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Abstract

This paper presents a connection between qualitative matrix theory and linear comple-
mentarity problems (LCPs). An LCP is said to be sign-solvable if the set of the sign patterns
of the solutions is uniquely determined by the sign patterns of the given coefficients. We pro-
vide a characterization for sign-solvable LCPs such that the coefficient matrix has nonzero
diagonals, which can be tested in polynomial time. This characterization leads to an efficient
combinatorial algorithm to find the sign pattern of a solution for these LCPs. The algorithm
runs in O(7y) time, where + is the number of the nonzero coefficients.

1 Introduction
This paper deals with linear complementarity problems (LCPs) in the following form:

LCP(A,b): find (w,z2)
st. w=Az+b,
wlz =0,
w>0, 220,

where A is a real square matrix, and b is a real vector. The LCP, introduced by Cottle [4], Cottle
and Dantzig [5], and Lemke [17], is one of the most widely studied mathematical programming
problems, which contains linear programming and convex quadratic programming. Solving
LCP(A, b) for an arbitrary matrix A is NP-complete [3], while there are several classes of matrices
A for which the associated LCPs can be solved efficiently. For details of the theory of LCPs, see
the books of Cottle, Pang, and Stone [6] and Murty [21].

The sign pattern of a real matrix A is the {4, 0, —}-matrix obtained from A by replacing each
entry by its sign. When we develop an LCP model in practice, the entries of A and b are subject
to many sources of uncertainty including errors of measurement and absence of information.
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On the other hand, the sign patterns of A and b are structural properties independent of such
uncertainty. This motivates us to provide a combinatorial method that exploits the sign patterns
before using numerical information.

Sign pattern analysis for matrices and linear systems, called qualitative matriz theory, was
originated in economics by Samuelson [25]. Various results about qualitative matrix theory are
compiled in the book of Brualdi and Shader [1]. For a matrix A, we denote by Q(A) the set of
all matrices having the same sign pattern as A, called the qualitative class of A. The qualitative
class of a vector is defined similarly. A square matrix A is said to be sign-nonsingular if A is
nonsingular for any A € Q(A). The problem of recognizing sign-nonsingular matrices has many
equivalent problems in combinatorics [18, 22, 26, 28], while its time complexity had been open
for a long time. In 1999, Robertson, Seymour, and Thomas [23] presented a polynomial-time
algorithm for solving this problem (cf. McCuaig [19, 20]).

For linear programming, Iwata and Kakimura [11] proposed sign-solvability in terms of qual-
itative matrix theory. A linear program max{cz | Az = b,z > 0}, denoted by LP(A4,b,c), is
sign-solvable if the set of the sign patterns of the optimal solutions of LP(A, b, &) is the same as
that of LP(A,b,c) for any A € Q(A), b € Q(b), and & € Q(c). They showed that recognizing
sign-solvability of a given LP is NP-hard, and gave a sufficient condition for sign-solvable linear
programs, which can be tested in polynomial time. Moreover, they devised a polynomial-time
algorithm to obtain the sign pattern of an optimal solution for linear programs satisfying this
sufficient condition.

In this paper, we introduce sign-solvability for linear complementarity problems. We say
that LCP(A,b) is sign-solvable if the set of the sign patterns of the solutions of LCP(A,b)
coincides with that of LCP(A,b) for any A € Q(A) and b € Q(b). An LCP(A,b) such that all
diagonal entries of A are nonzero is said to have nonzero diagonals. The class of LCPs with
nonzero diagonals includes LCPs associated with positive definite matrices, P-matrices, and
nondegenerate matrices, which are all of theoretical importance in the context of LCPs (e.g. [6,
Chapter 3]). LCPs with P-matrices are related to a variety of applications such as circuit
equations with piecewise linear resistances [8] and linear systems of interval linear equations [24].
We present a characterization for a sign-solvable LCP(A4, b) with nonzero diagonals, and describe
a polynomial-time algorithm to solve them from the sign patterns of A and b.

We first provide a sufficient condition for sign-solvable LCPs with nonzero diagonals. A
square matrix A is term-nonsingular if the determinant of A contains at least one nonvanishing
expansion term. A square matrix A is term-singular if it is not term-nonsingular. A matrix A
is term-singular if and only if A is singular for any A € O(A). An m X n matrix with m < n
is said to be totally sign-nonsingular if all submatrices of order m are either sign-nonsingular or
term-singular, namely, if the nonsingularity of each submatrix of order m is determined uniquely
by the sign pattern of the matrix. Totally sign-nonsingular matrices were investigated in the
context of sign-solvability of linear systems[1, 13, 14, 27] (the terms “matrices with signed mth
compound” and “matrices with signed null space” are used instead). Recognizing totally sign-
nonsingular matrices can be done in polynomial time by testing sign-nonsingularity of related
square matrices [11]. We show that, if the matrix M = (A b) is totally sign-nonsingular and A
has nonzero diagonals, then LCP(A, b) is sign-solvable.

We then present a characterization of sign-solvable LCPs with nonzero diagonals. A row of a
matrix is called mized if it has both positive and negative entries. A matrix is row-mized if every
row is mixed. For an LCP(A,b) with nonzero diagonals, we introduce the residual row-mized
matrix, which is the special submatrix of M = (A b) defined in Section 3. Then LCP(A,b)
with nonzero diagonals is sign-solvable if and only if its residual row-mixed matrix M’ satisfies
one of followings: M’ does not contain the subvector of b, M’ has no rows, or M’ is totally



sign-nonsingular. The residual row-mixed matrix can be obtained in polynomial time. Thus the
sign-solvability of a given LCP(A,b) with nonzero diagonals can be recognized in polynomial
time.

This characterization leads to an efficient combinatorial algorithm to solve a given LCP(A4, b)
with nonzero diagonals from the sign patterns of A and b. The algorithm tests the sign-solvability,
and finds the sign pattern of a solution if it is a sign-solvable LCP with solutions. In this
algorithm, we obtain a solution of LCP(4,b) for some A € Q(A) and b € Q(b). If LCP(A,b)
is sign-solvable, then LCP(A,b) has a solution with the same sign pattern as the obtained one.
The time complexity is O(y), where 7 is the number of nonzero entries in A and b. We note that
the obtained sign pattern easily derives a solution of the given LCP by Gaussian elimination.
Thus a sign-solvable LCP with nonzero diagonals is a class of LCPs which can be solved in
polynomial time.

Before closing this section, we give some notations and definitions used in the following
sections. For a matrix A, the row and column sets are denoted by U and V. If A is a square
mafrix, suppose that U and V are both identical with N. We denote by a;; the (i, j)-entry in A.
Let A[I, J] be the submatrix in A with row subset I and column subset J, where the orderings
of the elements of I and J are compatible with those of U and V. The submatrix A[J,J] is
abbreviated as A[J]. The support of a row subset I, denoted by I'(I), is the set of columns
having nonzero entries in the submatrix A[I,V], that is, (1) = {j € V | 3¢ € I,a;; # 0}. For
a vector b, the jth entry of b is denoted by b;. The vector b[.J] means the subvector with index
subset J. The support of a vector b is the column index subset {j | b; # 0}.

This paper is organized as follows. In Section 2, we provide a sufficient condition using
totally sign-nonsingular matrices. Section 3 gives a characterization for sign-solvable LCPs with
nonzero diagonals. In Section 4, we describe a polynomial-time algorithm to solve sign-solvable
LCPs with nonzero diagonals from the sign patterns of the given coefficients. In this paper, we
omit proofs of all lernmas and theorems, due to the space limitation. They may be found in the
technical report [12]. :

2 Totally Sign-Nonsingular Matrices

In this section, we give a sufficient condition for sign-solvable LCPs using totally sign-nonsingular
matrices. For that purpose, we define sign-nondegenerate matrices. A square matrix A is
nondegenerate if every principal minor is nonzero. A matrix A is nondegenerate if and only
if LCP(A, b) has a finite number of solutions for any vector b[6]. Recognizing nondegenerate
matrices is co-NP-complete[2, 21]. A square matrix A is said to be sign-nondegenerate if A is
nondegenerate for any 4 € Q(A). Then the following lemma holds, which implies that sign-
nondegeneracy can be tested in polynomial time.

Lemma 2.1. A square matriz A is sign-nondegenerate if and only if A is a sign-nonsingular
matriz with nonzero diagonals.

We now obtain the following theorem. For LCP(A,b), let M be the matrix in the form of
M = (A b), where the column set is indexed by N U {g}.

Theorem 2.2. For a linear complementarity problem LCP(A,b) with nonzero diagonals, if the
matriz M = (A b) is totally sign-nonsingular, then LCP(A,b) is sign-solvable.

Sign-solvable LCPs do not necessarily satisfy this sufficient condition. Indeed, consider



LCP(A,b), where A and b are defined to be

A:(—pl -pQ)andb=< 0 )
+p3 +p4 +ps
for positive constants pi,...,ps > 0. Then LCP(A,b) has a unique solution w = (0 ps)T and

z = 0, and hence LCP(A,b) is sign-solvable. However, this does not satisfy the condition of
Theorem 2.2, as A is not sign-nonsingular.

3 Sign-Solvable LCPs with Nonzero Diagonals

In this section, we describe a characterization for a sign-solvable LCP(A4, b) with nonzero diag-
onals.

3.1 The Residual Row-Mixed Matrix

We first introduce the residual row-mized matrix of LCP(A, b) with nonzero diagonals.
For each row index 4, the ith equation of LCP(A, b) is represented by

w; = Z Q525 =+ bz (1)
jerii}t)

First assume that M has a nonpositive row ¢, that is, b; < 0 and a;; < 0 for all j € N.
Suppose that b; < 0. Since any solution of LCP(A, b) is nonnegative, the ith row implies that
LCP(A,b) has no solutions. Next suppose that b; = 0. Then, if LCP(A, b) has a solution (w, z),
the solution (w, z) must satisfy that z; = 0 for any j € I'({1}).

Next assume that M has a nonnegative row ¢, that is, b; > 0 and a;; > 0 for all j € N. Let
(w, 2) be a solution of LCP(A,b). If w; > 0, then the complementarity implies z; = 0. Suppose
that w; = 0. Since any solution is nonnegative, (w, z) must satisfy z; = 0 for any j € T'({i}),
and hence z; = 0 by a;; # 0. Thus, if LCP(A,b) has a solution and M has a nonnegative row
i, any solution of LCP(A4,b) must satisfy that z; = 0. Note that there exists j € I'({i}) with
z; > 0 if and only if the left-hand side of (1) is positive, i.e., w; > 0.

Therefore, if M has a nonnegative or nonpositive row, then we know that some entries of
any solution must be zero. We can repeat this process as follows. Set M1} = M. For a positive
integer v and a matrix M®), let I(_") be the set of nonpositive rows in M®), and Ii") be the set
of nonnegative rows that have a nonzero entry in M O, 1f I‘(I(_")) contains the index g, then
the LCP has no solutions. Define I(*) = Ii”) UI" and J®) = I_(:) U F(I(_")). Then any solution
(w, z) of LCP(A,b) satisfies z; = 0 for any j € J®). Let M“+1) be the matrix obtained from
M®) by deleting the rows indexed by I*) and the columns indexed by J®). Repeat this for
v=1,2 ... until I = J) =@, that is, until either M) is row-mixed or M®) has no rows.

We call the remaining row-mixed submatrix M’ the residual row-mized matrix of LCP(A, b).
Note that, if LCP(A, b) has solutions, the column index g is not deleted in each iteration.

Assume that the column set of M’ contains the index g. Let M’ be in the forms of M’ =
(A’ b'), where b’ is the subvector of b and A’ is the submatrix of A with row set U’ and column
set V. We denote I/ = N\ U’ and V' = N\ V’. Since A has nonzero diagonals, U’ C V' holds,
and hence we have V! C U’. Suppose that M’ has no rows. Then V/ = N holds, which means
that any solution (w, z) of LCP(A, b) must satisfy z = 0. Since ¢ is not deleted in each iteration,
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the vector b is nonnegative. Thus (b,0) is a unique solution of LCP(4,b). Next suppose that
M’ is row-mixed. Consider the following system:

w=Az+V¥,
wlz =0, for any i ¢ V7, (2)
w>0, 2>0.

We claim that there exists a one-to-one correspondence between solutions of LCP(4, b) and (2).
For a solution (w, z) of LCP(A4,b), the pair (w[U’],2[V’]) is a solution of (2). Conversely, let
(w',2’) be a solution of (2). Define (w, z) to be 2[V'] = 2/, 2[V'] = 0, and w = Az +b. Then
wlU'] = A2+ = w > 0 holds. Moreover, since each row in A[U’,V’] is nonnegative, we
have w{U'] = A[U",V']2' + b[U’] > 0. By V’/ C U, the pair (w, z) satisfies the complementarity
wTz = 0. Thus (w, 2) is a solution of LCP(A4, b).

3.2 Characterization
Using the residual row-mixed matrix M’ of LCP(A, b), we have the following theorem.

Theorem 3.1. Let LCP(A, b) be a linear complementarity problem with nonzero diagonals, and
M’ be the residual row-mized matriz. Then LCP(A,b) is sign-solvable if and only if one of the
followings holds:

o The column set of M’ does not contain the index g.
e The residual row-mized matriz M’ has no rows.

o The residual row-mized matriz M’ is totally sign-nonsingular.

In order to prove this theorem, we give some definitions. A linear system Ax = b has signed
nonnegative solutions if the set of the sign patterns of nonnegative solutions of Az = b is the
same as that of nonnegative solutions of Az = b for any A € Q(A) and b € Q(b). A matrix A is
said to have signed nonnegative null space if Az = 0 has signed nonnegative solutions. Matrices
with signed nonnegative null space were examined by Fisher, Morris, and Shapiro[9]. They
showed that a row-mixed matrix has signed nonnegative null space if and only if it is the matrix
called mired dominating, which is defined to be a row-mixed matrix which does not contain a
square row-mixed submatrix. By the result of mixed dominating matrices, the following two
lemmas hold.

Lemma 3.2 (Fischer and Shapiro [10]). If @ row-mized matriz A has signed nonnegative null
space, then the rows of A are linearly independent.

A matrix A is said to have row-full term-rank if A has a term-nonsingular submatrix with
row size. A matrix A has column-full term-rank if AT has row-full term-rank.

Lemma 3.3 (Fischer, Morris, and Shapiro[9]). An n x (n + 1) row-mized matriz has signed
nonnegative null space if and only if it is a totally sign-nonsingular matriz with row-full term-
rank.

Using the following lemmas, we obtain Theorem 3.1.

Lemma 3.4. Suppose that the matriz (A b) is row-mized. If the linear system Ax +b =0 has
signed nonnegative solutions, then it has a solution all of whose entries are positive.



Lemma 3.5. Suppose that M = (A b) is row-mized. The linear system Ax + b= 0 has signed
nonnegative solutions if and only if M has signed nonnegative null space.

‘We close this section with an example of sign-solvable LCPs with nonzero diagonals. Consider
LCP(A,b), where A and b have the sign patterns, respectively,

+ 4+ 0 0 0 0
-+ + 0 + +
+ - + = 0 and 0
-0 - - + 0
0O - + 0 + -
The residual row-mixed matrix is

+ — 0 0

- - 4+ 0 ,

+ 0 + -

which is obtained from the matrix (A b) by deleting the first two rows and the first two columns.
This residual row-mixed matrix is totally sign-nonsingular, and hence LCP(A4, b) is sign-solvable.

4 Algorithm for Sign-Solvable LCPs with Nonzero Diagonals

In this section, we describe an algorithm for a given LCP(A4, ) with nonzero diagonals. The
algorithm tests sign-solvability of LCP(A, b), and finds the sign pattern of a solution of LCP(A4, b)
if it is sign-solvable.

The algorithm starts with finding the residual row-mixed matrix M’ as described in the
previous section. If the column set of M’ does not contain the index g, then LCP(A, b) is sign-
solvable and has no solutions. Let M’ be in the forms of M’ = (A’ ¥/), where V' is the subvector
of b and A’ is the submatrix of A with row set U’ and column set V. We denote U’ = N\ U’ and
V' = N\ V'. Note that V' C U’ holds. If M’ has a row and M’ is not totally sign-nonsingular,
then return that LCP(A4,b) is not sign-solvable by Theorem 3.1.

Assume that M’ has no rows. Then LCP(A, b) is sign-solvable, and (b, 0) is a unique solution
of LCP(A, b). Next assume that M’ has a row and M’ = (A’ ¥/) is totally sign-nonsingular. Then
LCP(A,b) is sign-solvable by Theorem 3.1. Since M’ is row-mixed, there exists M = (A b) €
Q(M) such that the sum of the columns of M’ € Q(M’) is zero. Hence it follows from (2) that
the pair (w, z), defined to be 2[V'] = 0, 2[V’] = +1, and w = Az + b, is a solution of LCP(A, b).
This means that the vector w satisfies that w; > 0 if j € U’ and A[{j}, V'] has nonzero entries,
and w; = 0 otherwise. Since LCP(A,b) is sign-solvable, (w, z) is the sign pattern of a solution
of LCP(A4, b).

We now summarize the algorithm description.

Algorithm: An algorithm for LCPs with nonzero diagonals.

Input: A linear complementarity problem LCP(A, b) with nonzero diagonals.
Output: The sign pattern of a solution if LCP(A4, b) is sign-solvable.

Step 1: Set M() = M and v = 1. Repeat the following until I = J®) = ¢.

1-1: Find I(f) and 14(_"), where I(,V) is the set of nonpositive rows in M ), and Ii'/) is the
set of nonnegative rows that have a nonzero entry in M®).



1-2: If g e F(I(_”)), then return that LCP(A,b) is sign-solvable and has no solutions.
1-3: Let 1) = I_(FV) UI® and J®) = ]f) U F(I(_V)). Define M“+1) to be the matrix
obtained by deleting the rows indexed by I*) and the columns indexed by J®) from
M®),
1-4: Set v = v + 1 and go back to Step 1.
Step 2: Let M’ = (A’ V) be the remaining submatrix, and U’, V' be the row and column sets

of A’ respectively. If M’ has a row and M’ is not totally sign-nonsingular, then return
that LCP( A4, b) is not sign-solvable. Otherwise go to Step 3.

Step 3: Return that LCP(A, b) is sign-solvable and do the following.

3-1: If U’ is empty, then return the sign pattern of a solution (w, z) = (b,0).
3-2: Otherwise, return the sign pattern of (w, z) defined to be

+, ifjeV’
0, otherwise

+, ifjekK
0, otherwise

sgn z; = { and sgnw; = { (3)
where K is the set of rows which have nonzero entries in A[U’, V'], that is, K = {j €

U T({shHnv' #0}.

Applying this algorithm to the example at the end of Section 3, we obtain the sign pattern
of a solution, w=(0 + 0 0 0)Tand2=(0 0 + + +)T.

Based on this algorithm, we can compute a solution of a sign-solvable LCP as well as the sign
pattern of a solution. Suppose that M’ has a row. The solution (w, z) with the obtained sign pat-
tern satisfies that A’z[V’']+b =0, 2[V’] = 0. Since A’ is nonsingular by total sign-nonsingularity
of M’, we can compute a solution of LCP(A,b) by performing Gaussian elimination.

The running time bound of the algorithm is now given as follows. Note that an n x (n + 1)
row-mixed matrix A is a totally sign-nonsingular matrix with row-full term-rank if and only if
all square submatrices of order n are sign-nonsingular [1, Theorem 5.3.3]. Such matrix is called
an S-matriz in [1, 16], which can be recognized in O(n?) time [15].

Theorem 4.1. For a linear complementarity problem LCP(A,b) with nonzero diagonals, let n
be the matrix size of A, and v the number of nonzero eniries in A and b. Then the algorithm
tests sign-solvability in O(n?) time, and, if LCP(A,b) is sign-solvable, the algorithm finds the
sign pattern of a solution in O(y) time.
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