FEFEN SR
IPSJ SIG Technical Report

o 2007—AL—114 (3)

200779721

VST T DF%
itk SEAT, 48 SRl i iR

WE EOSTHY ST Lk, SV LED 1DREE LTV 57 Tha. ALTE, BaAm A
DUk OO XS 75 7 RFIHT 5 MBEER S, Ba, WOFMEFETS 7% 1
DW= D O(1) BIMTHEET 27 VT Y RLEER 5. RERTHHEBE O(m) TH3. 7
LY ZLOHAE, TS5 7R TIREL, BRI HALEY ST LOESDRTHD. & 5IC,
COTNTY XLEHETEC LICE D, Rhm ADNEED (7 L) TR S5 7% 1D
WD) O(md) BRI THET R B2 L ARY.

Listing All Plane Graphs
Katsuhisa YAMANAKAT, Zhangjian LI" and Shin-ichi NAKANO?

Abstract A “rooted” plane graph is a plane graph with one designated edge on the
outer face. In this paper we give a simple algorithm to generate all connected rooted plane
graphs with at most m edges. The algorithm uses O(m) space and generates such graphs
in O(1) time per graph on average without duplications. The algorithm does not output
the entire graph but the difference from the previous graph. By modifying the algorithm
we can generate all connected (non-rooted) plane graphs with at most m edges in O(m?®)

time per graph.

1 Introduction

Generating all graphs with some property with-
out duplications has many applications, includ-
ing unbiased statistical analysis [M98]. A lot
of algorithms to solve these problems are known
[AK96, B8O, LNO1, M98, N04, W86, etc]. See text-
books [G93, K05, KS98, S97, S99).

In this paper we wish to generate all connected
“rooted” plane graphs, which will be defined pre-
cisely in Section 2, with at most m edges. Such
graphs play an important role in many algorithms,
including graph drawing algorithms [CN98, FPP90,
S90, ete].

To solve these all-graph-generating problems
some types of algorithms are known.

Classical method algorithms [G93, p57] first gen-
erate all the graphs with a given property allowing
duplications, but output only if the graph has not
been output yet. Thus this method requires quite
a huge space to store a list of graphs that have al-
ready been output. Furthermore, checking whether
each graph has already been output requires a lot
of time.

.1 MK T ARNRT R T 376-8515 M AU AR
My 1-5-1.

Department of Computer Science, Gunma University, 1-5-1
Tenjin-Cho, Kiryu, T 376-8515
tyamanaka@nakano-lab.cs.gunma-u.ac.jp,
inakano@cs.gunma-u.ac.jp

Orderly method algorithms [G93, p57] need not
store the list, since they output a graph only if it is
a “canonical” representative of each isomorphism
class.

Reverse search method algorithms [AK96] also
need not store the list. The idea is to implicitly
define a connected graph H such that the vertices
of H correspond to the graphs with the given prop-
erty, and the edges of H correspond to some rela-
tion between the graphs. By traversing an implic-
itly defined spanning tree of H, one can find all the
vertices of H, which correspond to all the graphs
with the given property.

The main idea of our algorithms is that for some
problems(biconnected triangulations [LN01], and
triconnected triangulations [N04]) we can define a
tree (not a general graph) as the graph H of the
reverse search method. Thus our algorithms do not
need to find a spanning tree of H, since H itself is
a tree. With some other ideas we give the following
two simple but efficient algorithms.

Our first algorithm generates all simple con-
nected rooted plane graphs with at most m(m > 0)
edges. Simple means there is neither self loops nor
multiple edges. A rooted plane graph means a plane
graph with one designated “root” edge on the outer
face. For instance there are nine simple connected
rooted plane graphs with at most three edges, as
shown in Fig. 1(a). The root edges are depicted by
thick grey lines. However, there are only five simple

—~\. oS —J
V.< NS NNV
N o> Ad A

(a) (b)

Figure 1: (a) Connected rooted plane graphs, and
(b) Connected (non-rooted) plane graphs.

connected (non-rooted) plane graphs with at most
three edges. See Fig. 1(b). The algorithm uses
O(m) space and runs in O(g(m)) time, where g(m)
is the number of nonisomorphic connected rooted
plane graphs with at most m edges. The algorithm
generates such graphs without duplications. So the
algorithm generates each graph in O(1) time on av-
erage. The algorithm does not output the entire
graph but the difference from the previous graph.

By modifying the algorithm we can generate all
connected (non-rooted) plane graphs with at most
m edges in O(m?) time per graph.

The rest of the paper is organized as follows. Sec-
tion 2 gives some definitions. Section 3 shows a tree
structure among connected rooted plane graphs.
Section 4 presents our first algorithm to generate all
connected rooted plane graphs. Then, by modify-
ing the algorithm we give an algorithm to generate
all connected (non-rooted) plane graphs. Section 5
analyzes the running time of our algorithm. Finally
Section 6 is a conclusion.

2 Preliminaries

In this section we give some definitions.

Let G be a connected graph with m edges. In
this paper all graphs are simple, so there is neither
self loops nor multiple edges. An edge connecting
vertices u and w is denoted by (u,w). The degree
of a vertex v is the number of neighbors of v in G.

A graph is planar if it can be embedded in the
plane so that no two edges intersect geometrically
except at a vertex to which they are both incident.
A plane graph is a planar graph with a fixed planar
embedding. A plane graph divides the plane into
connected regions called faces. The unbounded face
is called the outer face, and other faces are called
inner faces. We regard the contour of a face as
the clockwise cycle formed by the vertices on the

Figure 2: A connected rooted plane graph.

boundary of the face. We denote the contour of the
outer face of plane graph G by C,(G). For instance,
in Fig. 2, Co(G) = wo,v1,v2,v3, 04,05, V6,07 =
Us, Ug; Vg, V10 = Vs, V11 = V4, V12,V13 = V1,014 = Up.
Note that a vertex may appear several times on
Co(G). We say each v; on C,(G) is an appearance
of a vertex. For instance vs, vy and vyp are the
appearances of the same vertex vs = v7 = vig. A
rooted plane graph is a plane graph with one des-
ignated edge e, = (v, v;) on C,(G). We assume
v, succeeds v, on Co(G). The designated edge is
called the root edge, and vertex v; is called the root
verter. Note that a rooted plane graph has one or
more edges. From now on we write r for the root
vertex.

3 The Removing Sequence
and the Family Tree

Let S, be the set of all connected rooted plane

. graphs with at most m edges. In this section we

explain a tree structure relating the graphs in S,,.

Let G be a connected rooted plane graph
with two or more edges. Let e, = (vg—1,v0)
be the root edge of G and C,(G) = (=
7),v1,V2,...,Vk—1,vo(= r). Note that vy succeeds
vg—1 on Co(G).

We classify the edges on Co{G) into three types
as follows. If e on C,(G) is included in a cycle of
G then € is a cycle edge. Otherwise, if at least one
vertex of e has degree 1 then e is a pendant. Oth-
erwise e is a bridge. We can observe if we remove
a bridge from G then the resulting graph is dis-
connected. For instance, in Fig. 2, edge (ve,v3) is
a cycle edge, edge (vs,vg) is a pendant, and edge
(v4,vs) is a bridge.

An edge e # e, on C,(G) is removable if after
removing e from G the remaining edges induce a
connected graph. Thus each edge e # e, is remov-
able if and only if e is either a pendant or a cycle
edge.

Since G is a rooted plane graph, the resulting

graph after removing a removable edge is also a
rooted plane graph with the same root edge.
We have the following lemma.

Lemma 3.1 Every connected rooted plane graph
with two or more edges has at least one removable
edge.

Proof. Let G be a connected rooted
plane graph with two or more edges, with
the root edge (uvx—1,v), and Co(G) = wup(=
7),V1,V2,...,Uk—1,%. Let er = (vg,v1) #
(vk—1,%) = e, be any edge on C,(G). Now e
must be one of the three types, that is, a bridge,
a pendant or a cycle edge. If e; is a pendant or a
cycle edge, it is removable, and we are done. Oth-
erwise e is a bridge, then on C,{G) the next edge
of e; is either a pendant, a bridge or a cycle edge.
By repeating this procedure we can find at least
one pendant or cycle edge, which is removable.

Q.ED.
If e, = (va—1,vs) is removable but none of
(vo,v1), {v1,v2),. .., (Va—2,Ve—1) is removable, then

eq is called the first removable edge of G. We can
observe that if e, is the first removable edge then
each of (vg,v1), (v1,v2),- .., (Va=2,Va—1) is a bridge
or the root edge. (So they are not removable.)

For each graph G in S,, except K5, if we remove
the first removable edge then the resulting edge-
induced graph, denoted by P(G), is also a graph in
Sm having one less edge. Thus we can define the
unique graph P(G) in S,,, for each G in S, except
K,. We say G is a child graph of P(G).

Given a graph G in S,,, by repeatedly removing
the first removable edge, we can have the unique
sequence G, P(G), P(P(G)),... of graphs in S,
which eventually ends with K. By merging those
sequences we can have the family tree T, of Sp,
such that the vertices of T, correspond to the
graphs in Sy, and each edge corresponds to each
relation between some G and P(G). For instance
T is shown in Fig. 3, in which each first removable
edge is depicted by a thick black line. We call the
vertex in T}, corresponding to Ky the root of Th,.

4 Algorithms

Given S,, we can construct 7}, by the definition,
possibly with huge space and much running time.
However, how can we construct T;, efficiently only
given an integer m? Our idea [LNO1, N04] is by
reversing the removing procedure as follows.

0)

m

/
o Ve -,

m —

)

(0,2)

-
|

0.4)

/7

LMl LLDN,

E

-

(2)

©

S

L,

0,2)

(1,3)

N
|

Figure 3: The family tree Ty.

A\

vp=T

@ G(i)

(b) G(ij)

Figure 4: Ilustration for (a) G(4) and (b) G(¢,).

Given a connected rooted plane graph G in S,
with at most m — 1 edges, we wish to find all child
graphs of G. Let e, be the root edge. Let C,(G) =
vo(=7),v1,...,Uk—1,v0(=7), and (vg—1, vs) be the
first removable edge of G. Note that k is the num-
ber of appearances of the vertices on the contour
of the outer face. Since K3 has no removable edge,
for convenience, we regard e; = (vg,v1) as the
first removable edge for K;. We denote by G(3),
0 € i < k, the rooted plane graph obtained from
G by adding a new pendant at v;, and by G(4, j),
0 <4 < j < k, the rooted plane graph obtained
from G by adding a new cycle edge connecting v;
and v; on the outer face of G, as shown in Fig. 4.
We can observe that each child of G is either G(3)
or G(i,j) for some i and j, and G(3) or G(3,7) is
a child graph of G if and only if the newly added
edge of G(i) or G(4,7) is the first removable edge
of G(i) or G(3, 7).

If (va—1, vq) is the first removable edge of G, then
edges (v, v1), (v1,v2),..., (Va—2,va—1) are bridges
or the root edge, and vertices vg, vy, vs, .. ., v, form
a path on C,(G). We call this path the critical path
of G and denote it P.(G). For instance, in Fig. 2,
Fo(G)=(vo, v1,v2).

Now we are going to find all child graphs of G.
We have the following two cases to consider. Let
b(i) be the largest integer satisfying v; = vy
Thus vy(;) is the last appearance of v; on Co(G).

Case 1: The first removable edge (ve—1,%,) of G
is a pendant. (including the special case when G is
K3)

Consider graphs G(4), 0 < i < k. For each i,
0 £ ¢ £ a, the newly added edge in G(i) is the
first removable edge of G(i), thus P(G(i)) = G.

For each 4, a < i < k, (vg_1,v,) is still the first
removable edge of G(i), so P(G(%)) # G.

Then consider graphs G(i,7), 0 < i < j < k.
For each 7 and j, (i < j) such that (1) v; # v;, (2)
0<i<a~1,(3) (v;,v;) is not an edge of G, and
(4) 7 < b{?), the newly added edge in G(4,) is the
first removable edge of G(3, 7}, thus P(G(i, j)) = G.
Note that if v; = v; edge (v;,v;) is a self loop, and
so G(i,7) is not simple. Also if G has edge (v;, v;)
then G(4,7) has a multiple edge, and so G(3,j) is
not simple. If i > a, then the newly added edge
in G(4,7) is not the first removable edge of G(3, j),
since (vg—1,) is still removable, thus P(G(3)) #
G. Otherwise, 0 < i < a—1 and j > b(i) holds.
Now edge (vi—1,v;) becomes removable in G(3, j),

so P(G(3)) # G.

Case 2: The first removable edge (va—1,v,) of G
is a cycle edge.

Consider graphs G(i), 0 < i < k. For each i,
0 <4 < a—1, the newly added edge in G(2) is
the first removable edge of G(i), so P(G(3)) = G.
For each 4, a < i < k, (va—1,v,) is still the first
removable edge of G(i), so P(G(3)) # G.

Then consider graphs G(i,7), 0 < i < j < k.
For each 4 and j, (i < j) such that (1) v; # v;, (2)
0<i<a—1,(3) (vi,v;) is not an edge of G, and
(4) 7 < b(i), the newly added edge in G(4,) is the
first removable edge of G(4,7), thus P(G(:,5)) =
G. If i > a, then the newly added edge in G(i, j)
never becomes the first removable edge of G(i, 7),
so P(G(1)) # G. Otherwise, 0<i<a—1and j>
b(i) holds. Now edge (v;_1,v;) becomes removable
in G(4,7), so P(G(%)) # G.

Based on the case analysis above we can find
all child graphs of any given graph in S,,. If G
has [child graphs, then we can find them in O(l)
time with a suitable data structure, which will be
described in Section 5. This is an intuitive reason
why our algorithm generates each graph in O(1)
time per graph on average.

And recursively repeating this process from the
root of T}, corresponding to K we can traverse T,
without constructing the whole part of T}, at once.
During the traversal of T,, we assign a label (4)
or (i,7) to each edge connecting G and either G(i)
or G(i,j) in Ty, as shown in Fig. 3. Each label
denotes how to add a new edge to G to generate
a child graph G(i) or G(i, j), and each sequence of
labels on a path starting from the root specifies a
graphin S,,. For instance, the sequence (1)(0,2)(0)
specifies the right-bottom graph in Fig. 3. During

our algorithm we will maintain these labels only on
the path from the root to the “current” vertex of
T, because those labels are enough information
to generate the “current” graph. To generate the
next graph, we need to maintain some more infor-
mation only for the graphs on the “current” path,
which has length at most m. This is an intuitive
reason why our algorithm uses only O(m) space,
while the number of graphs may not be bounded
by a polynomial in m.
Our algorithm is as follows.

Procedure find-all-child-graphs(G)
begin
01 Output G {Output the difference from the
previous graph.}
02 Assume (vg_1,¥,) is the first removable edge
of G.
03 if G has exactly m edges then return
04 fori=0toa-1 {Case 1 and 2}
05 find-all-child-graphs(G(i))
06 if (ve—1,v,) is a pendant then
07 find-all-child-graphs(G(a))
08 fori=0toa—1 {Case 1 and 2}
09 forj=i+2tob(i)—1

{Case 1}

10 if v; # v; and (v;,v;) is not an edge of G
then
11 find-all-child-graphs(G(i, j))
end

Algorithm find-all-graphs(T5,)
begin
Output K,
G=K;
find-all-child-graphs(G(0))
find-all-child-graphs(G(1))
end

W N

We have the following theorem. The proof is
given in Section 5.

Theorem 4.1 The algorithm uses O(m) space and
runs in O(g(m)) time, where g(m) is the number of
nonisomorphic connected rooted plane graphs with
at most m edges.

We can modify our algorithm so that it out-
puts all connected (non-rooted) plane graphs with
at most m edges, as follows. At each vertex v of
the family tree T, the graph G corresponding to
v is checked whether the sequence of labels of G
(with the root edge) is the lexicographically first
one among the k sequences of labels of G for the k
choices of the root edge on C,(G), and only if so G

is output. Thus we can output only the canonical
representative of each isomorphism class. A similar
method is appeared in [LN01, N04]|.

Lemma 4.2 The algorithm uses O(m) space and
runs in O(m®-h(m)) time, where h(m) is the num-
ber of nonisomorphic connected (non-rooted) plane
graphs with at most m edges.

Proof. For each graph corresponding to a vertex
of T,, we construct & < m of sequences of labels
corresponding to the k choices for the root edge on
Co(G) in O(m) time for each sequence, and find
the lexicographically first one in O(km) time. And
for each output graph, our tree may contain & of
isomorphic ones corresponding to the k choices for
the root edge. Thus the algorithm runs in O(k?m -
h(m)) = O(m? - h(m)) time. The algorithm clearly
uses O(m) space. Q.ED.

5 Proof of Theorem 4.1

In this section we give a proof of Theorem 4.1, that
is if G has ! child graph how we can find them in
O(1) time.

Given a connected rooted plane graph G in S,
with at most m — 1 edges, we are going to find
all child graphs of G by algorithm find-all-child-
graphs. Let (vk—1,v) be the root edge of G,
Co(G) = vo(= 7),v1,v9,...,0k-1,0(= r), and
(va—1,v,) be the first removable edge of G.

If G has | child graphs of type G(i), by only
maintaining the critical path vg,v1,...,v,, we can
find such child graphs in O(l) time. See lines 04-07
of find-all-child-graphs.

On the other hand, if G has ' child graphs of
type G(i,), we need to maintain a slightly compli-
cated data structure to find all such child graphs
in O(I') time. Note that if either (1) v; = vj, or (2)
G has an edge (v;,v;), then G(i,7) is not simple
and G(4, j) is not a child graph of G, so we need to
efficiently skip such j’s at line 10. For each of the
other j’s, we need to generate G{(i, j), since those
are child graphs of G.

Our idea is as follows. Let v; be an appearance of
a vertex on the critical path of G. We say that an
appearance v; on Co(G) is dead with respect to v; if
either (1) v; = v;, or (2) G has an edge (v;,v;). To
skip dead appearances efficiently, for each vertex v;
on the critical path, we maintain a list of successive
dead appearances with respect to v;, which allow
us to skip each run of successive dead appearances
in O(1) time. After each time skipping successive

dead appearances we can always generate a child
graph of G corresponding to the next “non-dead”
appearance. Thus ! child graphs of type G (¢,7)
can be generated in O(l') time. The details are as
follows.

Let vq(s) and vy(;) be the first and last appear-
ance of v; on C,(G). Let P, be the subpath from
Va(i) 10 Vpy on Co(G). A maximal subpath Pf
of P, is called a dead path of wv; if all appear-
ances Vg, Vet1,... on Pf are dead with respect to
v;. For example, the graph in Fig. 5 has 6 dead
paths of vs: P§ = (vs,vs,v5,08), P§ = (vg),
PO = (v1q), P}? = (v12,v13,v14, V15, V16), P48 =
(v18; V19, V20, V21), P§> = (vas,vz4). They appear
on C,(G) in this order. For each v;(0 <i<a=-1),
we maintain all dead paths as a list, and we call the
list the zombie list of v;. Using the zombie list we
can skip each run of successive dead appearances in
O(1) time. After each time we skip a dead path, we
can always generate at least one child graph. Thus,
we can generate each child graph of type G(i,7) in
O(1) time.

Now we show how to prepare those data struc-
tures for each child graph.

Given a connected rooted plane graph G and the
zombie list of each vertex on the critical path, we
are going to generate all child graphs, and for each
child graph we prepare the zombie list of each ver-
tex on the new critical path by modifying the list
for G.

We have the following two cases.
Casel: Child graphs of type G(3).

We have the following two cases.
Casel(a): i = a.

The first removable edge of G is a pendant, since
otherwise the first removable edge of G is a cycle
edge and G(i) is not a child graph of G. Appending
the new edge to the critical path of G generates the
critical path of G(i). The zombie list of each v,
0<!<a-2,in G(7) is identical to the ones in G.

The zombie list of v,—1 in G(i) is derived by di-
viding the first dead path P of v,—; in G as fol-
lows. Let P = (va_l,va,v;, v’z, ...) then we di-
vide P into two dead paths P = (vq—1,v,) and
Py = (Ua,vll,v/z.,...). Note that adding the new
edge generates one more appearance of v,. See an
example in Fig. 6(a). The dead path P2 in Fig.
6(a) is divided into P2 and P§. Other dead paths
of ve_1 in G(3) are identical to the ones in G.

The zombie list of v, consists of one dead path
P = (vg,vz,v,), where v, is the other end vertex
of the new edge.

Thus we can modify the zombie list of each vertex
on the critical path in O(1) time.

Casel(b): Otherwise.

The critical path of G(i) is wvo,v1,..., Vs, Vs,
where v; is the other end vertex of the new edge.

The zombie list of each v;, 0 << i—11in G(3)
is identical to the zombie list of G.

The zombie list of v; is derived by appending
(vi,vz) as the prefix to the first dead path of v;,
where v, is the other end vertex of the new edge.
See an example in Fig. 6(b). By appending (vq,v;)
into the dead path P# of v; in G, the dead path P$
of G(i) is derived. Note that the other dead path
of v; in G(%) is identical to the ones in G.

Thus we can modify the zombie list of each vertex
on the critical path in O(1) time.

Case2: Child graphs of type G(%, j).

The critical path of G(i,) is vo, vy, .., vi,v;.
Note that wvs41,%42,...,v;-1 are not on
Co(G(4,7)). So we need not maintain the zom-

bie list of those. Also each vjy1,v512,...,v, are
not on the critical path of G(¢, 7). So we need not
maintain the zombie lists of those.

The zombie list of each v, 0 <1 < i -1, is
identical to the zombie list of G(2).

The zombie list of v; is derived by removing dead
paths of v; up to v; on Co(G). If vjyq is dead
with respect to v; in G, then appending (v;, v;) into
the dead path Pij"’1 = (Vj41,Vj42,...) generates
the zombie list of v; in G(3,5). See an example
in Fig. 6(c). By appending (vp,vs) into the dead
path P§ of vy in G, the dead path P? of vy in
G(4,7) is derived. Otherwise if v;41 is not dead
then we append a new dead path Pf = (v, v;) into
the zombie list of v;. Other dead paths remain as
they are.

Thus we can modify the zombie list of each vertex
on the critical path in O(1) time.

By the above case analysis, we can prepare the
zombie list of each child graph of G in O(1) time.

Next we estimate the space for zombie lists.

Since the number of dead paths of vertex v is
bounded by the degree of v, the space to store the
zombie lists of G is bounded by O(m) = O(n).

By maintaining the zombie lists, if G has ! child
graphs of type G(i,j), we can find all such child
graphs in O(I') time. Thus, the algorithm runs in
O(g(m)) time, where g(m) is the number of noni-
somorphic connected rooted plane graphs with at
most m edges.

— 99 —

=% : A trace of skipping cach dead path

Figure 5: An illustration for the zombie list of vs.

y=r B = v P =g P/

(c) Case2

Figure 6: An update of a zombie list for (a), (b) G(¢) and (c¢) G(3, 7).

6 Conclusion

In this paper we have given a simple algorithm to
generate all connected plane graphs with at most
m edges. Our algorithm first defines a family tree
whose vertices correspond to graphs, then outputs
cach graph without duplications by traversing the
tree.

By implementing the algorithm one can compute
the catalog of plane graphs.

References

[AK96] D. Avis and K. Fukuda, “Reverse Search for
Enumeration,” Discrete Applied Mathematics, 65,
pp.21-46, 1996.

[B80] T. Beyer and S.M. Hedetniemi, “Constant time
generation of rooted trees,” SIAM J. Comput., 9,
pp.706-712, 1980.

[CN98] M. Chrobak and S. Nakano, “Minimum-width
grid drawings of plane graphs,” Computational
Geometry: Theory and Applications, 10, pp.29-
54, 1998.

[FPP90] H. de Fraysseix, J. Pach, and R. Pollack,
“How to draw a planar graph on a grid,” Com-
binatorica, 10, pp.41-51, 1990.

[G93] L.A. Goldberg, “Efficient algorithms for listing
combinatorial structures,” Cambridge University
Press, New York, 1993.

[K05] D.E. Knuth, “The art of computer programming,
vol 4, fascicle 2, generating all tuples and permu-
tations,” Addison-Wesley, 2005,

[KS98] D.L. Kreher and D.R. Stinson, “Combinatorial
algorithms,” CRC Press, Boca Raton, 1998.

[LNO01] Zhangjian Li and S. Nakano, “Efficient gener-
ation of plane triangulations without repetitions,”
Proc. ICALP2001, Lect. Notes in Comput. Sci.,
2076, pp.433-443, 2001.

[M98] B.D. McKay, “Isomorph-free ezhaustive genera-
tion,” J. of Algorithms, 26, (1998), pp.306-324.

[NO4] S. Nakano, “Efficient generation of triconnected
plane triangulations,”, Computational Geometry,
Theory and Applications, 27, pp.109-122, 2004.

[S90] W. Schnyder, “Embedding planar graphs on the
grid,” Proc. Ist Annual ACM-SIAM Symp. on
Discrete Algorithms, San Francisco, pp.138-148,
1990.

[S97] R.P. Stanley, “Enumerative combinatorics,
vol.1,” Cambridge Univ. Press, 1997.

[S99] R.P. Stanley, “Enumerative combinatorics,
vol.2,” Cambridge Univ. Press, 1999.

[W86] R. A. Wright, B. Richmond, A. Odlyzko and
B. D. McKay, “Constant time generation of free
trees,” SIAM J. Comput., 15, (1986), pp.540-548.

