FEFEN SR
IPSJ SIG Technical Report

o 2007—AL—114

200779721

(6)

mIERNT AN v BT 2T EAKKRMEE F OIS

KEF IE=
FORURZF
kiyohito nagano@mist.i.u-tokyo.ac.jp
BE

AR THIAFUCK T B35 A bV v 7 BT D2 S MR/ MEEH 5. Rl Orlin (2 XV BERELE V2T
BIEOR/MET =) A3 Z OB ICIEIRFTRE ChH D Z L 2R U THRMT AT Y RAE 52 5. AFHRIIE
MRS E Y 2 THNRBE LD S ERE~OISAR S 5. $72, SEHICEETI 2T AT LOB
SA MEREA ST A Y v 7Y 2 T EBRAMEE RO THFENICET TR TH I Z L E R L.

A Faster Parametric Submodular Function Minimization Algorithm
and Applications

Kiyohito Nagano
University of Tokyo

Abstract
This paper discusses the parametric submodular function minimization problem for strong map sequences. We
show that the recent submodular function minimization algorithm of Orlin can be extended to this framework.
Applications include faster algorithms for minimum ratio problems and convex optimization over submodular
constraints. We also show that the robustness function of a submodular system can be computed efficiently

via parametric submodular function minimization.

1 Introduction

In the areas of combinatorial optimization, game theory
and other fields, submodular functions are recognized
as fundamental functions and interesting subjects of re-
search. They appear in the systems of networks and, at
the same time, they naturally model economies of scale.
Besides, submodular functions and convex functions are
closely related: a set function f defined on the subsets
of a finite ground set V' is submodular if and only if the
Lovész extension [16] of it is convex. By extending the
theory of submodular functions, Murota [17} developed
a theory of discrete convex analysis.

The first strongly polynomial algorithm for submod-
ular function minimization (SFM) was described by
Grotschel, Lovasz and Schrijver [11], which relies on the
ellipsoid method. The first combinatorial strongly poly-
nomial algorithms for SFM were developed by Iwata,
Fleischer, and Fujishige {13] and by Schrijver [20]. More
recently, Orlin [19] developed a faster strongly polyno-
mial algorithm for SFM. The running time of Orlin’s
algorithm is O(n®*EO + nf), where n is the cardinality
of the ground set and EO is the time of one function
evaluation.

For parametric maximum flow problems in an impor-
tant class, Gallo, Grigoriadis and Tarjan [9] proposed
an efficient method by extending the push/relabel max-
imum flow algorithm devised by Goldberg and Tarjan
[10]. Iwata, Murota and Shigeno [14] extended the result

in [9] to solve polymatroid intersection. Let fy, ..., fi
be submodular functions such that they have the same
ground set V' with {V| = n and they form a strong map
sequence {14, 22]. The parametric submodular function
minimization is a problem of minimizing each function
ft 1 <t <k). In asimilar way to [14], Fleischer and
Iwata [4] gave an algorithm for parametric SFM which
runs in O((n” + kn?)EO + n®) time by extending their
push/relabel O(n”"EO + n®) SFM algorithm.

In this paper, we give a faster algorithm for para-
metric SFM by embedding Orlin’s SFM algorithm [19]
within the parametric optimization framework success-
fully. Since it runs in O((r® + kn®)EO 4- n) time, the
asymptotic running time is the same as that of a single
execution of Orlin’s algorithm as long as k = O(n?). For
each function f;, by careful discussions on subsystems,
our method provides a compact representation of all the
minimizers. Faster algorithms for some optimization
problems follow from our result. As stated in [4], the
discrete Newton method for minimum ratio problems
involving submodular functions can be implemented ef-
ficiently via parametric SFM. For example, such mini-
mum ratio problems appear as subproblems in approx-
imation algorithins for the set covering with submod-
ular costs [12] and the prize collecting forest problems
with submodular penalties {21]. In addition, from the
framework provided in [18], various convex minimiza-
tion problems over submodular constraints, including

_/1] —

the lexicographically optimal base problem [7] and the
submodular utility allocation market problem [15], can
be solved in O(n®EO + nf) time.

Furthermore, we deal with robustness functions of op-
timization problems. Frederickson and Solis-Oba gave
an algorithm for computing the robustness functions of
minimum spanning trees in [6], and later they extended
this method to metroids in [5]. We consider the com-
putation of the robustness function in submodular op-
timization, which generalizes the results in [3, 6], and
showed that it can be solved efficiently by performing
parametric SFM.

This paper is organized as follows. In Section 2, we
review some basic facts in the theory of submodular
functions. Section 3 describes a fast algorithm for para-
metric SFM. In Section 4, we will see applications of
parametric SFM.

2 Preliminaries

A submodular function and its minimizers. Sup-
pose V is a nonempty finite set. Let f : 2¥ — R be
a submodular set function with f{&) = 0, that is, we
have f(X)+ f(Y) > f(XUY)+ f(XNY) for each
X, Y C V. In this paper, we call the pair (V, f) a sub-
modular system. A set function g : 2V — R is monotone
ifg(X)<g(Y)foreach X, Y CV with X CY,and gis
supermodular if —g is submodular. Let EO denote the
time of one function evaluation of f. The submodular
function minimization (SFM) is a problem of finding a
subset X C V with f(X) minimum, or a structure of
a collection of all the minimizers of f, argmin f C 2V.
Easily one can show that argmin f forms a distribu-
tive lattice, i.e., subsets in argmin f are closed under
union and intersection. So there exist the unique mini-
mal minimizer X™ and the unique maximal minimizer
X™a* Furthermore, argmin f has a compact directed
graph representation. To be precise, there exist a fi-
nite set H, a collection P = {P, : h € H} C 2V
and a directed graph Gy = (H, A) with vertices H
and arcs A such that subsets in P are pairwise disjoins,
X 'max \ X min — UhEH Ph; and

argmin f = {X™" U Py : no arc goes out from
H'C Hin Gy},
where Py = U{Ph che H’} for H' C H.

Optimization over the base polytope. For a vector
z € RY, we denote the component of z on v € V by
z{(v). The base polytope B(f) is defined by B(f) =
{z e RV: &(X) < f(X)VX C V; (V) = f(V)} where
#(X) = Y ,ex z(v). A point in B(f) is called a base
and an extreme point of B(f) is called an extreme base.
For a base z € B(f), we say X C V is z-tight if z(X) =
f(X). Consider any total order < in V. The greedy
algorithm [3] gives an extreme base b= € RY by setting

1) %) =f{uu<vIU{v}) - f{u:u<v})

for each v € V. Thus, each inequality 2(X) < f(X) de-
termines a supporting hyperplane of B(f). Conversely,

each extreme base can be obtained in this way. For z €
RY, define the vector = € RY by z~ (v) = min{0, z(v)}
for each v € V. For any base z € B(f) andeach X C V,
we have z7 (V) < z(X) < f(X). Besides, the result of
Edmonds [3] immediately implies that

(2) max.{z~ (V) : z € B(f)}.
=miny {f(X): X CV}

Hence we can immediately check the optimality of X C
V if we have an optimal solution = to (2). Moreover,
using the information about such «, we can compute a
compact representation of argmin f via the algorithm of
Bixby, Cunningham and Topkis [1]. See, e.g., [17, Note
10.11] for details.

Lemma 1 If an optimal solution z to (2) is given as
a conver combination of O(n) extreme bases, a com-
pact representation of argmin f caen be computed in
O(|VIPEO) time.

In many SFM algorithms, we keep a base z € B(f)
as a convex combination of extreme bases. In order
to maximize the concave function z~(V'), the base z
will be updated iteratively like z := z + az’, where
a > 0is a parameter and z' € RY is an update direction.
For a base z € B(f), we have ||zl := 3 oy Jz(v)| =
f(V)—=22=(V). So, a base is optimal for (2) if and only
if it minimizes ||z]}; over B(f). Thus, staying 0 seems
comfortable for each component z(v). The following
property is helpful to understand the algorithm in §3.

Proposition 2 For any base x € B(f), there exists an
optimal solution y to (2) such that {v € V : z(v) =0} C
{veV:yw) =0}

So, it is natural to say that z' € RY is good if z/(V) = 0,
') =0Vv e Ve o'(V¥) < z'(V~) where V° = {v :
z(v) =0}, Vt ={v:z(v) >0}, V- ={v:z(v) <0}.

Restrictions and contractions. With respect to a
subset S C V, the restriction of f, denoted as f°, is a
function defined by f5(X) = f(X) (X C §), and the
contraction of f, denoted as fg, is a function defined by
fs(X) = f(XUS)—f(S) (X CV\S). Clearly, functions
£5:2% 2 Rand fs: 2"\ = R are submodular and
satisfy f5(@) = fs(®) =0. For SCV and £ € RY, we
denote the subvector (z(v) : v € S) € R® by z%. For
two disjoint finite sets Uy, Us and two vectors z; € RY1,
zo € RV2 the direct sum z = 27 @ 2o € RNVV2 jg
defined by z(v) = z,(v) if v € Uy and z3(v) if v € Us.
For A; C RV and A> C RY=, define A1 D As = {2, ®x»
z1 € Ay; o € Ag}

Lemma 3 (see [8]) Suppose S C V. If z, € B(f%)
and z; € B(fs), 21@, € B(f) and so B(f%)@B(fs) C
B(f). Conversely, if © € B(f) and S is z-tight, then
25 € B(f5) and zV\5 € B(fs).

A strong map and parametric submodular func-
tion minimization. For submodular functions fi, fo
defined on 2, if ¥ D X implies fi(Y) — fi(X) <

Fo(Y) — fo(X), we write fi < fo or fo — f1 and we
call this relation a strong map {14, 22]. We briefly re-
view basic properties. For ¢ = 1, 2, let us denote the
minimal minimizer of f, by X" and the maximal min-
imizer of f; by X™**. Since fi(XUY)— f1(X) < fo(XU

V)= fo(X) < oY) - fo(X NY) foreach X, Y C V,
we obtain X[™" D XMn by setting X = XM and
XX O XP#* by setting ¥V = XJ**. Fort = 1, 2,

let b;* be the extreme base of B(f;) that is generated by
a total order < in V via the greedy algorithm. In view
of (1), we have b7 > b5'. Given a bunch of submodular
functions that form a strong map sequence, the para-
metric submodular function minimization is a problem
of finding a minimizer of every function. In §3, we give
an efficient algorithm for parametric SFM.

The dual of a submodular function. Function
f* :2Y - R, the dual of the submodular function
f, is defined by f#(X) = f(V) - f(V\ X) (X C V).
Clearly, f# is supermodular. The characteristic vec-
tor xx € RV of X C V is defined by xx(v) = 1 if
v € X and 0 otherwise. Define ¢ (p) = max,cp(s)(p,)
and ¢2(p) = minsep) (p, 2) (p € RY), where (p, z) =
Yvey P)z(v). It is known that ¢1(xx) = f(X) and
w2(xx) = f#(X) for each X C V.

3 Parametric SFM

We consider the efficient computation of a minimizer of
every function in a strong map sequence of submodular
functions f; : 2{L"} 5 R (¢ = 1, ..., k) such that
fi &< -« fiand fi(@) = 0 for each t. We assume that
the time of function evaluation of each f; is bounded
by EO. Our algorithm P-SFM for parametric SFM,
miny{fe(X): X C{1...,n}}fort=1,..., k, runsin
O(RPEO + n® + kn®EO) time. If k = 1 it corresponds to
Orlin’s algorithm for SFM [19], which runs in O(n°EO+
n%) time. Remark that our algorithm finds a compact
representation of all the minimizers of each function f;.

Throughout this section, using some ¢ and subset
V C{1,...,n}, let f = f be a restriction of f; by
V. Define X" := n{X : X € argmin f;}, X" :=
U{X : X € argmin f;} for each ¢t = 1,..., k. For a
total order < in V and 1 < ¢ < k, we denote by b;* the
extreme base of B(f}) generated by <. We have the
following relations.

Lemma 4 X[D ... D X[in, X[Pex O ... D Xpax
and b < .- < b

Qur algorithm P-SFM initializes V := Vi =
{1,...,n} and repeatedly restrict V. It minimizes
fi, ..., fr in this order, and always maintains the func-
tion f = fY satisfying

R1. V is nonincreasing and ¢ is nondecreasing, i.e.,

if f=f at some iteration and f = f¥" after
that, V' D V" and ¢ < t";
R2. Relation X/™" C V holds while minimizing f .

Notice that the properties R1 and R2 are consistent with

Lemma 4. We call a set of iterations of P-SFM try-
ing to minimize f, a t-phase. To give the algorithm in
§3.3, roughly speaking, we explain inner operations of
P-SFM in §3.1 and outer operations in §3.2.

3.1 Preparations from Orlin’s result [19]

We make some preparations to give an iterative local
search algorithm. They are from Orlin’s paper [19]. In
each ¢-phase, the algorithm P-SFM tries to find a min-
imizer of f = f¥ by updating the base z € B(f). Now
we fix t with 1 <t < k.

Valid distance functions. A distance function is a

nonnegative integer vector d € ZY, and each d induces
a total order <4 in V C {1, ..., n}:

u=<qv if d{u) <d(v)ord(u)=dv)and u < v.

Let by € B(f) be the extreme base generated by <.
The algorithm keeps

o distance functions D with |D| = O(n);

o avector A € RP s.t. A(d) > 0 for each d € D
and Y cp A(d) = 1;

¢ asubmodular function f = fY with f(@) = 0.

Let Dmin(v) = min{d(v) : d € D} for each v € V. The

triple (D, A, f), which generates a basex = 3, , A(d)-

ba € B(/f), is valid if

VL. d(v) =0forallve {ueV :z(u) <0}

V2. d € D, and Dyin(v) < d(v) < Dpin(v) + 1 for all
veVandde D.

If the triple is valid, we also say D is valid. In each
t-phase, starting with some valid triple, the algorithm
maintains valid (D, A, f) and a base z = 3>, A(d) - bg,
and it updates the triple until 2 becomes optimal for (2).
Let VP ={v eV :a(w) =0}, Vt ={veV:z(v) >0},
and V- ={veV:z(v) <0}

Primary and secondary distance functions. For
a distance function d and an element v € V, let
d" = INC(d, v) be the distance function such that
d'(u) = d(v) + 1 if w = v and d'(u) = d(u) otherwise.
By submodularity,

(3) bar (’U) - bd(v) <0 & bar (u) - bd(u) >0 if u ?—é v.

We maintain collection D of distance functions in non-
decreasing order of d(V) = 3, d(v). Given D, for each
v € V, let the primary distance function p(v) € D be the
first distance function in D such that d(V) = Dpyin(v)
and let secondary distance function s(v) € ZY; be
INC(p(v), v), which is not necessarily in D. B

The auxiliary matrix and the update. Given a
base = generated by a valid triple (D, A, f), let us see
how z will be updated. Let ¢, € RY be a vector de-
fined by ¢y = bs(v) — by(v) for each v € V. Define the
auxiliary matrix A* € RY xV* by A*(u, v) = ¢,(u) for
u,v € V0. In view of {3), we have that A*(u, v) < 0
if v = v and A*(u,v) > 0 if v # v. Further-
more, equality ¢, (V) = 0 implies that each column sum
Zuevo A*(’M, ’U) = CU(VO) <0.

Theorem 5 ([19]) If A* is singular, there is a vector
v E RY’ s.¢. v > 0 and A*y = 0. If A* is nonsingu-
lar, each component of (A*)~! is nonpositive and so the
solution v to A*y = —c is nonnegative whenever ¢ > 0.

If VT = @, a is optimal for (2) and V is a minimizer of
f bacause 7 (V) = f(V). So we only consider the case
where V't # @&. To compute a good update direction
z' € RY, we choose some v* € V1 and compute a vector
7 € RV°U{*"} such that

4) ¥#0, ¥20 and A"y+en=0,

where v = 3" € RV, = 5(v*) € R and ¢ = (¢, (v) :
v € VO)(> 0). By solving a system of equations on A*,
set n = 0 if A* is singular and = 1 if A* is nonsingular.
With the aid of Theorem 5, the vector ¥ satisfying (4)
can be computed in O(|V?|*) = O(n®) time via Gaussian
elimination. Then we set the update direction z' :=
Zuevﬂu{n*ﬁ(v) ¢y, € RY. Since 2'(V) =0, z'(v) = 0
ifveVl 2(w) <0ifv=v"and 2/(v) >0ifv €
V\ (VOU {v*}), we can say that 2’ is a good update
direction. The algorithm updates z := ¢ + az’ where

a = min{a, as},
oy :=max{a :z(v) + az’(v) > 0V € VT,
z(v) + az'(v) <0Vv e VY,
az = max{a : o), {F(v) : v with p(v) = d}
< A\d) Vde D}

(5)

using Proposition 2, implicitly. We say the update is
saturating if & = ag, and nonsaturating otherwise. Ac-
cordingly, distance functions D and coefficients A(d) are
updated as follows:

D:=Du{s(v):veVou{v}},
6) Md) = Md) +) {F) : v with s(v) = d}
—ay, {F) : v with p(v) = d}, Vd € D.

As z' is a good update direction, if v € V° at some
iteration of ¢-phase, v € V° at all subsequent iterations
of ¢-phase. Since each distance function d is added to D
as a secondary function s(v) for some v € VOU V™, the
properties V1 and V2 remain satisfied. If the update is
nonsaturating, the size of V? increases. So, the number
of nonsaturating updates is at most n in each ¢-phase.
When the update is saturating, at least one distance
function d = p(v) will be deleted from D. Hence, the
auxiliary matrix changes by some columns. If A* is
changed by ¢ columns at a given iteration, the system
of equations can be solved in O(gn?) time at the next
iteration, which is faster than O(n3).

3.2 Transitions and restrictions

Next, let us see transitions of functions and restric-
tions of the ground set V' in our algorithm P-SFM.
For each ¢ = 1, ..., k, our algorithm divides the sub-
modular system (V', ;) into small subsystems. For
distance functions D C ZZO and U C V, we denote
{d(v):veU):de D} by D|U.

Transitions of functions. In each #-phase, a base
x € B(fY) will be updated until it becomes optimal for
max{z~ (V) : z € B(fY)} and after that, if t + 1 < k,
the base z € B(fY) generated by (D, A, f¥) will be
transformed into the base ¥ € B(fY.,) generated by
(D, A, fX1). Then, the algorithm continues. This
transformation maintains the validity.

Lemma 6 If 1 <t < k-1 and (D,), f¥) is valid,
(D, A, f¥1) is also valid.

Proof: Property V2 does not depend on the function.
By Lemma 4, z < Z. Thus V1 is also satisfied. O

Key lemmas for proper restrictions. We want to
restrict V' so that the property R2 is always satisfied. In
addition, we want to solve the problem max,{z~ (V') :
x € B(fy)} for each ¢ to obtain a digraph representation
of all the minimizers argmin f; with the aid of Lemma
1. The following two lemmas are useful to achieve that.

Lemma 7 (Orlin [19]) Given ¢ € B(f). If subset
S CV is z-tight and z(v) > 0 for v € V\'S, there
is a minimizer S* C S of f.

Proof: For X CV, f(X) > f(XNS) + fF(XUS)—
S > f(XNS)+2(XUS)—z(S) > f(XnS). O

Lemma 8 Given S € V and ¥ € B(fs) C RV\S
such that T > 0. If§ € B(fS) is optimal for
max, {y~(S) : y € B(f%)}, z* =50 % € R” is op-
timal for max,{z= (V) : z € B(f)}.

Proof: By Lemma 3, «* € B(f). By Lemma 7, there
exists a minimizer S* of f such that S* C S. Clearly
we have Z-(V\ S) = 0 and 5 (S) = f(S*). It follows
that (z*)~ (V) = f(S*). Therefore, z* is optimal for
max{z~ (V) : z € B(f)}. O

Restrictions and subsystems. Consider some it-
eration in which the algorithm P-SFM is minimizing
f=fY, the triple (D, A, f) is valid and V has already
been restricted r — 1 > 0 times. Let Gp = (V, Ap) be
a digraph with vertices V and arcs Ap = {(u, v) 1 u <4
v for some d € D} and let

Rp={veV:vcanreach V™ in Gp}.

Clearly z(v) > 0 for v € V \ Rp. Since u <4 v for all
de D,ue RpandveV\Rp, we obtain z(Rp) =
f(Rp). By Lemma 7, there exists a minimizer X of f
with X C Rp. We can compute Rp in O(n?) time.
Suppose that Rp # V (then we are going to re-
strict V) and define ¢ = t. In view of Lemma 3
and 8, consider two subvectors z(® = zfio (" =
zY\Ep and two submodular systems SO = (Rp, f#0),
S = (V\ Rp, fr,). Remark that z(") > 0. After-
wards, the algorithm runs on the subsystem S®. How-
ever, we do not throw away information about S,
Define U = V \ Rp, T} = Rp, D) = D|U,,
A = X and set V := Rp (thereby f := fio = fFo,
D := D|Rp). The new triple (D, A, f) remains valid.
For convenience, define 7® = Vi Inductively, we
have U = T=1\ T() and V! is equal to dijoint

union VU UM U ... uUW, Moreover, define function
90 L Rby £ = (FT7") g for each #
tY . k. Let xﬁ,’) be the base in B(f:(,r)) generated by

the triple (D™, A®) | £{7) for each ¢/ = ¢ k.
Lemma 9 ztr) >0 for eacht =t .. k.
Proof: We have $(= (U™, ft(f,))) and :L‘E(T,)) > 0.

From the relation ft((c)) e f,gr) and Lemma 4, it

follows that 0 < .’EE:,)) <...< zg). O

By combining Lemma 8 and Lemma 9, we will see
that, at the end of ¢-phase, an optimal solation @, to
max.{z~ (V') : 2 € B(f:)} can be simply constructed.

3.3 The algorithm P-SFM

We describe the algorithm for parametric SFM,
miny{fe(X) : X C Vi} foreach t = 1,..., k. When
the size of D grows large, it performs a procedure
Reduce(D, A, f) that outputs distance functions D’ C
D and a positive vector X' € Rfé, such that extreme
bases by € B(f) (d' € D') are affinely independent,
Saep N(@) =1 a0d Yyep Md) b = Sy N(d) -
be. The running time of this procedure is O(r?|D})
using Gaussian elimination. We also run a procedure
Update-Dist(D, A\) to eliminate any function d with
A(d) = 0 from D, maintain D in nondecreasing order of
d(V') and update distance functions {p(v) : v € V'} and

{s():veV}
The following algorithm P-SFM finds the subset
Zy C V' and the vector z; € RV foreach t =1, ..., k.

Algorithm P-SFM

Initialization :
Vi=Vi do:=0; D:={do}; Mdo):=1;
ti=1; r:=0; TO =V,
while ¢t < k begin
f= ftv§ T = ZdED’\(d) -ba € B(tV);
while V' # @ begin
Choose v* € VT and let ¢ = (¢ (v) : v € VO);
Compute ¥ € RV "W{*'} 5.t. (4)
Set 2' 1= 3 ,eyogee) T0) -
Set z := z + ax’, where « is defined in (5);
Update D, A as in (6);
If |D| > 3n then Reduce(D, A, f);
Update-Dist(D, \);
If Rp #V then begin
ri=r+1;
UM =V \ Rp; T®) = Rp;
D) — DU, A =)
V := Rp; Reduce(D™), A, f{);
end ;
end;
Return Z; =V and z; :I@zir) D---dzx
ti=t+1;
end;

(1),
t

Let us show the correctness of the algorithm P-SFM.

Proposition 10 During the execution of the algorithm
P-SFM, the following conditions are satisfied:

(10.a) the triple (D, A, f) is valid;

(10.b) Duin(v) is nondecreasing and Dyin(v) < n;
(10.c) while minimizing f, X@n C V;

(10.d) V' = disjoint union VUUD U...u UM,

Proof: (10.d) is obvious, so we consider the other con-
ditions. Initially, conditions (10.a) to (10.c) are satisfied.
First, fix ¢ with 1 < t < k and assume that they are true
at the end of ¢-phase. Then, at the begining of (¢ + 1)-
phase, by Lemma 6, (10.a) is satisfied and, by Lemma,
4, X{min C XM C V holds and so (10.c) is satisfied.
Since D is unchanged, (10.b) is also true.

Next, consider the iterations of each ¢-phase. In §3.1,
it is shown that (10.a) remains satisfied. By Lemma 7,
Xmin C Rp holds if X C V and thus (10.c) remains
satisfied. Consider (10.b). Each d is added to D as
s(u) for some u € V, 50 Dyin(v) < d(w) < Dpyinfv) +1
for each v € V. Hence Dp;n(v) is nondecreasing and it
increases by at most 1. If Dyin(v) = |V| (< n) for some
v € V, one can show that v ¢ Rp. Thus v ¢ V at all
subsequent iterations. O

Theorem 11 When the algorithm P-SFM terminates,
Zy is a minimizer of fi and x; is an optimal solution to
max{z~ (V) 12 € B(f,)} for each t =1, ..., k.

Proof: At the end of each ¢-phase, we have V1 = g,
and 50 z is optimal for (2) and V is a minimizer of
f¥. As Xpin C V, Z; V is a minimizer of f;.
Using Lemma 8 and 9 repeatedly, z; is optimal for
max.{z~ (V1) :z € B(f;)}. a

Although we are dealing with multiple submodular
functions, we can bound the number of columns added
to A* and the number of distance functions added to
D in the same way as Orlin’s paper [19]. The proof of
Lemma 12 is deferred to the full version of the paper.

Lemma 12 (also see [19]) Throughout the algorithm
P-SFM, the number of distance functions added to D
and the number of columns added to A* are both O(n*).

Since V increases after a nonsaturating update, they
are performed at most n times in a ¢-phase and at most
kn times during the algorithm. Each saturating update
deletes at least one distance function. Thus, by Lemma
12, the number of saturating updates is O(n?). So, the
number of iterations of P-SFM is O(n* + kn).

Theorem 13 The algorithm P-SFM
O(n°EO + nb + k(n?EO + n?)) time.

Proof: Each computation of the initial base z of a ¢-
phase takes O(n?EOQ) time. Consider the complexity
to add columns to A* and solve the systems of equa-
tions on A*. At the first iteration of a t-phase, it
takes O(n?EOQ + n®) time to construct A* and solve
the system of equations on A*. Each column can be
computed in O(nEOQO) time and it takes O(n?) addi-
tional time to add the column to A* and transform A*

TUNS N

into a canonical form for solving the system of equa-
tions. Thus by Lemma 12, the running time to add
columns to A* and solve the systems of equations on A*
is (RPEO + n® + k(n?EO + n?)) time.

Next, consider the executions of Reduce. Each ex-
ecution deletes at least 3n — |V| > 2n distance func-
tions and takes O(n?) time. By Lemma 12, the running
time for carrying out Reduce is O(n®). Moreover, it
takes O(n?) to compute Rp and O(nlogn) time to per-
form Dist-Update at each iteration. Since the number
of iterations of the algorithm is O(n? + kn), it takes
(n® + kn?) time to carry out these operations.

As aresult, the running time of the algorithm P-SFM
is O(n®EO +n® + k(n?EO + n%)). m]

At the end of each ¢-phase, for each 1 < j <r, subvector

zﬁj) is a convex combination of at most |U/(?)| extreme

bases of B(f)). As [V] + i UG} = n, we can
easily represent z; as a convex combination of at most
n extreme bases of B(f;). By Lemma 1 and Theorem
13, we have:

Corollary 14 Subsets XM, XP* (1 < t < k) and
compact representations of argmin fr (1 <t < k) can be
computed in O((n® + kn®)EO + n®) time in total.

3.4 Minimization in the reverse order

The algorithm P-SFM in §3.3 minimizes f1 « -+ + fi
in this order. It is easy to minimize them in the reverse
order. Define the function f; : 2" — R by fi(X) =
FVINX) (X C Vi) foreach t = 1,..., k. Clearly,
each f; is submodular and we have fi < --- « fi. By
applying the algorithm P-SFM to fy, ..., fi, functions
fx = -+ = fi can be minimized in this order and the
running time is still O((n® + kn3)EO + n®) in total. If
we need to distinguish the algorithm P-SFM in §3.3
and the reverse order algorithm, we call the latter one
Pgr-SFM.

4 Applications

Let us see some applications of parametric submodular
function minimization algorithms.

4.1 Some applications

Minimum ratio problems. Let f : 2¥ — R be a
submodular function with f(&) =0 and w € RY, be a
nonnegative weight vector with w # 0. As stated in [4],
one application is finding the minimizer of f{X)/w(X)
via Dinkelbach’s discrete Newton method [2]. In this
case, the number of the iterations of this method is at
most {V|. In the execution of this method, for some
ty > -+ >ty > 0, we have to minimize k& submodular
functions f — tyw,..., f — txgw in this order. As we
have the relation f — fyw « --- « f — tyw, the ratio
F(X)/w(X) can be minimized in O(|[V|>EO +|V|¢) time
using the algorithm P-SFM.

In the same way, we can deal with a more generalized
minimum ratio problem f(X)/g(X), where g : 2¥ —» R
is a set function such that g is monotone and supermod-
ular. The number of the iterations is still at most |V|
(refer to [8, §7.2 (b.1)]) and, for t; > -+ > tx > 0, we
have the relation f—#,9 ¢ --- < f—trg. Therefore, the
problem can also be solved in O(|V[?EQ + |V{%) time.

Convex optimization over base polytopes. In [18],
using parametric submodular function minimization al-
gorithms, Nagano proposed a general framework for
efficiently solving separable convex optimization prob-
lems over submodular constraints, including the lexico-
graphically optimal base problems [7] and the submod-
ular utility allocation market problems [15]. Using this
framework, with the aid of the algorithms P-SFM and
Pgr-SFM, each of them can be solved in the same order
as a single implementation of P-SFM.

4.2 Measuring robustness

As anew application of minimum ratio problems involv-
ing submodular functions, we consider the efficient com-
putation of the robustness function of submodular opti-
mization, which is a generalization of the results about
minimum spanning trees [6] and matroid optimization
[5.

We are given a monotone, submodular function f :
2V — R with f(®) = 0, an initial weight vector
w® € RY, a positive cost vector ¢ € RY and a bud-
get £° > 0. At first, a weight vector w = w° and it
can be changed using the budget. We pay c(v) - A for
increasing the weight w(v) of v € V by A > 0. Define
p(w) = mingep(sy{w, z) (w € RV). For any nonnega-
tive number 8 > 0, let

F(B) = mgX{w(w" +p) —p(w®) : (¢, p) < B; p> 0}

We call F': R>p — R the robustness function. In this
section, we consider the computation of F(3°). This
value measures the robustness of submodular optimiza-
tion. We say the weights of X C V are lifted by A if
the weight vector w is changed to w + A - xx. In the
same way as [5, 6], starting with w = w®, our algorithm
Lift repeatedly update the weights like w := w+ A - xx
to compute F'(5°). For any given weight vector w, let
wy < -+ < wg be the distinct values of w(v) (v € V)
and wey) = +oo.

A set of w-minimum bases. Let us see the struc-
ture of a set of w-minimum bases, that is, a set of bases
that minimize (w, z) over B(f). Put Ly = @. For
i=1,...,¢ put Li = {v € V : w(v) < w;} and put
K; = L;\ Li—y. We call each L; a level set of w. Define
fi: 2K o5 R by f° = (fL)1,_, for each i. Function
fo : 2¥ = R defined by f,(X) = 25, Fi(X N K;)
for each X C V is submodular. We have B(f,) =
B(fY)®--- @ B(f%). It is known that a base z € B(f)
is w-minimum if and only if z € B(f,) (see [8]). So,
p(w) = {w, Tu) for any z,, € B(fy).

The efficiency of each subset. Next, we try to

find a good subset for the efficient increase of ¢ by
lifting. Fix a subset X C V and define tol(X,w) =
mingex tol(v, w), where tol(v,w) = w;y, — w; for v €
V with w(v) = w;. Let A be a number such that
0 < A < tol(X,w) and let wa = w+ A - xx. By
the definition of tol(v, w), if A # tol(v,w), any wa-
minimum base z is also w-minimum. Thus we have
<p(wA) = minzeB(f)(wA, :L’) = minmeB(fw)(wA,z) =
(w) + min,ep s, (A xx, 7) = pw) + A- fF(X). De-
fine the efficiency of X at w as eff(X, f, w) = ff(x)(=

e(X)
%%w)). A subset X C V of largest efficiency is

a good one for the efficient increase of ¢. Remark that
f#, the dual of f,, can be represented as

FHX) = 3 F# (X N K

i=1

Q)

for each X C V. The following lemma says that there
exists a subset of largest efficiency such that all elements
in it have the same weight.

Lemma 15 Let X C V be a subset of largest ef-
ficiency at w. Suppose X N K; # &. Then we
have eff(X N K;, f, w) = eff(X, f, w). Furthermore,
eff (Y, f, w) = eff(X, f, w) for subset Y C K that maz-
imizes f#(Y)/c(Y) over 2K:.

The algorithm Lift. Our algorithm Lift, which is
similar to those in [5, 6], updates the weight vector in
a greedy way. By Lemma 15, each iteration of Lift
finds a subset of largest efficiency at w. The parameter
3 represents the budget already spent. The algorithm
Lift halts when 8 becomes 3°.

Algorithm Lift(f, 5°, w°, ¢)
B:=0; w:=w
while 8 < 3° begin
Find X* C K; with f#(X?%)/c(X?) maximum
foreachi=1,..., ¢
Set X := X*, where X% is a subset with
eff (X%, f, w) = maxy<i<e eff(X7, f, w);
Set A = min{tol(X, w), (8° — B)/c(X)};
Set w:=w+ A xx;
Set 3:= 8+ A-c(X);
end;
Return wr, 1= w;

Since Y, |K;| = |V|, each iteration takes O(|]V[°EO +
|V|8) time using the discrete Newton method and the
algorithm P-SFM (see §4.1). Let w{ < --- < wj be
distinct values of w°(v) (v € V).

Theorem 16 The number of while-loops of Lift is at
most n€°. Thus, it runs in O(|V[S°EO + |V|7¢°) time.

The correctness of Lift. Let p* € RY be an optimal
solution to maxp{p(w® + p) : {c, p) < B; p > 0} and
let w* = w® + p*. We will show that the algorithm Lift
computes F(3°) correctly, i.e., the equality ¢(wy) =
@(w*) is satisfied.

Given two weight vectors w, w' € RV and subset X C
V, we consider the relation between f#(X) and f7,(X).
For each v € V,let L, = {u € V : w(u) < w(v)} and
L, ={ueV: :w'u) <w'(}

Lemma 17 If L, C L, for each v € X, we have
FECO < FEX).

Proof: Consider a total order < in X such that v < v
for each u, v € X with w'(u) < w'(v). Define X, =
L\Nfue X :v=<u}l, X, =L \{ue X :v<u}for
each v € X. By (7), one can observe that

FEX) = Tpex1f(X0) = (X \ (o))},
FEX) = T ex {F(XD) = FIXI\ {o))).

By assumption, we have X! C X, for each v € X.
Therefore, by submodularity, f(X,) — f(X, \ {v}) <
]

FXD) = F(XE\ {v}). Thus fE(X) < fE(X).

With the aid of Lemma 17, we can show the correctness
of the algorithm Lift.

Theorem 18 The algorithm Lift correctly computes
the weight vector w* and the value F(5°).

Proof: Let ¢* be the number of iterations of Lift.
Assume that in iteration ¢ (1 < ¢ < ¢*) the param-
eter 8 changes from fB,-; to 8, and the weights in
the subset S, are lifted by the amount A,. Clearly,
0=pf <--- < By =0°and B, — B,01 = c(S,) - Ay
for each q. One can imagine that value 8 € R gradu-
ally increases from 0 to $°, that is, we gradually spend
the budget, and, accordingly, the algorithm Lift gradu-
ally updates the weight vector w. In the following, we
regard § as a time parameter. For any real number 3
with 0 < 8 < 3° let Ss C V be the subset which is be-
ing lifted by the continuous version of Lift and wg € RY
be the weight vector at that moment. If 3,_; < 8 < 8,
we have Sg = 5;. Let Qp = {wg : 0 < 8 < °}.

We imaginarily consider another set of weight vec-
tors Qopr = {w} : 0 < f < f°} that illustrates an
update consisted of iterative lifting procedures and ba-
sically mimics 1. The vector wj; changes from w°
into w* using the budget gradually. For each integer
q with 1 < ¢ < ¢*, while 3 increases from S, to
By, the vector wy changes as follows, using the bud-
get By — Ba—1 = c(S;) - A,.

Phase ¢-1:

Weights of elements in ¥ := SgN{v e V : wh(v) <
w*(v)} are gradually increased by the amount A,. If
wj(v) reaches w*(v) before it is increased by A, for
some v € YV, set Y := Y \ {v} at that moment and
this phase continues.

Phase ¢-2:

Weights of elements in Z = {v € V : wj{v) < w*(v)}
are increased using the budget 8, — 8,_ 1 where
Bq_% = fq-1 + (the budget spent in Phase ¢-1).
Again, Z might be decreased in this phase.

In Phase ¢-1, the vector wj is updated in a similar way

to the update by Lift as long as wj(v) is not reached
w*(v). In Phase g-2, the elements whose weights w(v)
are not reached w*(v) are equally raised. Starting with
wy = w®, it is easy to see that we really have Whe = W
For any 8 with 0 < 8 < 8°, let Sz C V be the subset
which is being lifted at the moment 3.

Functions Fi, F™* defined by FL(8) = ¢(wg) (0 <
B < 8°), I*(B) = p(ws) (0< B < B°) are both contin-
uous. For almost all § € (0, 8°), we have %FL([?) =
eff(Sp, f, wp) and FHF*(8) = eff(Ss, f, wp). More-
over, F1,(0) = F*(0) = 0 and F*(°) = F(8°). So, if we
show that the inequality eff (Sg, f, wg) > eff (S}, f, w)
for A € (0, 8°), the proof will be completed. Fix § €
(0, £°) and assume f,_1 < 8 < f,. Letv € Sj and con-
sider the value of wj(v). By definition, wj(v) < w*(v).
Thus, during Phase ¢’-1 (1 < ¢’ < ¢ — 1), the up-
date of the weight of v is similar to that of Lift. Dur-
ing Phase ¢'-2 (1 < ¢' < ¢ — 1), the weight of v
has always been increased. From these facts, whether
Be—1 £ B < ﬁq_% or ,Bq_% < B < B4, one can see that
the relation wg(v') < wgs(v) implies wj(v') < wp(v)
for each v € V. In Lemma 17, setting w' = wpg,
w =w}j and X = S, we obtain f#,(S3) > f%,(55) and
s eff(S3, f,ws) = f,(S5)/¢(S3) = f1,(S5)/e(S3) =
eff (S5, f,w}). As the algorithm Lift always chooses
the subset of largest efficiency, we have eff(Sg, f,wg) >
eff (53, f,wg). Therefore, we obtain eff(Sg, f,wg) >
eff (S35, f,w}h). O

Acknowledgments

I thank Satoru Iwata for useful comments.

References

[1] R. E. Bixby, W. H. Cunningham and D. M. Topkis:
The partial order of a polymatroid extreme point.
Mathematics of Operations Research, 10 (1985),
pp. 367-378.

2

W. Dinkelbach: On nonlinear fractional program-
ming. Management Science, 13 (1967), pp. 492~
498.

3

J. Edmonds: Submodular functions, matroids, and
certain polyhedra. In R. Guy, H. Hanai, N. Sauer,
and J. Schonheim, editors, Combinatorial Struc-
tures and Their Applications, Gordon and Breach,
New York, 1970, pp. 69-87.

4

L. Fleischer and S. Iwata: A push-relabel frame-
work for submodular function minimization and ap-
plications to parametric optimization. Discrete Ap-
plied Mathematics, 131 (2003), pp. 311-322.

[5

G. Frederickson and R. Solis-Oba: Algorithms for
measuring perturbability in matroid optimization.
Combinatorice, 18 (1998), pp. 503-518.

G. Frederickson and R. Solis-Oba: Increasing the
weight of minimum spanning trees. Journal of Al-
gorithms, 33 (1999), pp. 244-266.

[7] S. Fujishige: Lexicographically optimal base of a
polymatroid with respect to a weight vector. Math-
ematics of Operations Research, 5(1980), pp. 186—
196.

S. Fujishige: Submodular Functions and Optimiza-
tion (Second Edition). Elsevier, Amsterdam, 2005.

G. Gallo, M. D. Grigoriadis and R. E. Tarjan: A
fast parametric maximum flow algorithm and appli-
cations. STAM Journal on Computing, 18 (1989),
pp- 30-55.

A. Goldberg and R. E. Tarjan: A new approach to
the maximum-flow problem. Journal of the ACM,
35 (1988), pp. 721-740.

M. Grétschel, L. Lovdsz and A. Schrijver: Ge-
ometric Algorithms and Combinatorial Optimiza-
tion. Springer, Berlin, 1988.

A. Hayrapetyan, C. Swamy and E. Tardos: Net-
work design for information networks. Proceedings
of the 16th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (2005), pp. 933-942.

(13

S. Iwata, L. Fleischer, and S. Fujishige: A com-
binatorial strongly polynomial algorithm for mini-
mizing submodular functions. Journal of the ACM,
48 (2001), pp. 761-777.

[14] S. Iwata, K. Murota and M. Shigeno: A fast
parametric submodular intersection algorithm for
strong map sequences. Mathematics of Operations
Research, 22 (1997), pp. 803-813.

[15] K. Jain and V. V. Vazirani: Eisenberg-Gale mar-
kets: algorithms and structural properties. Proceed-
ings of the 39th ACM Symposium on Theory of
Computing (2007), pp. 364-373.

[16] L. Lovédsz: Submodular functions and convexity.
Mathematical Programming — The State of the Art
(A. Bachem, M. Grotschel, and B. Korte, eds.,
Springer-Verlag, 1983), pp. 235-257.

[17] K. Murota: Discrete Convez Analysis. SIAM,
Philadelphia, 2003.

[18] K. Nagano: On convex minimization over base
polytopes. Proceedings of the 12th IPCO Confer-
ence (2007), pp. 252-266.

[19] J. B. Orlin: A faster strongly polynomial time algo-

rithm for submodular function minimization. Pro-
ceedings of the 12th IPCO Conference (2007), pp.
240-251.

A. Schrijver: A combinatorial algorithm mini-
mizing submodular functions in strongly polyno-
mial time. Journal of Combinatorial Theory (B),
80 (2000), pp. 346-355.

Y. Sharma, C. Swamy and D. P. Williamson: Ap-
proximation algorithms for prize-collecting forest
problems with submodular penalty functions. Pro-
ceedings of the 18th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (2007), pp. 1275~
1284.

D. M. Topkis: Minimizing a submodular function
on a lattice. Operations Research, 26 (1978), pp.
305-321.

f20]

(21

(22]

