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Abstract: An L(2,1)-labeling of a graph G is an assignment f from vertices of G to the set of non-
negative integers {0,1,..., A} such that | f(u} — f(v}| > 2 if v and v are adjacent, and |f(u) — f(v)| > 1if
u and v are at distance 2 apart. The minimum value of A for which G has L(2, 1)-labeling is denoted by
MG). The L(2,1)-labeling problem is related to the channel assignment problem for wireless networks.
In this paper, we present a polynomial time algorithm for computing L(2, 1)-labeling of a bipartite
permutation graph G such that the largest label is at most A(G) + 1, which is a nearly optimal value.

1 Introduction

The channel assignment problem for wireless networks is to assign a channel to each radio transmitter so
that close transmitters are received channels so as to avoid interference. This situation can be modeled by
a graph whose vertices are the radio transmitters, and the adjacency indicate possible interference. The
aim is to assign integers (corresponding to the channel) to the vertices such that adjacent vertices receive
integers at least 2 apart, and nonadjacent vertices with a common neighbor receive distinct integers. This
is called L(2, 1)-labeling problem which is widely accepted model for the channel assignment problem. A
formal definition is given as follows.

Definition 1.1. An L(2,1)-labeling of G is an assignment f from V to the set of integers {0,1,... )}
such that |f(u) — f(v)] 2 2 if wv € E and | f(u) — f(v)] > 1 if dist(u,v) = 2. The minimum value of A
for which G has L(2,1)-labeling is denoted by A(G).

The notion of L(2,1)-labeling has attracted a lot of attention for not only its motivation by the
channel assignment problem, and also for its interesting graph theoretic properties. Griggs and Yeh [5]
first considered this problem. There are many papers that study the problem for several graph classes
{for example, see surveys (3, 11]). The complexity for deciding A(G) < k for fixed k is NP-complete [3],
and for bipartite graphs and chordal graph are also NP-complete [1].

In this paper, we focus on the class of bipartite permutation graphs which is a permutation graph and
bipartite graph. This class was investigated by Spinrad, Brandstadt, and Stewart [7]. Studies for the
class are motivated by the fact that many NP-hard problems are efficiently solved in graphs of this class.
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Figure 1: A bipartite permutation graph and the corresponding permutation diagram.

For example, algorithms for domination problems [6,10], the path partition problem [8], and the longest
path problem [9] were investigated. Books [2,4] include surveys some algorithmic result for the class.
Boldaender et al. [1] proved that A(G) < 5A — 2 for any permutation graph, where A is the maximum
degree of G, and such labeling is calculated by a polynomial time algorithm that is greedy manner.

We consider the L(2, 1)-labeling problem for bipartite permutation graphs. We present a polynomial
time algorithm for computing a nearly optimal labeling. More precisely, the maximum value assigned for
vertices is at most A(G) + 1.

2 Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E. The neighborhood of a vertex u is
Ng(u) = {v | uv € E}. The degree of a vertex u is degu = |Ng(u)|. The distance between two vertices
u and v, denoted by dist(u,v), is the length of shortest path between u and v. A graph G = (V, E) is
bipartite if V' can be partitioned into two subsets X and Y such that every edge joins a vertex in X and
another vertex in Y. A partition X UY of V is called bipartition. A bipartite graph with bipartition
X UY is denoted by G = (X,Y,F). A bipartite graph G = (X,Y, E) is complete if each vertex in X
is adjacent to every vertices in Y. For a bipartite graph, a subset of vertices is biclique if it induces a
complete bipartite subgraph. The bicligue number of a bipartite graph G is the number of vertices in a
maximum biclique of G and it is denoted by be(G).

A graph G = (V, E) with V = {v1, va,...,v,} is called a permutation graph if there is a permutation
7 over {1,2,...,n} such that v;v; € E if and only if (i — j)(7~1(¢) —~ 7~ 1(5)) < 0. When a permutation
graph is bipartite, it is said to be a bipartite permutation graph.

Intuitively, a permutation graph can be constructed from a permutation 7 = (m,ms,...,m,) on
{1,2,...,n} in the following visual manner. Line up the numbers 1 to n horizontally on a line L,. On
the line below it, line up the corresponding permutation so that «; is below 7 on a line L,. Then connect
each ¢ and 7} ! with a line segment which is corresponding to vertex v;. The resulting diagram is referred
to as a permutation diagram. In the permutation graph corresponding to 7, two vertices v; and v; are
adjacent if and only if the corresponding lines are crossing. An example of a bipartite permutation graph
and the corresponding permutation diagram is shown in Fig. 1.

In the permutation diagram of a bipartite permutation graph G = (X,Y,E), we can order line
segments T1,Ta,...,Tm in X from left to right (these are drawn by solid lires in Fig. 1). We also order
vertices y1,¥2,...,¥n in Y from left to right (these are dotted lines in Fig. 1). From now on, we suppose
that vertices in X = {x1,%2,...,2m} and ¥ = {y1,y2,...,yn} are sorted such that the corresponding
lines are arranged from left to right in the permutation diagram. It should be noted that Spinrad et
al. [7] developed an O(|V| + |E|) time algorithm for recognizing whether a given graph is a bipartite
permutation graph and producing such orderings of the vertices if so.

A bipartite graph G = (X,Y, E) is a chain graph if vertices can be ordered by inclusion: that is,
there is an ordering of vertices x1,%2,...,Zm in X and y1,y2,...,yn in Y such that Ng(z1) € Ng(z2) C
-+ © Neg(zm) and Ne(yn) € -+ € Ng(y2) € Ne(y1)- It is known that any chain graph is a bipartite
permutation graph [9].

Lemma 2.1 (Uehara, Valiente [9]). Let G = (X,Y,E) be a connected chain graph with Ng(z1) C
Ng(z2) € --- € Ng(zm) and Ne(yn) C -+ € Ne(y2) € Ng(y1). Then, it has o corresponding permu-
tation diagram such that (1) x1 < 22 <+ < &y <y1 < y2 < -~ < Yo on Ly, and (2) yy < z1 and
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Figure 2: A chain graph and the corresponding permutation diagram.

Yn < Tm on La. Conversely, if a graph G has a corresponding permutation diagram satisfying conditions
(1) and (2), then it is a connected chain graph.

Figure 2 shows an example of chain graph and the corresponding permutation diagram.

3 Labeling of chain graphs

In this section, we show that an optimal L(2, 1)-labeling of chain graph can be solved in linear time. For
simplicity, we may assume that the given graph is connected. The following is easily obtained.
Lemma 3.1. For a complete bipartite graph G = (X,Y, E), M(G) = | X| + |V}

It is obvious that A(G) > A(H) if H is a subgraph of G. Hence we obtain a lower bound of A\(G) for
any bipartite graph G from Lemma 3.1.

Corollary 3.2. A(G) > bc(G) for any bipartite graph G.

Theorem 3.3. Let G = (X,Y,E) be a connected chain graph such thet Ng(z1) C Ng(za) C - C
Ng(zm) and Ne(yn) C - € Ng(y2) C Ne(y1). Define a labeling cl of vertices such that

d(z;) = be(G)—m+1, for1 <i<m,

cd{y;) = j—1, for1<j<n.
Then cl is an optimal L(2,1)-labeling of G. The labeling c| satisfies the inequality 2 < cl(z;) — cl(y;) <

be(G) for zy; € E. Moreover, cl(z;) ~ cl(y;) = be(G) for z;y; € E if and only if i = m and j = 0.

Proof. Since every vertex in X (or Y) receives distinct labels, every pair of vertices distance two apart
have distinct labels.

Then we show that cl(z;) — cl(y;) > 2 if z;y; € E. Suppose to the contrary that cl(z;) — cl(y;) < 1.
Then (k —m +1) — (j — 1) < 1, where k = bc(G). Hence k < m — i+ 5. On the other hand, the set of
vertices {x;, Tit1,...,%m} U{y1,¥2,...,y;} induces a biclique. Thus we obtain k > (m —i+1)+j. This
contradicts the inequality & <m — i+ 7.

Since AM(G) > be(G) and maxyexuy cl(v) = clwm) = be(G), the labeling f is an optimal L(2,1)-
labeling. O

Lemma 3.4. be(G) = max;<j<n{j + degy;} for a chain graph G.
Proof. This can be derived easily from the fact that Ng(z1) € --- € Ng(zm) and Ng(y,) € --- C

NG(y1)~ D

We present an algorithm for computing the biclique number and an optimal labeling for a chain graph
in Algorithm 1 and 2. Clearly, this algorithm runs in linear time.

Theorem 3.5. An optimal L(2,1)-labeling of a chain graph can be computed in O(N) time, where N is
the number of vertices.

An example of the L(2,1)-labeling cl obtained by LABELING_CHAIN(G) is illustrated in Fig. 3.
The chain graph G with [X] = 7 and [Y| = 6 has the biclique number bc(G) = maxy, ey {j + degy;} =
3+ degys = 9 (in fact, the set {z2,...,27} U {y1,y2,y3} forms the maximum biclique).



Algorithm 1: BICLIQUE_CHAIN(G)
Input: a chain graph G = (X,Y, E) with X = {z1,..., 2} and Y = {y1,...,yn}.
Output: the biclique number bc(G)
be « 0;
for j — 1 tondo
if be < j + degy; then bc «— j + degy;
end
return bc

Algorithm 2: LABELING_CHAIN(G)
Input: a chain graph G = (XY, E) with X = {z1,...,2n} and ¥ = {y1,...,yn}.
Output: an L(2,1)-labeling cf of G
bc — BICLIQUE_CHAIN(G) ; /* the biclique number of G */
foreach z; € X do cl(z;) «— bc—m +14;
foreach y; € Y do cl(y;) —j—1;
return cl

4 Labeling of bipartite permutation graphs

In this section, we present a polynomial time algorithm for calculating an L(2, 1)-labeling f for a bipartite
permutation graph G so that max f(v) < be(G) + 1.

Definition 4.1. Let G = (X,Y, F) be a bipartite permutation graph. For y; € Y, let G; be the subgraph
of G induced by X; UY;, where

X; = Neg(y;) = {zi 241, -, 2k}, and

Y, = {ylzxy € E andl > j}.

Lemma 4.2. Gj is a chain graph such that Ng,;(z;) € Ne, (®:41) € -+ € Ng,(zx) and Ng,(y)) € -+~ C
Ne, (y541) € Ne, (y;), where y; is the mazimum neighbor of zx.

Proof. 1t is easy to see that the vertices in G; are arranged such that z; < z;41 < - < 3 < y; <
yj+1 < --» <y on L of the permutation diagram, and y; < z; and y; < zx on Ly. By Lemma 2.1, the
lemma holds. O

4.1 Algorithm
The outline of our algorithm for a bipartite permutation graph G is as follows:

1. Visit y, € Y starting from r = 1 to r = n consecutively.

(a) Construct a chain graph G, and calculate a labeling cl of G, by LABELING_CHAIN.

(b) Determine the L(2,1)-labeling label(v) of vertices v in G, by adjusting cl to already assigned
labels of G.

Figure 3: A chain graph G with b¢(G) = 9 and its optimal L(2, 1)-labeling.
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Algorithm 3: LABELING_BIPARTITE_PERMUTATION(G)

Input: a bipartite permutation graph G = (X,Y, E).
Output: an L(2,1)-labeling f of G

1 foreach v € X UY do label(v) < undef;

2 Tmax < Tg ; /* the maximum vertex in X s.t. label(z) # undef */
3 Ymax < Y0 ; /* the maximum vertex in Y s.t. label(y) # undef */
4 r—1

5 while r < n do

6
7
8
9
10

11
12

13
14
15

16

17

18
19

20

if max Ng(yr) > Zmax then
Construct the chain graph G, ; /* Definition 4.1 */
¢l — LABELING_CHAIN(G, );
if r =1 then s — 0;
else s — max{0,label{(Tmax) — N Zmax),1abel(Ymax) — l(Ymax)} ;
/* X, UY, is the bipartition of G, */
foreach z € X, do
| if label(z) = undef then label(z) — cl(z) + s

if s =0 or s =label(ymax) ~ /(¥max) then
foreach y € Y, do
| if label(y) = undef then label(y) — cl(y) + s

else
/* label(Zmax) — H(Zmax) > label(ymax) — <l(Ymax) */
foreach y € Y; do label(y) — cl(y) + s

Tmax < maAXNG,-(yr)§
| Ymax < Max NGT(xmax);

tr<—r+1

21 foreach v € X UY do f(v) « label(v) mod (be(G) + 2) ;
22 return f

2.

After the assignment label are determined for all vertices, calculate f = label(v) mod (be(G) + 2),
and output the resulting label assignment f.

The detail of the algorithm is described in Algorithm 3.

4.2

Example of our algorithm

We present Figs. 4-8 as an example of our labeling algorithm for the bipartite permutation graph G of

Fig.

1.

1.

In Fig. 4, the chain graph G; and its labeling cl are calculated. Then label for vertices in G is
defined.

. The chain graph G2 and its labeling cl are obtained as in Fig. 5. In this case, s = max{0, label(z2) —

cl{zz), label(ys) —cl(y3)} = max{0,4—4,2—1} = 1. Thus label(v) = cl(v)+1 for v € {z3,74,y4, Y5}

. The chain graph G3 and its labeling cl are obtained as in Fig. 6. In this case, s = max{0, label(z4) —

cl(z4),label(ys) — cl{ys)} = max{0,7 — 5,4 — 2} = 2. Thus label(v) = cl(v) + 2 for v € {zs5,y6}.

. The chain graph Gg and its labeling cl are obtained as in Fig. 7. In this case, s = max{0, label(z5) —

cl(zs), label(ys) — cl(ys)} = max{0,8 — 2,5 — 0} = 6. Since s = 6 = label(zs) — cl(z5) > label(ys) —
cl(ye)}, label(v) = cl(v) + 6 for v € {zs,z7, ¥s, Y7, ys} (line 17 of Algorithm 3).

. Finally, L(2, 1)-labeling f of G is obtained by f(v) = label(v) mod 8 as shown in Fig. 8.
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Figure 4: The chain graph G; and its labeling cl (left), and the labeling label of G (right). In this case,
s=0.

label:
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Figure 5: G and its labeling cl, and label of G (s = 1).

label:
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Figure 6: G3 and its labeling cl, and label of G (s = 2).

label:
Yo Y7 Ys H Y2 Ys Ya Y5 Ye Y7 Ys

Figure 7: Gg and its labeling cl, and label of G (s = 6).

Y Y2 Y3 Y4 Y5 Yo Y7 Ys

Figure 8: The L(2, 1)-labeling of G which is obtained from label and bc(G) + 2 = 8.



Note that, in each step, the biclique number bc(G) is equal to the value of label(z) — label(y, ), where
z is the maximum neighbor of y,. For example, in Fig. 5, bc(G2) = 6 = label(z4) — label(ys) holds.

It also should be noted that if the condition s = label(zmax) — c/{Zmax) > label{(ymax) — cl(Ymax) holds
(line 17), the labeling of nodes of Y in G, are increased. For example, label(yg) = 5 in Fig. 6, then it is
increased to 6 in Fig. 7 because the situation s = label(x5) — cl(z5) > label(ys) — cl(yg) occurs.

4.3 Correctness

The labeling label calculated in the algorithm is an L(2,1)-labeling of G, which is guaranteed by the
following two lemmas.

Lemma 4.3. 2 < label(z;) — label(y;) < be(G) if z,y;, € E.

Sketch of proof. If an edge x;y; is in G, then cl(z;) — cl(y;) < be(G,) by Lemma 3.3, where cl is the
labeling of G.. Since label(z;) — label(y;) < cl(z;) — cl(y;), the inequality label{x;) — label(y;) < be(G)
holds.

So we should show that label(z;) — label(y;) > 2. This condition would be violated only when the
following situation occurs:

(i) label(y;) is increased in line 17 for some chain graph G,, and
(ii) The labels of vertices of X, in G, are not consecutive numbers.

An example of non-consecutive labels is G5 in Fig. 6. The vertices of X3, 2,23, x4 and z5, have labels
4,6,7 and 8, respectively, in G, which are not consecutive numbers. Furthermore, vertex z» is adjacent
to y3 and label(z2) — label(ys) = 2. Thus, if label(y;) would be increased after processing Gj, then
label(z2) — label(ys) < 2.

However, we can show that the above situation (i) and (ii) does not occur simultaneously. The detailed
proof of this will be presented in the full version of this paper. O

Lemma 4.4. The labeling label satisfies the following inequalities:
1. 1 < label(z;) — label(z;) < be(G) — 2 if dist(z;, zx) =2 and 1 <i < k < m.
2. 1 < label(y;) — label(y;) < be(G) — 2 if dist(y;, m) =2 and 1 < j <1< n.

Proof. Suppose that dist(x;,xx) = 2and i < k. Clearly label(z;) < label(zt). Let y be a common neighbor
of z; and zx, and ¢ = label(y). By Lemma 4.3, we have label(zy) < ¢ + be(G) and label(x;) > ¢ + 2.
Hence label(z) — label(z;) < be(G) — 2.

Similarly, we suppose that dist(y;, %) = 2 and j < I. Clearly label(y;) < label(y;). Let = be a common
neighbor of ; and y;, and p = label(z). By Lemma 4.3, we have label(y;) < p—2 and label(y;) > p—bc(G).
Hence label(y;) — label(y;) < bc(G) — 2. O

<

Theorem 4.5. The labeling f calculated by Algorithm 3 is an L(2, 1)-labeling of G, and max,c xuy f(v)
be(@) + 1. This algorithm runs in O(|V| + |E|) time.

Proof. Since f(v) = label(v) mod (bc(G) + 2), the inequality max,e xuy f(v) < be(G) + 1 holds.

Let 2y € F, where z € X and y € Y. Then, by Lemma 4.3, 2 < label(z) — label(y) < bc(G). Since
f(z) = label(z) mod (be(G) + 2) and f(y) = label(y) mod (be(G) + 2), the value of |f(z) — f(y)| cannot
beOor 1.

If dist(z;, zx) = 2, then label(zx) — label(z;) < be(G) — 2 by Lemma 4.4. Hence |f(zx) — f(z:)| > 1.
Similarly, we can show that |f(y) — f(y;)] > 1 if dist(y;,w) = 2.

If the degree of y; and max Ng(y;) are d, and dp, respectively, then the chain graph G; has at most
dy + dp vertices. Hence, cl and label of vertices in G are calculated in O(d; + dg) = O(A) time, where A
is the maximum degree of G. Since the number of chain graphs constructed in our algorithm is O(JV}]),
the total running time of the algorithm is O(|V| + A[V]) = O(|V]| + |E]). 0

Corollary 4.6. Any bipartite permutation graph G satisfies A(G) < be(G) + 1.



5 Conclusion

In this paper, we investigated the L(2,1)-labeling problem for bipartite permutation graphs. We showed
that an optimal L(2,1)-labeling of a chain graph, a special class of bipartite permutation graphs, can
be computed in linear time. We also present a linear time algorithm for computing L(2, 1)-labeling of a
bipartite permutation graph such that the maximum label is at most be(G) + 1. Since A(G) > be(G) for
any bipartite graph G, our algorithm computes a nearly optimal solution.
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