; and hence the number of segments in the strip is
decreased at least one. When the packing stage is done, the number of line segments in the strip is
at most n + 1, and it can be increased at most O(n) throughout the postprocessing stage. Hence,
we require O(nlogn) time for the postprocessing stage. We note that the postprocessing stage is
an optional part of the best-fit algorithm, and its execution time is negligible for most of practical
instances.

Complexity of our implementation We analyze the space and time complexities of our imple-
mentation. Our implementation uses a binary search tree of size O(n) to find the best fit rectangle,
a combination of heap and doubly linked list of size O(n) to store all the line segments and find
the lowest available segment, and some information for each rectangle (size, coordinates, pointers
to two leaves in the binary search tree). Therefore, our implementation requires linear space to the
input size in total. As for the time complexity our implementation requires O(nlogn) time in the
preprocessing stage to construct a binary search tree of rectangles. In packing stage, the number
of iterations is O(n) and each iteration requires O(logn) time; i.e., O(nlogn) time is needed. The
postprocessing stage also requires O(nlogn) time. In total, our implementation of the best-fit
heuristic requires O(n logn) time.

Optimality of our implementation At the end of this section, we show the optimality of
our implementation. As we have seen in this section, our implementation of the best-fit heuristic
algorithm requires linear space and O(nlogn) computation time.

Proposition 1. A lower bound on the computation time of the best-fit heuristic is Q(nlogn).

Proof:  We show that the best-fit heuristic can sort given numbers by decreasing size. Let
X = {x1,29,...,2,} be an input of the sorting problem, where X is a set of unsorted positive
numbers. Let us define wyax = max{x1,x9,...,2,} and set the width of the strip W = 2zmnayx for
an instance of the strip packing problem. A set of n rectangles is generated as follows: For each x;,
a rectangle 7 has its width w; = 2 + Tumax and height y; = W + 1. It takes O(n) time to construct
an instance of the strip packing problem.

The best-fit heuristic is applied to the constructed strip packing instance. Any rectangle cannot
be rotated by 90 degrees, any two rectangles cannot be placed at the same level, and the best-
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Figure 4: Computation time in seconds of our implementation with various size instances.

fit heuristic places rectangles in the strip from the bottom to the top with decreasing width of
the rectangles. It is known that any sorting algorithm without particular assumptions requires
Q(nlogn) time, and the result follows. O

Putting together Proposition 1 and our implementation of the best-fit heuristic, we have the
following result. We note that any implementation of the best-fit heuristic requires at least linear
space.

Theorem 1. The optimal implementation of the best-fit heuristic runs in linear space and
O(nlogn) time.

4 Computational results

We evaluate our implementation of the best-fit heuristic by some computational experiments. The
algorithm was coded in C language and run on a PC with a 2.8 GHz CPU and 2 GB RAM.
Test instances for these computational experiments are generated by ourselves at random. We
treat instances where each rectangle can be rotated by 90 degrees. The optimal height for each
instance is known: There cxists a placement without any empty space for each instance. The
smallest instance has 16 rectangles and the largest one has 220 = 1,048, 576 rectangles. There are
10 instances for each size.

For each instance, our algorithm computes three different placements with the left, high and
low strategies, and outputs the best one. The results are shown in Figures 4 and 5, where average
results on 10 instances are appeared. In Figure 4, horizontal axis shows the number of rectangles
and vertical axis shows the computation time in seconds. We note that this is a double logarithmic
chart. From Figure 4, we can observe that our implementation runs very fast for every instance. In
Figure 5, vertical axis shows the solution quality; that is, 100(H — H*)/H*, where H* is the optimal
height, and hence the smaller value means a better solution. From Figure 5, we can observe that
the number of rectangles has a substantial influence on the solution quality of the best-fit heuristic.
We note that, in almost all cases, the solution quality of the best-fit heuristic is better than or
equivalent to the cxisting heuristic and metaheuristic algorithms for the rectangular strip packing
problem.



= 12

©

E

§ ’ .F:;;‘;;
3

3 8

> 6

=

s 4

=

2

bS] 2

)

w

0 T

T
O N T 0O W N T 0w N T B W N W
W NN H N Q0 W M N 0N
- NN O 0O 0 94 MmN 1NN o = NN

A N §F 00 W N N NS K

- m o m v NS

‘—cNma

Number of rectangles

Figure 5: Solution quality of the best-fit heuristic.
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